LETTER

and and a stinct phenotypes

Johnathan Watkins^{a,b,c}, Andrew Tutt^{b,c,d}, and Anita Grigoriadis^{a,b,c,1}

Menghi et al. (1) report a metric to classify tumors into those with and without a tandem duplicator phenotype (TDP), using the frequency of tandem duplications (TDs) in 277 whole-genome sequenced samples. Building on a previous method (2), Menghi et al. (1) identified TDs from SNP array data, and found that the TDP was strongly associated with response to the DNA damaging chemotherapeutic, cisplatin. These findings supplement the growing recognition that genome-wide signatures of mutator phenotypes may prove to be important additions to the companion diagnostic repertoire (3, 4). Although the findings of this report are highly stimulating, accumulating evidence suggests that an elevated abundance of TDs features in not just one but two distinct phenotypes.

Two of the original studies on the TDP reported a mutual exclusion with breast cancer 1/2 (BRCA1/2) inactivation (2, 5), which conflicts with the enrichment of BRCA1 loss among TDP cancers observed by Menghi et al. (1). Using The Cancer Genome Atlas (TCGA) breast cancer data (6), we established allele-specific copy number profiles using ASCAT (7) before calling TDP status, as described previously (2), using two different size ranges for the TD-like features: (i) between 1 Kbp and 2 Mbp in accordance with the study by Menghi et ;al. (1); and (ii) between 2 Mbp and 10 Mbp. Five samples with BRCA1 inactivation exhibited the TDP when considering only shorter TDs (Fig. 1A); however, we found no instances of tumors with BRCA1 inactivation among 2- to 10-Mbp TDP cancers (Fig. 1B). Furthermore, although 56% of the Menghi et al. (1) study's TDP calls were shared with our 1-Kbp to 2-Mbp TDP calls, only 10% of the Menghi et al.

study's TDP calls agreed with our 2- to 10-Mbp TDP calls (Fig. 1*C*). In addition, we found that although the 1-Kbp to 2-Mbp TDP calls and the Menghi et al. study's TDP calls were enriched for triple-negative breast cancers (P < 0.001, Fisher's exact test), the 2- to 10-Mbp TDP calls were not (P = 0.81, Fisher's exact test). These findings support the notion that the study by Menghi et al. captures one particular TDP distinguishable from a second TDP by length and contrasting relationships with loss of *BRCA1* function.

Our results are reinforced by two recent analyses. The first study extracted two TD-enriched rearrangement signatures from 560 whole breast cancer genomes (8). "Signature-1" mostly comprised TDs between 1 and 10 Mbp, whereas "signature-3" mostly comprised TDs \leq 100 Kbp. Signature-3 was associated with BRCA1 disruption, signatures of homologous recombination deficiency, and was observed in ~15% of the cohort. In contrast, signature-1 was independent of BRCA1/2 disruptions, exhibited links with mutational signatures of both homologous recombination deficiency and mismatch repair deficiency, and presented in ~8.5% of the cohort. The second study identified an ovarian and prostate cancer-linked TDP featuring TDs up to 10 Mbp, mutual exclusion with BRCA1/2 inactivation, and enrichment for inactivation of the CDK12 kinase (9).

In conclusion, we propose that there are actually two TDPs, with the study by Menghi et al. (1) providing a comprehensive characterization of the *BRCA1* inactivation-linked TDP. The existence of two TDPs has important implications for the robust development of genomic instability-based biomarkers of drug response.

^aCancer Bioinformatics, King's College London, London SE1 9RT, United Kingdom; ^bBreast Cancer Now Research Unit, King's College London, London SE1 9RT, United Kingdom; 'Division of Cancer Studies, King's Health Partners Academic Health Science Centre, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom; and ^dThe Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom

Author contributions: J.W., A.T., and A.G. designed research; J.W., A.T., and A.G. performed research; J.W. and A.G. analyzed data; and J.W., A.T., and A.G. wrote the paper.

The authors declare no conflict of interest.

Q:7

¹To whom correspondence should be addressed. Email: anita.grigoriadis@kcl.ac.uk.

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

- Q: 1_Please contact PNAS_Specialist.djs@sheridan.com if you have questions about the editorial changes, this list of queries, or the figures in your article. Please include your manuscript number in the subject line of all email correspondence; your manuscript number is 201610228.
- Q: 2_Please (i) review the author affiliation and footnote symbols carefully, (ii) check the order of the author names, and (iii) check the spelling of all author names, initials, and affiliations. Please check with your coauthors about how they want their names and affiliations to appear. To confirm that the author and affiliation lines are correct, add the comment "OK" next to the author line. This is your final opportunity to correct any errors prior to publication. Misspelled names or missing initials will affect an author's searchability. Once a manuscript publishes online, any corrections (if approved) will require publishing an erratum; there is a processing fee for approved erratum.
- Q: 3_Please review and confirm your approval of the short title: Tandem duplications: Two distinct phenotypes. If you wish to make further changes, please adhere to the 50-character limit. (NOTE: The short title is used only for the mobile app and the RSS feed.)
- Q: 4_Please review the information in the author contribution footnote. PNAS requires all articles to have the author contributions listed. Typically, for a Letter, "wrote the paper" is the only contribution. However, you may add others as you think necessary. The other standard contributions are "performed research," "designed research," "contributed new reagents/analytic tools," and "analyzed data."
- Q: 5_Per PNAS style, certain compound terms are hyphenated when used as adjectives and unhyphenated when used as nouns. This style has been applied consistently throughout where (and if) applicable.
- Q: 6_PNAS italicizes genes and alleles. All genes, alleles, and proteins will appear as indicated in your proofs. Please carefully check use of italics and capital letters throughout the proof and correct as necessary. If, by " gene," you mean "the gene that encodes protein " ," then italic type is not necessary. (NOTE: If all instances of a gene/allele should be changed, please make only one correction and indicate that it is a global change.)
- Q: 7_Please provide a departmental affiliation and postal code for affiliation "d."