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Drug resistance remains one of the greatest challenges facing precision oncology today.
Despite the vast array of resistance mechanisms that cancer cells employ to subvert the
effects of targeted therapy, a deep understanding of cancer signalling networks has led to
the development of novel strategies to tackle resistance both in the first-line and salvage
therapy settings. In this review, we provide a brief overview of the major classes of resis-
tance mechanisms to targeted therapy, including signalling reprogramming and tumour evo-
lution; our discussion also focuses on the use of different forms of polytherapies (such as
inhibitor combinations, multi-target kinase inhibitors and HSP90 inhibitors) as a means of
combating resistance. The promise and challenges facing each of these polytherapies are
elaborated with a perspective on how to effectively deploy such therapies in patients. We
highlight efforts to harness computational approaches to predict effective polytherapies and
the emerging view that exceptional responders may hold the key to better understanding
drug resistance. This review underscores the importance of polytherapies as an effective
means of targeting resistance signalling networks and achieving durable clinical responses
in the era of personalised cancer medicine.

Introduction

Deregulation of cellular signalling networks is a well-established driver of oncogenicity [1]. Mutations in
proteins that comprise a number of key oncogenic signalling pathways have been identified in large-scale
sequencing studies of tumour specimens [2]. These findings have spurred the development of targeted
therapies that selectively inhibit these aberrant signalling proteins; and in some cancer types these drugs
have shown significant clinical efficacy and patient benefit [3,4]. Despite initial tumour responses, there
remains the major challenge of tumour relapse as nearly all patients ultimately develop resistance to such
targeted therapies. In this review, we describe the major signalling mechanisms of resistance to targeted
therapy. We outline the different approaches currently being explored to target signalling networks in
order to overcome drug resistance, and conclude by offering a perspective on emerging approaches to
achieve durable drug responses.

Mechanisms of resistance

Resistance to targeted therapies typically results from the re-activation of signalling pathways inhibited
by the drug of interest. This can occur via (1) acquisition of drug resistant mutations or amplification of
the target protein, (2) re-activation of downstream signalling proteins via paradoxical activation mecha-
nisms or activating mutations, or (3) through activation of compensatory signalling pathways (Figure 1).
A well-characterised example of drug-resistant mutations is found in the BCR-ABL fusion oncoprotein
in chronic myeloid leukaemia. The kinase inhibitor imatinib binds to the ATP-binding site of BCR-ABL
when it is in the closed conformation, resulting in kinase inactivation [5]. The most frequent mechanisms
of resistance to imatinib are driven by mutations within the kinase domain which prevent BCR-ABL from
adopting the conformation that enables high-affinity imatinib binding (e.g. E255K and M351T), and the
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Figure 1. Different signalling mechanisms of drug resistance

(A) Gatekeeper mutations on BCR-ABL restore kinase activity in the presence of BCR-ABL inhibitors (BCR-ABLI) in chronic myeloid
leukaemia (ATP-binding site mutations and T315l enable resistance to first- and second-generation BCR-ABLi respectively) [86]. (B)
Amplification of the EML4-ALK fusion restores signalling in the presence of ALK inhibitor (ALKi) crizotinib in NSCLC by increasing
levels of active unbound oncogene [87]. (C) In the presence of oncogenic RAS, BRAF inhibitors (BRAFi) drive the formation of
stable BRAF-CRAF complexes, resulting in hyperactivation of MAPK signalling in metastatic melanoma [12]. (D) PI3KCA mutations
downstream of HER2 can re-activate signalling blocked by the anti-HER2 targeted agent trastuzumab, enabling resistance in
HER2-positive breast cancer [88]. (E) Upregulation of multiple RTKs activates compensatory signalling pathways following HER2
inhibition in HER2-positive breast cancer [13].

