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Abstract: 

 
Purpose:  

Adaptive radiation therapy strategies could account for interfractional uterine 

motion observed in cervix cancer patients, but the current CBCT-based 

treatment workflow is limited by poor soft tissue contrast. The goal of the 

present study was to determine if ultrasound (US) could be used to improve 

visualisation of the uterus, either as a single modality or in combination with 

CBCT.  

 

Methods and materials:   

Interobserver uterine contour agreement and confidence were compared on 40 

corresponding CBCT, US, and CBCT-US-fused images from 11 cervix cancer 

patients. Contour agreement was measured using the Dice Similarity Coefficient 

(DSC) and mean contour-to-contour distance (MCCD). Observers rated their 

contour confidence on a scale from 1 to 10. Pairwise Wilcoxon signed-rank tests 

were used to measure differences in contour agreement and confidence. 

 

Results: 

CBCT-US-fused images had significantly better contour agreement and 

confidence than either individual modality (p < 0.05), with median [interquartile 

range (IQR)] values of 0.84 [0.11], 1.26 [0.23] mm, and 7 [2] for the DSC, MCCD, 

and observer confidence ratings, respectively. Contour agreement was similar 

between US and CBCT, with median [IQR] DSCs of 0.81 [0.17] and 0.82 [0.14], 

and MCCDs of 1.75 [1.15] mm and 1.62 [0.74] mm. Observers were significantly 

more confident in their US-based contours than their CBCT-based contours (p < 
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0.05), with median [IQR] confidence ratings of 7 [2.75] versus 5 [4].  

 

Conclusions: 

CBCT and US are complementary, and improve uterine segmentation precision 

when combined. Observers could localize the uterus with a similar precision on 

independent US and CBCT images. 

 

Key words: ultrasound, adaptive radiotherapy, uterine cervix cancer, cone-beam 

CT, segmentation 
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Introduction  

The primary clinical target volume (CTVp) in cervix radiation therapy (RT) 

includes the uterus and cervix1, which are highly mobile structures. Interfraction 

motion ranging from 2 mm to 60 mm has been observed due to changes in 

bladder and rectal volume and tumor regression2–5. Generous CTVp to planning 

target volume (PTV) margins are necessary to compensate for positional 

uncertainty, but this increases the volume of normal tissue within the 

prescription dose region, which increases the risk of toxicity6–10.  

Cone beam computed tomography (CBCT) is now widely available for bone, 

fiducial11,12 and soft tissue-based treatment verification13–19, and plan of the day 

(POD) selection19,20. Disadvantages of CBCT include additional radiation dose 

and poor soft tissue contrast due to scatter and reconstruction artifacts. Indeed, 

image quality on 12% to 18% of gynaecological and prostate CBCT has been 

reported to be too poor for soft-tissue visualization purposes13–18. Even on 

CBCTs deemed suitable for soft-tissue analyses, poor image quality is reported to 

be the source of high interobserver contouring variability of the uterus and 

prostate 15,17. 

Ultrasound (US) could be an effective, non-ionising, low-cost solution for 

providing high quality images of the pelvic anatomy at the time of radiation 

treatment delivery. US is routinely used in gynaecological/obstetric applications, 

and could be a promising alternative or adjunct to CBCT for image-guidance in 

cervix cancer radiation therapy11,21,22. Baker et al. (2014) observed the apparent 

superiority of US image quality compared with CBCT in visualizing the uterus in 

a study investigating interfractional uterine motion, but no quantitative analysis 
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was performed 11. However, there are some drawbacks associated with US 

imaging of the uterus and cervix. (Note: for the remainder of this text, the uterus 

and cervix complex will be considered a single structure, and will be referred to 

as the uterus). US image quality is operator dependent and varies depending on 

the amount of abdominal fat, bladder volume, the amount of probe pressure 

applied, and whether there are obstructions such as gas or bone in the beam 

path 23–26. Additionally, mechanically-swept 3D probes have a relatively small 

field of view, making it difficult to capture the entire uterus (particularly in cases 

where the disease is bulky), and impossible to capture all of the nearby organs at 

risk, particularly the rectum and bowel and involved lymph nodes within a single 

sweep.  

