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Q:1; 2; 3; 4; 5Tandemduplications contribute to not one but two
distinct phenotypes
Johnathan Watkinsa,b,c, Andrew Tuttb,c,d, and Anita Grigoriadisa,b,c,1

Menghi et al. (1) report a metric to classify tumors into
those with and without a tandem duplicator pheno-
type (TDP), using the frequency of tandem duplications
(TDs) in 277 whole-genome sequenced samples. Build-
ing on a previous method (2), Menghi et al. (1) identi-
fied TDs from SNP array data, and found that the TDP
was strongly associatedwith response to theDNAdam-
aging chemotherapeutic, cisplatin. These findings sup-
plement the growing recognition that genome-wide
signatures of mutator phenotypes may prove to be im-
portant additions to the companion diagnostic reper-
toire (3, 4). Although the findings of this report are
highly stimulating, accumulating evidence suggests
that an elevated abundance of TDs features in not just
one but two distinct phenotypes.

Two of the original studies on the TDP reported a
mutual exclusion withQ:6 breast cancer 1/2 (BRCA1/2) in-
activation (2, 5), which conflicts with the enrichment of
BRCA1 loss among TDP cancers observed by Menghi
et al. (1). Using The Cancer Genome Atlas (TCGA)
breast cancer data (6), we established allele-specific
copy number profiles using ASCAT (7) before calling
TDP status, as described previously (2), using two dif-
ferent size ranges for the TD-like features: (i) between
1 Kbp and 2 Mbp in accordance with the study by
Menghi et ;al. (1); and (ii) between 2 Mbp and
10Mbp. Five samples with BRCA1 inactivation exhibited
the TDP when considering only shorter TDs (Fig. 1A);
however, we found no instances of tumors with
BRCA1 inactivation among 2- to 10-Mbp TDP cancers
(Fig. 1B). Furthermore, although 56% of the Menghi
et al. (1) study’s TDP calls were shared with our 1-Kbp
to 2-Mbp TDP calls, only 10% of the Menghi et al.

study’s TDP calls agreed with our 2- to 10-Mbp TDP
calls (Fig. 1C). In addition, we found that although the
1-Kbp to 2-Mbp TDP calls and the Menghi et al.
study’s TDP calls were enriched for triple-negative
breast cancers (P < 0.001, Fisher’s exact test), the
2- to 10-Mbp TDP calls were not (P = 0.81, Fisher’s
exact test). These findings support the notion that the
study by Menghi et al. captures one particular TDP
distinguishable from a second TDP by length and con-
trasting relationships with loss of BRCA1 function.

Our results are reinforced by two recent analyses.
The first study extracted two TD-enriched rearrange-
ment signatures from 560whole breast cancer genomes
(8). “Signature-1”mostly comprised TDs between 1 and
10 Mbp, whereas “signature-3” mostly comprised
TDs ≤ 100 Kbp. Signature-3 was associated with
BRCA1 disruption, signatures of homologous recom-
bination deficiency, and was observed in ∼15% of the
cohort. In contrast, signature-1 was independent of
BRCA1/2 disruptions, exhibited links with mutational
signatures of both homologous recombination defi-
ciency and mismatch repair deficiency, and presented
in ∼8.5% of the cohort. The second study identified an
ovarian and prostate cancer-linked TDP featuring TDs
up to 10 Mbp, mutual exclusion with BRCA1/2 inacti-
vation, and enrichment for inactivation of the CDK12
kinase (9).

In conclusion, we propose that there are actually
two TDPs, with the study byMenghi et al. (1) providing
a comprehensive characterization of the BRCA1 inac-
tivation-linked TDP. The existence of two TDPs has
important implications for the robust development of
genomic instability-based biomarkers of drug response.
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A B C

Fig. 1. Tandem duplication phenotypes in 940 TCGA breast cancers. (A and B) TDP status was determined using genomic segments between
1 Kbp and 2 Mbp (A), or 2 Mbp and 10 Mbp (B), followed by Gaussian mixture modeling of the ratio of TDs to non-TD segments (total number of
segments minus double the number of TD segments as per ref. 2). Odds ratio and P value represent Fisher’s exact test of BRCA1 mutation
enrichment in the TDP subset of tumors. BRCA1 loss was defined as germ-line or somatic point mutation or deletion. TDP tumors are colored in
red and non-TDP tumors in gray. All samples are denoted by an “x,” with the exception of tumors with BRCA1 loss, which are denoted by a
square. (C) Bar plots illustrate the overlaps between the different TDP calling methods.
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