T3151 substitution which disrupts a hydrogen bond essential for imatinib binding [6] (Figure 1). Second genera-
tion BCR-ABL inhibitors dasatinib and nilotinib were developed to overcome imatinib resistance conferred by these
mutations. Despite displaying increased potency compared with imatinib and clinical efficacy in many patients who
have progressed on imatinib, these inhibitors are not effective against T315] substitutions [7-9]. A third genera-
tion inhibitor, Ponatinib, has since been advanced into the clinic and is effective in both wildtype and T315I mutant
BCR-ABL [10]. Similar paradigms of second- and third-generation kinase inhibitors to tackle drug resistance muta-
tions arising from first-generation inhibitors are also found in mutant EGFR and ALK-fusion positive non-small-cell
lung cancer (NSCLC) [11]. A prominent example of resistance driven by re-activation of downstream signalling is
through paradoxical activation of the MAPK (mitogen-activated protein kinase) pathway in BRAF V600E mutant
melanoma. In the presence of oncogenic RAS, treatment with BRAF inhibitors (BRAFi) such as vemurafenib can
drive the formation of BRAF-CRAF heterodimers, resulting in a stable complex that hyperactivates MAPK signalling
leading to drug resistance [12]. The third major mechanism of drug resistance is through the activation of alternative
compensatory signalling pathways, also known as “signalling reprogramming”. For example, it has been shown that
transcriptional changes in response to the HER2 inhibitor lapatinib in HER2-positive breast cancer leads to the upreg-
ulation of multiple receptor tyrosine kinases (RTKs), including EGFR, IGF1R, INSR, FGFR2 and DDR2, which confer
compensatory survival signalling and drug resistance [13]. Additional examples of other forms of signalling-based
resistance mechanisms are provided in Figure 1.

Recent studies have shown that, in addition to cellular signalling mechanisms of resistance, an understanding of
population-level evolutionary mechanisms is also necessary for developing effective strategies to overcome drug re-
sistance [14,15]. Conceptually, it is now well-appreciated that there is significant intratumoural heterogeneity in pa-
tients, and that the selective pressure of drug treatment exacerbates evolutionary forces exerted on tumour cells,
driving clonal selection and drug resistance. Work from Hata et al. [16] modelling the development of EGFR in-
hibitor (EGFRI) resistance in NSCLC in vitro has shown that acquisition of the EGFR gatekeeper mutation, T790M,
can occur either through the accumulation of the mutation in drug-tolerant persister cells or through the selection
of pre-existing clones which already possess the mutation. Evidence suggests that tumours evolve spatially within
the primary tumour and at metastatic sites, as well as temporally during the course of disease and treatment. This is
exemplified by reports of patients who harbour multiple resistant subclones with distinct mechanisms of drug resis-
tance; a phenomenon termed polyclonal resistance [17,18]. In addition to these genetic-based mechanisms of drug
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resistance, transient changes to the transcriptome of individual cells can also lead to a stable drug-resistant state.
Schaffer et al. [19] showed that addition of drug converts infrequent and transient transcriptional upregulation of re-
sistance markers occurring in a small percentage of cells into stable transcriptional upregulation that promotes drug
resistance.

Resistance to targeted therapy may occur through any combination of the mechanisms outlined above depending
on the intratumoural heterogeneity at the time of treatment, the specific cancer type and the targeted therapy ad-
ministered. Tumour-cell extrinsic mechanisms of resistance, such as the influence of the tumour microenvironment
and the adaptive immune system, also operate in the context of targeted therapy. We do not discuss these mecha-
nisms here, but they are reviewed elsewhere for readers who are interested [20,21]. Given that the common thread of
targeted therapy resistance involves the re-activation of survival signalling pathways and the evolutionary selection
of drug resistant clones, it may be possible to design strategies that selectively target these two processes with the
ultimate goal of delaying or even preventing the onset of resistance. Here we focus on the use of polytherapies (i.e.
therapies targeting multiple aspects of a cancer cell) to modulate signalling pathways and limit evolutionary selection
as a means of achieving durable drug responses.

Targeting signalling pathways to overcome resistance

Combination therapy

Owing to the ability of tumour cells to circumvent blockade of an oncogene by a single therapeutic agent, there has
been significant interest in identifying combination therapies using two or more drugs to enhance anti-tumour effects.
By targeting multiple signalling pathways and resistant clones, combination therapies can delay the onset of resistance
as they reduce the possible routes to re-activation of networks essential for tumour growth.