A quantitative comparison of uterine segmentation on US and CBCT has not been 

evaluated previously. We expected inter-patient variability in uterus 

visualization and that either modality may be superior depending on patient 

characteristics at the time of treatment. It is not known if combining/fusing 

CBCT and US provides additional benefit in accuracy and precision of uterus 

localization for soft tissue-based treatment verification, POD selection, and on-

line replanning.  

The purpose of this work was to compare interobserver agreement in uterine 

segmentation and observer confidence in segmentation on CBCT, US, and CBCT-

US-fused images to determine the optimal imaging method for target localization 

during cervix RT. 

Methods and materials 
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Patients and treatment 

Eleven patients with biopsy proven diagnosis of locally advanced cervix cancer 

were included in this NHS Research Ethics approved study (reference: 

15/LO/1438). Fédération Internationale de Gynécologie Obstétrique (FIGO) 

stage distribution was: IIA= 1, IIB= 9, IIIB= 0, IVA= 1. The mean patient age was 

51 (± 16) years. Patients were treated with radical chemoradiotherapy from 

February 2016 to May 2017. Patients were instructed to drink 350 ml water 

after complete bladder voiding 1 hour before treatment as per institutional 

protocol to maintain interfractional bladder volume and consistent set up. There 

were no bowel preparation instructions. Kilovoltage CBCT images were acquired 

immediately before treatment for on-line correction based on bony registration 

days 1-3 and weekly thereafter unless there was a systematic error of >5mm or 

clinical indication, in which case they were acquired more frequently. 3D US of 

the uterus were acquired using the Clarity® system immediately before CBCT 

acquisition at 4-6 treatment sessions following patient set up on the RT 

treatment couch. 

Data acquisition:   

US imaging - 3D US (5 MHz center frequency, mechanically-swept probe) was 

acquired using the Clarity® system (Elekta Ltd, Stockholm, Sweden). The 

Clarity® system is described in detail elsewhere27, but briefly, it is a standard US 

imaging system that is integrated into the RT clinic via infrared tracking, 

whereby the position of the probe (and the corresponding US images) with 

respect to the isocenter of the treatment room is known with sub-millimeter 

accuracy. US operators (either a clinical oncologist or a therapeutic 
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radiographer) applied a thick layer of US gel to the probe and scanned the uterus 

transabdominally using the smallest probe pressure possible to minimize soft-

tissue deformation while still obtaining clear visualization of the uterus. 

CBCT imaging - CBCT imaging (Elekta Ltd, Stockholm, Sweden) was performed 

immediately after US scanning, with no more than a five-minute interval 

between US and CBCT scans. CBCT imaging parameters were 120 kVp and 80 

mAs with 350 projections and a bowtie filter.  

64 US-CBCT image pairs (128 images in total) were obtained as part of this 

study. Two image pairs were excluded due to US operator errors in the probe 

calibration step of the Clarity QA, which caused misregistration of US images to 

the treatment room isocenter. Five image pairs were excluded due to failure to 

save US or CBCTs. Of the 57 remaining image pairs, 40 were randomly selected 

for analysis, leaving the remainder (17 image pairs) exclusively for observer 

training purposes.  

Image formatting:  

Image registration- CBCT images were registered to the planning CT scan using 

the Synergy bone match algorithm. Translational and rotational error was 

summarized as a translational couch shift. Following export to the Clarity 

workstation these translational shifts were applied to each CBCT to replicate 

match to planning CT. The infrared tracking technology provided by the Clarity 

system enabled the spatial registration between the US images and the CBCT 

images. In the offline Clarity workstation, the same translational moves were 

applied to the corresponding US images. 
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Image presentation - A software application was written in Matlab (Mathworks, 

Natick MA) to enable presentation of CT-CBCT, CT-US and CBCT-US registration 

for assessment by observers. The pixel size (in the format [superior-inferior 

direction, anterior-posterior direction]) was [2.5, 1] mm for CBCT images, [0.58, 

0.58] mm for US, and [3, 1] mm for CT. Registered images were superimposed 

over one another, with user-adjustable sliders for 3D slice selection, 

transparency and windowing in both the sagittal and axial orientations. This 

functionality was achieved by interpolating the image in the registration with the 

larger pixels to a grid matching the sampling density of the image with the 

smaller pixels. Note that any references to ‘CBCT’, ‘US’ hereafter imply 

registration with the planning CT, as this is standard clinical practice. In the case of 

CBCT-US registration (henceforth referred to as CBCT-US-fusion), the planning 

CT was available for reference in a separate window rather than as a third 

superimposed image.  