Combination therapies can be designed to target separate components of the same pathway to overcome
re-activation of downstream signalling. An example is the combined use of MEK inhibitors (MEKi) with BRAFi
in melanoma harbouring BRAF V600E mutations. Development of resistance to BRAFi in melanoma patients oc-
curs at a median of 5 months post-treatment, with ~80% of resistant tumours showing re-activation of the MAPK
pathway [4,22,23]. Multiple mechanisms of resistance operate in this context. Acquisition of the p61 splice variant of
BRAF-V600E promotes dimerization of BRAF, enabling ERK signalling in the presence of BRAFi [24]. Oncogenic
mutations in RAS, such as G12, G13 and Q61 substitutions, can lead to the paradoxical activation of MAPK via stable
BRAF-CRAF heterodimers which are formed following treatment with BRAFi [12]. Other less common mecha-
nisms of resistance are acquisition of activating mutations in MEK and amplification of BRAF [23]. Independently,
MEK:i also improve overall survival in patients with melanoma harbouring BRAF V600E mutations compared with
chemotherapy [25]. It was posited that combining the use of BRAFi and MEKi would delay the onset of resistance, as
the combination would target the original driver oncogene and the pathway enabling secondary resistance. Preclin-
ical models found that combination of BRAFi and MEKi delayed tumour relapse, and a phase III trial established a
25% relative reduction in the risk of disease progression in patients treated with the combination therapy compared
to BRAFi monotherapy in a first line setting [26].

Alternatively, combination strategies can be designed to overcome resistance by simultaneously targeting multiple
compensatory signalling pathways. Duncan et al. [27] showed that within 24 hours of MEKi treatment, triple nega-
tive breast cancer (TNBC) cells were able to re-activate ERK through the upregulation of multiple RTKs. The authors
exploited this finding by utilising the multi-target RTK inhibitor sorafenib to sensitize TNBC cells to MEKi ther-
apy. Further experiments in a genetically engineered mouse model of TNBC showed that combination of MEKi and
sorafenib treatment achieved greater tumour regression compared with MEKi alone, while sorafenib monotherapy
showed no effect. This demonstrates that targeting the initial driver oncogene in combination with pathways driving
resistance in the first-line setting increases therapeutic efficacy.

One of the main challenges of combination therapies is defining a priori the best drug combinations to use (Table
1). Utilising molecular profiling approaches such as phosphoproteomics [28,29] to map signalling reprogramming as-
sociated with drug resistance and employing reverse combinatorial chemical [30] and genetic screens [31] to identify
drug-genotype relationships can be very helpful in refining this process. Additionally, systems medicine strategies
are being exploited to tailor drug combinations on a patient-specific basis. For instance, He et al. [32] developed
a combined computational and experimental drug combination prediction and testing platform which integrates
next-generation sequencing profiling with single-agent drug responses from both healthy cells and cancer cells ob-
tained from patients to predict the most effective anti-cancer combinations. Another practical challenge with admin-
istering combination therapies is increased toxicity in patients. As well as overlapping toxicity profiles of different
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ages and disadvantages of combination therapies, multi-target kinase inhibitors (Kls), and HSP90 inhibitors
for targeting networks to overcome resistance

Combination therapy Multi-target Kl HSP90 inhibitors
Advantages e Selective inhibition of desired targets e Drug repurposing o Indirectly target many established oncogenes
e Simultaneously targets initial driver oncogene e Simultaneously targets initial driver oncogene  that are HSP9O client proteins
and mechanism of resistance and mechanism of resistance e Low doses can limit genetic diversity which
e Targets multiple subclones that are resistant to e Targets multiple subclones that are resistant to  can prevent acquisition of drug resistance
monotherapy monotherapy
e Predictable pharmacodynamics and
pharmacokinetics