Image contouring and rating: 

Observers used the MATLAB application for all image analysis including: 

1. Delineation of the uterus on a pre-selected 2D sagittal slice: The sagittal slice 

used for contouring was the center-most slice of the uterus, as identified by one 

of the observers in the Experienced cohort (described in next section). This slice 

was in the same position for corresponding CBCT, US, and CBCT-US-fusion 

images.  

2. Contour confidence ratings: After contouring the uterus, each observer was 

asked to rate the confidence that their contour reflected the true uterine 
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boundary from 1 (extremely unconfident) to 10 (extremely confident).  

Observers first evaluated CBCT and US images separately. These images were 

displayed in a random order so that observers were blind to which CBCTs and US 

images were paired, and which images were from the same patient. Then, 

observers evaluated the CBCT-US-fusion images, which were also displayed in a 

random order.  

One experienced observer also contoured the bladder on the central 2D sagittal 

slice on US and CBCT so that the relationship between bladder size and image 

quality could be assessed.  

Observer selection and training:  

Eight observers assessed US, CBCT, and CBCT-US-fusion image quality in this 

study. Observers were divided into two cohorts:  

1. Experienced (three observers): One clinician (XX) and two medical physicists 

(XXX and XX) with previous experience in interpreting both US and CBCT images. 

2. New-to-ultrasound (five observers): Clinicians, radiographers, and medical 

physicists who may have had experience in CBCT image analysis, but no prior 

training in interpreting US images. 

Prior to performing the analysis, all eight observers participated in a one-hour 

training session (using the training dataset comprised of 17 CBCT, US, and CBCT-

US-fusion images) designed to (1) teach observers how to use the MATLAB 

software application, (2) give observers experience in interpreting and 

contouring US, CBCT, and CBCT-US-fusion images of the uterus and (3) establish 
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a consensus for rating contour confidence.  

Contour agreement metrics:  

The two geometric measures used to assess contour agreement were the Dice 

similarity coefficient (DSC)28 and the mean-contour-to-contour distance (MCCD). 

For two contours X and Y, the DSC was calculated as (2|X∩Y|)/(|X|+|Y|) with 0 

and 1 representing no overlap and perfect overlap respectively, and the MCCD 

was defined as 

 

���� =	 �
�
∑ 	|�� − ��|						�
��� ( 1 ) 

 

where n is the number of points comprising contour X29.  

Generation of the gold standard contour:  

For every image analyzed, a single contour was generated by combining the three 

contours from each of the observers in the ‘Experienced’ cohort using Simultaneous 

Truth and Performance Level Estimation (STAPLE)30.  The gold standard contour 

generated by the STAPLE method is the contour that optimizes the sensitivity 

and specificity of all of the contours from each individual observer. As 40 CBCTs, 

40 US images, and 40 CBCT-US-fusion images were analyzed, this resulted in the 

generation of 120 gold standard contours. The contour agreement between the 

remaining five contours from the ‘New-to-ultrasound’ cohort and the gold 

standard STAPLE contour was measured for each of the 120 images.  

Observer ratings:  

Observers were required to rate how confident they were that their contours 
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reflected the true uterine boundary on a ten-point scale. Observers were asked 

to consider all factors potentially influencing their rating, including: the visibility 

of the uterine boundary, the clarity of the bladder wall and bowel gas, the 

regularity of the uterine shape, and the position of anatomical landmarks with 

respect to the PTV. All observers had practice in using these factors to inform 

their rating during the one-hour training session. 

 

Statistical analyses:  

The median and interquartile range (IQR) DSC and MCCD between each of the 

five uterine contours in the ‘New-to-ultrasound’ cohort and the gold standard 

STAPLE contour were reported for CBCT, US, and CBCT-US-fusion images. 

Pairwise Wilcoxon signed-rank tests31 with Bonferroni correction were 

performed to determine whether there were differences in the (1) DSC and (2) 

MCCD between imaging methods (US, CBCT, and CBCT-US-fusion). The statistical 

analysis described above was also repeated for comparing the observer contour 

confidence ratings from all eight observers from both the ‘Experienced’ and 

‘New-to-ultrasound’ cohorts in CBCT, US, and CBCT-US-fused images.  