Disadvantages

e Targeting multiple kinases decreases the
likelihood of resistance mechanisms occurring
e Target tumour extrinsic factors such as
angiogenesis, as well as tumour intrinsic factors

o |dentification of efficacious combinations o |dentification of appropriate multi-target Kis e High toxicity at doses required for inhibition of
requires a priori knowledge of signaling requires a priori knowledge of signaling client proteins

networks networks e Potential risk of increasing genetic diversity in
e Unpredictable pharmacodynamics, e Lack of predictive biomarkers advanced cancers

pharmacokinetics and toxicity profiles e May have undesired effects on off-target

e Lack of predictive biomarkers kinases

drugs, physicians must also consider novel toxicities specific to the combination treatment [33]. Finally, a signifi-
cant obstacle to the effective use of combination therapies is the identification of predictive biomarkers. Biomarkers
for targeted monotherapies are generally robust, as they typically involve alterations of the target gene (e.g. EGFR
mutations or HER2 amplifications [34,35]). However, biomarker discovery may be more complex when considering
combination strategies. For example, while BRAF and PIK3CA mutations are biomarkers for MEK inhibitors and
AKT inhibitors respectively, neither are effective biomarkers for the combination of both classes of drugs [36,37].
Instead, KRAS mutations have been shown to be an effective biomarker for combination strategies of MEK and AKT
inhibitors in patients [38]. The increasing use of genetically engineered mouse models and patient-derived xenograft
models for preclinical testing of combination therapies may further improve the identification of biomarkers for these
strategies [39,40].

Multi-target kinase inhibitors

An alternative approach to overcome resistance is to exploit polypharmacology: the inhibition of multiple signalling
targets using a single drug. Target-based development of selective inhibitors for kinases is the gold standard in drug
discovery. However, due to the highly conserved architecture of the ATP-binding site in kinases, it has been chal-
lenging to develop inhibitors that are truly selective for a single kinase [41]. Indeed, screening efforts have revealed
that drugs initially thought to be selective actually inhibit multiple off-target kinases [42,43]. In a recent demonstra-
tion of this phenomenon, Kuenzi et al. [44] used a screen of 240 compounds against 20 NSCLC cell lines and made
the surprising discovery that the ALK inhibitor ceritinib showed potent activity against ALK-negative NSCLC lines.
Chemical proteomics analysis found that ceritinib bound to multiple kinases including RSK1/2, FAK1, and IGFIR.
Importantly, the authors determined that silencing of each of these three kinases individually did not induce sig-
nificant cell death, indicating that ceritinib is exerting its anti-tumour effect through the simultaneous inhibition
of multiple targets. Here we discuss the advantages of utilising polypharmacology and broad spectrum multi-target
kinase inhibitors (KIs) as a means to target multiple signalling networks and overcome drug resistance.

One obvious advantage presented by multi-target KIs is the potential for drug repurposing. As we begin to un-
derstand the off-target effects of approved drugs, it is becoming possible to repurpose these molecules for new
indications. A preclinical study of Ph+ acute lymphoblastic leukaemia demonstrated this utility. Zhao et al. [45]
used a small-molecule drug screen to show that cells which were resistant to multiple BCR-ABL inhibitors devel-
oped collateral sensitivity to the multi-target KIs crizotinib, foretinib, vandetanib, and cabozantinib. Although these
multi-target Kls all target MET, there was no overlap in sensitivity with other MET inhibitors - indicating an alter-
native mechanism to MET inhibition. A combination of phenotypic and signalling measurements revealed that these
multi-target KIs exert their effect by targeting the BCR-ABL V299L mutation, which is only present in BCR-ABL
inhibitor-resistant cells. As none of these drugs target wild type BCR-ABL, this study exemplifies how multi-target
KIs can be readily repurposed for new indications.

Another advantage of utilising multi-target KIs is the ability to disrupt multiple resistance-causing signalling path-
ways simultaneously. The concept is to employ a single agent capable of targeting multiple signalling pathways in a
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Figure 2. Combination therapies and multi-target Kls are able to overcome signalling re-activation and resistance

This figure shows the effect of polytherapies on signalling in drug resistant cells. MRT cells develop resistance to PDGFR inhibitors
(PDGFRI) by activating compensatory signalling pathways through upregulation of FGFR1. PDGFRi-resistant MRT cells are sensitive
to polytherapies that target both FGFR1 and PDGFRA, either utilising a combination approach of PDGFRi and FGFR inhibitors
(FGFRI) or a multi-target Kl approach with a dual inhibitor.

cancer cell or multiple resistant subclones within a heterogeneous tumour to limit signalling re-activation and repro-
gramming in response to drug treatment, thus delaying or preventing the acquisition of resistance. A recent example
of this is seen in PDGFRA inhibitor-resistant malignant rhabdoid tumours (MRTs). Wong et al. [46] showed that
MRT cells that had acquired resistance to PDGFRA inhibitors showed elevated phosphorylation levels of the FGFR1
RTK. Correspondingly, dual treatment of MRT cells with PDGFRA and FGFRI1 inhibitors increased apoptosis com-
pared with treatment with each inhibitor alone, indicating a role for FGFRI signalling in conferring resistance to
PDGFRA inhibition (Figure 2). This led the authors to test the efficacy of ponatinib, a single agent that inhibits both
FGFR1 and PDGFRA with equal potency. Ponatinib as a monotherapy was capable of overcoming PDGFRA inhibitor
resistance and induced levels of apoptosis comparable to the combination of PDGFRA and FGFRI1 inhibitors (Figure
2). This study indicates that multi-target KIs are capable of limiting the number of evolutionary options available to
develop resistance by preventing both the initial driver event (e.g. PDGFRA) as well as the compensatory pathways
which promote drug resistance (e.g. FGFR1).

Exploiting polypharmacology with multi-target KIs has a number of benefits over using combination-based thera-
pies (Table 1). First, the use of a single drug with multiple targets is likely to have more predictable pharmacodynamics
and pharmacokinetics than administering multiple single-target agents. Secondly, issues of adverse drug-drug inter-
actions or antagonistic effects when using combination therapies are circumvented by using only one drug. Finally,
targeting multiple processes in different cell types, including tumour-cell extrinsic factors such as angiogenesis, in
addition to tumour-cell intrinsic kinase dependencies may further delay the onset of acquired resistance.

HSP90 inhibitors

The HSP90 protein is an ATP-dependent molecular chaperone that is important for the folding, stabilisation and
maturation of a wide range of “client proteins” [47]. In the context of cancer, many of these client proteins include
well-established oncogenes such as mutant EGFR, EML4-ALK, BRAF and HER2 among others [48,49]. The discovery
that HSP90 is essential for maintaining the stability and consequently functional activity of selected oncogenes led
to the development of small-molecule HSP90 inhibitors with the premise that these compounds would function as
broad-spectrum “super-kinase” inhibitors in oncology. Furthermore, given that multiple resistance-causing bypass
pathways are driven by HSP90 client proteins, it was hypothesized that inhibiting this protein could prevent the
development of secondary resistance commonly observed with KIs. While HSP90 inhibitors have shown remarkable
efficacy in preclinical in vitro and in vivo studies in cancers such as mutant EGFR lung cancer [50-54], clinical trials
of these inhibitors in NSCLC have unfortunately been disappointing with poor response rates and high toxicities in
the first-line and acquired KI resistance settings [55-57].
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Another perhaps less well-appreciated but central function of HSP90 is as a capacitor for phenotypic diversity [58].
HSP90 plays a key role in canalisation across phylogenetically diverse model organisms including flies, plants and
fungi [58-60]. Canalisation is the ability of a population to maintain robust biological phenotypes despite perturba-
tions in the environment or genotypic variation [61,62]. By regulating the folding of metastable genetic variants and
allowing these proteins to perform wild-type biochemical functions, HSP90 limits phenotypic variation under basal
conditions [63]. Canalisation allows for the accumulation of genetic diversity and heterogeneity within a population
over time, which can lead to the emergence of previously silent genetic and signalling variants as new traits during
selection by extreme environmental stresses that overcome the buffering capacity of HSP90 [64]. In the context of
drug resistance, environmental stress in the form of therapy will select for the most resistant clones from a genetically
diverse pool of cells maintained by HSP90. It has been shown that low-dose, non-toxic inhibition of HSP90 is capable
of limiting the generation of genetic diversity within the population and preventing the acquisition of drug resistance
[59,65,66].