The interobserver contour agreement and contour confidence was also 

evaluated in the Experienced cohort to assess the influence of observer training 

on the results. A pairwise analysis was used to calculate the median and IQR DSC, 

MCCD, and confidence ratings of the contours from these three observers. 

Differences between US, CBCT, and CBCT-US-fusion were detected using a 

pairwise Wilcoxon signed-rank test with Bonferroni correction. 
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Spearman’s rank order correlation coefficient (Rs) and the corresponding p value 

were reported to assess the direction, strength, and significance of the 

association between the bladder area and the median contour confidence rating 

from all eight observers for independent CBCT and US images.  

Results 

The median [IQR] DSC and MCCD between observer contours from the New-to-

US cohort and the gold standard STAPLE contours are shown in Table 1 for 

CBCT, US, and CBCT-US-fusion images. The DSC between observer contours on 

CBCT-US-fusion images was significantly greater than the DSC between observer 

contours on CBCT (p = 0.002) and US images (p = 7.5e-4). The MCCD between 

observer contours on CBCT-US-fusion images was statistically significantly lower 

than CBCT images (p = 3.4e-20) and US images (p = 3.6e-24). The MCCD was 

statistically significantly lower on CBCT images than US images (p = 6.5e-4).  

Median [IQR] contour confidence ratings were 5 [4], 7[2.75], and 7 [2] for CBCT, 

US, and CBCT-US-fusion images, respectively. The results from the Wilcoxon 

signed-rank tests revealed that (a) observers were significantly more confident 

in their contours drawn on CBCT-US-fusion images compared with CBCT and US 

(p values of 2.7e-28 and 0.005, respectively) and (b) observers were significantly 

more confident in their contours drawn on US than CBCT (p = 4.5e-14).  

The median [IQR] DSC, MCCD, and observer ratings from the pairwise analysis of 

the ‘Experienced’ cohort are shown in Table 2 for CBCT, US, and CBCT-US fusion 

images. There was no significant difference between the DSC on US and CBCT (p 

= 0.97), but the DSC between contours on the CBCT-US-fusion was significantly 
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higher than both CBCT and US (p values of 5.8e-4 and 4.2e-4 respectively). All 

MCCD values and confidence ratings were significantly different between 

experienced observers on CBCT, US, and CBCT-US-fusion images (p < 5e-5), with 

the CBCT-US-fusion consistently outperforming CBCT and US.  

Spearman’s correlation coefficient (Rs) between bladder area and median 

contour confidence was -0.12 (p = 0.83) and 0.37 (p = 0.02) for CBCT and US 

images respectively. 

Discussion 

This study has demonstrated the superiority of combined US-CBCT imaging over 

either single modality for in room target localization of the uterus during 

radiation therapy for cervix cancer. We have also shown that US alone is 

comparable to CBCT as a sole modality. 

CBCT versus US: 

There was no statistically significant difference in DSC between the two 

modalities, CBCT had a statistically significantly smaller MCCD than US and 

observers were more confident in their US-based contours than their CBCT- 

based contours. This indicates that in general, CBCT and US have similar image 

qualities when used to visualize the uterus prior to RT in cervix cancer patients.  

The reason that the higher observer ratings on US did not correspond to an 

improvement in interobserver contouring agreement in the new-to-ultrasound 

cohort is unclear, but could be due to the limited amount of observer experience 

in interpreting US (one hour) compared with CBCT (routine clinical use). This is 
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corroborated by the analyses performed on the Experienced cohort, where the 

improved observer confidence rating in ultrasound image quality did correspond 

to a significantly improved MCCD compared to CBCT. It is well known that there 

is a steep learning curve in US image interpretation partially due to the fact that 

observers can’t rely on the body habitus or skeleton to orient themselves with 

the internal anatomy. Furthermore, inspection of the data also revealed that the 

observers in the ‘New-to-ultrasound’ cohort sometimes misinterpreted the non-

homogeneous soft tissue contrast, uterine sub-structures (such as cysts or the 

endometrial lining) or US artifacts as the uterine boundary; errors which could 

potentially be overcome with more training. Examples of such US artifacts are 

shown side by side with the corresponding CBCT with and without observer 

contours in Figure 1. Even with these challenges, interobserver contouring 

agreement on US in the ‘New-to-US’ observer cohort matched that of CBCT after 

only a one-hour training module.  