Given that tumour heterogeneity and the selection of drug-resistant clones is a major issue in cancer therapy, White-
sell etal. [67] investigated if HSP90 inhibitors have utility in overcoming hormonal therapy resistance in breast cancer.
By exposing cell-line models to the second generation HSP90 inhibitor ganetespib at low, non-toxic doses in combina-
tion with the anti-oestrogen tamoxifen, they were successfully able to delay the development of tamoxifen resistance.
Since high-dose HSP90 inhibition in humans induces a range of side effects, including ocular toxicities, that limit
its utility as an anti-cancer agent [55,56], these data suggest an alternative approach would be to administer low,
non-toxic doses of HSP90 inhibitors — to regulate canalisation and reduce intratumour heterogeneity — in combina-
tion with anti-oestrogens to achieve durable responses in patients. One caveat of this approach that has been observed
in model organisms [58-60] is that there is a potential risk in advanced cancers that partial inhibition of HSP90 func-
tion alone at sub-lethal doses may reveal accumulated genetic diversity within heterogeneous tumours which could
hasten the development of new malignant phenotypes, including new resistance-driving signalling pathways. While
promising, more research is necessary in order to better characterise the effects of low-dose HSP90 inhibition on
tumour heterogeneity and its use in combination with targeted therapy agents.

Future perspectives

Computational biology as a tool for identifying effective polytherapies
Increasingly, computational and mathematical modelling techniques are being used to predict signalling rewiring in
response to targeted therapy [68], identify synthetic lethal interactions [69], and predict dosing schedules and drug
combinations capable of delaying resistance [70,71]. The ability to identify a priori synthetic lethal interactions and
signalling rewiring trajectories, in tandem with the capacity to predict the most efficacious targeted combinations and
dosing schedules, would provide valuable information that could facilitate more rapid personalisation of treatment
strategies.

Identifying kinase dependencies in tumours and assigning the best inhibitors for targeting those kinases is essential
for rational design of targeted polytherapies. There have been multiple efforts to develop computational approaches
to integrate omics based measurements to predict kinase dependencies in cancer cells. Examples include the Ki-
nase Addiction Ranker (KAR) [72] and Kinase inhibitor connectivity map (K-Map) [73]. KAR is a computational
algorithm that integrates high-throughput drug-screening data, quantitative drug-kinase binding data, and tran-
scriptomics data to predict kinase dependencies in cancer cells, while K-Map is a web-based program that connects
a set of query kinases to quantitative KI selectivity profiles, including multi-target KIs. These two approaches were
used in tandem by Ryall et al. [74] to delineate the different kinase dependencies in TNBC and show for the first
time that the multi-target KI bosutinib was effective in killing the HCC1806 TNBC cell line. Further development
of next-generation computational strategies that are not only capable of predicting kinase dependencies in a cancer
cell, but also factor in the kinase dependencies of multiple clones within a heterogeneous tumour, would advance our
ability to rationally design effective polytherapies to prevent the acquisition of drug resistance [75].

Computational biology has also demonstrated utility in identifying effective polytherapies to tackle intratumoural
heterogeneity. In a recent example, Jonsson et al.[76] utilised computational modelling based on tumour population
dynamics to design treatment strategies that optimally controlled tumour growth. Analysing tumours from a patient
with EGFRi-resistant NSCLC, the authors discovered that the patient had polyclonal resistance driven by amplifi-
cation of the original EGFR mutation, acquisition of a gatekeeper mutation on EGFR, acquisition of BRAF V600E
mutation, and MET amplification. Computational modelling employed to determine the most effective treatment
strategy revealed that combination therapies were only able to control certain subpopulations within the tumour,
while other subpopulations would continue to grow. For instance, combination of EGFR and BRAF inhibitors would
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control subpopulations harbouring BRAF mutations, but allow subpopulations with MET amplification to continue
to grow. To achieve optimal tumour growth control, their modelling showed that the most effective strategy was to
sequentially alternate between combination therapies to target distinct subpopulations within the tumour. Impor-
tantly, the authors show that switching to a different combination therapy even when an overall tumour response
is observed led to the greatest reduction in tumour cells. This concept contrasts with current treatment paradigms,
which advocate switching therapy only after the acquisition of drug resistance and tumour relapse.

Exceptional responders as models for understanding mechanisms of

drug resistance

In spite of the prevalence of acquired resistance to targeted therapies, there have been a small number of individuals,
known as “exceptional responders”, who show remarkable sensitivity and durable response to treatment [77-79]. The
National Cancer Institute has launched the Exceptional Responder Initiative following a review of unpublished data
from phase II clinical trials that identified exceptional responses in up to 10% of patients where the drug did not
receive FDA approval for that indication [80]. Through studying these exceptional responders, it may be possible to
uncover genotypes and mechanisms that confer long-term sensitivity to specific targeted agents.

Recent molecular studies into such exceptional responders have uncovered a number of distinct mechanisms for
durable responses to signalling pathway inhibitors. In one example, Al-Ahmadie et al. [78] identified a RAD50 mu-
tation in a patient who showed durable response to a combination of CHK1 inhibition and chemotherapy. Through
a combination of genetic and functional analyses they demonstrated that the RAD50 mutation attenuates ATM sig-
nalling and in the context of DNA damage resulting from chemotherapy, this attenuated signalling led to an extreme
sensitivity to CHKI1 inhibition. In another example of unusual durable responses, follow-up data from a phase III
study of 946 patients with gastrointestinal stromal tumours, which began in 2001, showed that imatinib was still ef-
fective in 13% of patients after 10 years of treatment [81]. However, the biological mechanisms underpinning this
durable response remain elusive. Future studies in the field should focus on delineating the signalling mechanisms
underpinning exceptional response, which may aid in the development of effective salvage therapies for patients who
go on to develop secondary resistance to these drugs.

Conclusion

Polytherapies represent a promising avenue for improving cancer survival outcomes by reducing the rates of tumour
recurrence in patients. Our increased understanding of the mechanisms of drug resistance has enabled the rational
design of effective combination therapies and multi-target KI strategies capable of simultaneously targeting both the
initial oncogenic driver and secondary mechanisms of resistance. Upfront as well as salvage delivery of these poly-
therapies may delay or prevent drug resistance by limiting the evolutionary routes available to tumour cells. Given
the plasticity of signalling networks in cancer cells, there is a risk that resistance to polytherapies may still develop
in patients. This possibility highlights the need to improve on our current ability to predict tumour clonal dynam-
ics and evolution in response to targeted therapy, and to gain a deeper understanding of the biology that underpins
the emergence of resistant disease. We anticipate that an increased use of computational modelling approaches to
forecast cancer clonal evolution and signalling adaptation will be essential for eliminating the risk of developing
resistance to polytherapies [82,83]. While significant obstacles to the widespread use of polytherapies in the clinic
remain, the recent approval of a number of combination KI therapies indicates that these challenges are not insur-
mountable. Identifying effective polytherapies and predictive biomarkers, as well as overcoming issues of toxicity are
crucial bottlenecks that need to be addressed. Moving forward, we anticipate that the increasing deployment of in-
tegrated experimental and computational strategies to identify effective combinations and dosing schedules together
with employing innovative adaptive clinical trial designs to evaluate these drugs in patients should usher in a new
generation of clinically efficacious polytherapies for use in precision cancer medicine [84,85].

Summary

e Resistance to targeted therapy can occur via multiple heterogeneous mechanisms. There is a
common thread of re-activation of survival signalling pathways and the evolutionary selection of
drug-resistant clones.
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Combination and multi-target kinase inhibitor-based strategies are promising approaches for over-
coming or preventing acquisition of kinase inhibitor resistance, as they are capable of limiting both
bypass or compensatory signalling networks and the evolutionary routes available to cancer cells.

Low doses of HSP9O0 inhibitors can limit the genetic diversity within a tumour and thus delay resis-
tance.

Novel computational strategies are facilitating better and more accurate identification of efficacious
combination strategies and optimal dosing schedules.

Studying exceptional responders will increase our understanding of durable responses to cancer
therapies and may reveal genotypes and mechanisms that elicit long-term response.
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MAPK, mitogen-activated protein kinase; MEK, mitogen-activated protein kinase kinase; MEKi, MEK inhibitor; MRT, malig-
nant rhabdoid tumour; NSCLC, non-small-cell lung cancer; PDGFRA, platelet-derived growth factor receptor alpha; PIK3CA,

phophatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; RAD50, RAD50 double strand break repair protein;
RSK1/2, ribosomal S6 kinase; RTK, receptor tyrosine kinase; TNBC, triple negative breast cancer.
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