In this work, potential geometric mismatches between US and CBCT were not 

explicitly accounted for: factors such as probe pressure, gas movement, bulk 

patient motion, etc. could cause positional discrepancies between the apparent 

position of the uterus on the two modalities. However, preliminary 

measurements from this study did not detect a spatial mismatch: the median 

[IQR] DSC between the CBCT and US gold standard STAPLE contours was 0.78 

[0.09], which is similar to the interobserver contouring variability of the uterus 

measured in previous work (median [IQR] DSC of 0.78 [0.11])32. 

As the bladder is situated anteriorly to the uterus, its volume can influence US 

image quality: a full bladder can provide an acoustic window to the gynecologic 
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anatomy as urine has a low acoustic attenuation 33,34. Although the correlation 

coefficient between bladder area and contour confidence was relatively low 

(0.37), it was statistically significant and in the expected direction, indicating 

that observer contour confidence increases with increasing bladder size. Aside 

from bladder size, other factors such as body mass index (BMI), age, and the 

presence of gas in the acoustic path could also affect US image quality, which 

may explain why the relationship between bladder size and US image quality 

was only weakly detected in this study. In comparison, a lesser association was 

expected between bladder size and CBCT image quality, which was reflected by 

the low, statistically insignificant Rs value between bladder size and contour 

confidence ratings on CBCT of -0.12. The relationship between bladder size and 

median contour confidence ratings is displayed in Figure 2 for CBCT and US 

images.  

In cases where the uterus is clearly visualized on US, US could potentially replace 

CBCT for plan verification and plan of the day adaptive treatment for cervix 

cancer patients. US could also be used for image-guidance in centers without 

CBCT imaging systems (i.e. in low to middle income countries), or to reduce 

concomitant imaging dose from frequent image-guidance. 

CBCT-US-fusion: 

 According to all of the metrics considered in this study (DSC, MCCD, and 

observer ratings), CBCT-US-fusion images enabled observers to localize the 

uterus with more precision and confidence than either modality on its own. In 

some cases US provided better visualization of the uterus, and in others CBCT 

did, as shown in Table 3, which compares the median DSC and MCCD values for 
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each individual time point. Therefore, acquiring images from both modalities 

increases the probability of obtaining sufficient image quality to identify the 

uterus, which is one reason why the CBCT-US-fusion outperformed US and CBCT 

alone (see Figure 3 columns 1 - 2).  However, the dominant benefit of combing 

CBCT and US images lies in the fact that they provide complementary 

information, and are most powerful when used together. This is clearly 

demonstrated by the MCCD, which was lowest in the CBCT-US-fusion images 

75% of the time compared with either individual modality (see Table 3). The last 

column of Figure 4 exemplifies the complementary nature of CBCT and US, as 

only the superior-inferior extent of the uterus is visible on CBCT, whereas only 

the anterior-posterior extent of the uterus is visible on US: the CBCT-US-fusion 

enabled observers to combine the information from both modalities to 

determine the uterine boundary in all directions much more precisely. Columns 

3 and 4 of Figure 4 further demonstrate the ability of observers to improve 

contouring precision on CBCT-US-fused images, even when the uterine boundary 

on both modalities individually is unclear.  

Rationale for contouring in 2D rather than 3D: 

It has been established that uterine motion occurs predominantly in the 

superior-inferior and anterior-posterior anatomical directions 5,35, and as 

such, this motion may be fully captured by 2D imaging along a central sagittal 

plane. As this plane is also the most informative part of the 3D dataset, both in 

terms of establishing uterine position and for its information content for defining 

the uterine boundary by US, it has been used to manually initialize automated 3D 

uterine segmentation in Clarity’s ® Assisted Gyne Segmentation (AGS) 
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algorithm 32,36. As such automated segmentation algorithms would need to be 

employed in an adaptive RT workflow to minimize contouring burden, 2D 

manual contour agreement on the central sagittal slice would be representative 

of uterine localization accuracy achievable in the clinic. 

Feasibility of integrating US into the clinical workflow 

Integrating US into the RT workflow was easily achieved using the Clarity® 

System, which enables the spatial registration of US images to treatment room 

coordinates via infrared probe tracking technology. This made fusion with CBCT 

and CT trivial, as all images were referenced to the same coordinate system. The 

small size of the system enabled us to leave it in the RT treatment room when 

not in use, making it easily accessible when needed. Daily quality assurance time 

is around 5 minutes. US acquisition and registration was easily incorporated into 

a standard treatment time slot (10 minutes). 

As uterine localization can be achieved using US with little impact on hospital 

resources, the benefits of daily US imaging for cervical cancer patients may 

outweigh the cost of additional equipment. However, as US is not appropriate for 

determining the position of elective or involved nodal targets, we propose it 

either as an adjunct to other imaging modalities such as CBCT, or as a convenient 

and non-invasive soft-tissue verification method on days when CBCT imaging is 

not routinely performed.  

Future directions:  

Concern with regard to probe pressure effects and geometric accuracy of US 

images can be explored using CT or MRI as the gold standard imaging modality. 
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The development of an US training program for users and semi-automated 

segmentation could improve speed and accuracy of US-based verification. It also 

remains to be determined if patient and tumor characteristics pre-treatment can 

predict the best imaging modality to employ. Future work could include 

modifying the software program such that it records the time it takes for 

observers to identify the uterus on CBCT, US, and CBCT-US-fusion images to see 

whether fusion improves observer speed as well as contour agreement. 

 

1.6 Conclusions 

Target localization for cervix cancer radiation therapy is similar for CBCT and US. 

A weak association between bladder size and contour confidence on US images 

was observed, suggesting that larger bladder sizes may improve US image 

quality of the uterus. The combination of CBCT and US improves further the 

precision of target localization. Initial findings indicate that in cases where the 

uterus is clearly visualized on US, US can be used as an alternative to CBCT for 

uterine localization, with the benefit of reduction in radiation exposure and cost-

effectiveness. Combined CBCT-US imaging could be used to implement adaptive 

planning strategies for cervix cancer radiation therapy.  
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Figure legends: 

Figure 1: Examples of ultrasound (US) imaging features (row 1) that caused 

contouring disagreement (row 2) in Patients 2, 8, 11, and 7 (p2 – p11). Such 

features include non-homogenous soft-tissue contrast in the uterus, internal 

structures such as cysts and the endometrial lining, and US artefacts such as 

shadowing and reverberations. Corresponding CBCTs and CBCT-based contours 

shown for reference in rows 3 and 4. The US and CBCT images are displayed on 

different scales (pixel sizes of [0.58, 0.58] mm and [2.5, 1] mm, respectively).  

 

Figure 2: Scatter plots demonstrating the relationship between bladder size 

(measured as the area of the bladder on a central sagittal slice) and the median 

observer contour confidence rating for CBCT images (top) and US images 

(bottom).  

 

Figure 3: Comparison of interobserver contour agreement on CBCT (pixel size 

[1, 1, 1] mm), ultrasound (US) (pixel size [0.58, 0.58] mm), and CBCT-US-fusion 

images (pixel size [0.58, 0.58] mm). Each observer's contour is denoted by the 

colour given in the legend shown in the bottom row (Experienced observers = 1 - 

3, 'New-to-US' observers = 4 - 8). Columns 1 - 2: examples where the benefit of 

CBCT-US-fusion was mainly due to the increased probability of acquiring an 

excellent image from one modality (denoted by the green check marks). Columns 

3 – 5: examples where CBCT and US images provided complementary 

information, which is why the interobserver agreement is relatively poor on both 

modalities individually, but good on the CBCT-US-fusion image. 
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Table 1: Interobserver contour agreement and observer contour confidence results 

Median and interquartile range [IQR] results for: (columns 1 and 2) the Dice similarity coefficient 

(DSC) and mean contour-to-contour distance (MCCD) between the gold standard contour and the 5 

contours from the new-to-US cohort and (column 3) observer ratings of contour confidence (1 = 

extremely unconfident and 10 = extremely confident) from all 8 observers. Symbols indicate 

significant differences (p < 0.005) between imaging modalities within a column (Ψ indicates a 

significant difference between CBCT and US and ** indicates that CBCT-US-fusion is significantly 

different to both CBCT and US).  

 

 

 

 

 

 

  

 DSC MCCD (mm) Observer rating 

CBCT 0.82 [0.14] 1.63 [0.74]Ψ 5 [4] 

Ultrasound (US) 0.81 [0.17] 1.75 [1.15] 7 [2.75]Ψ 

CBCT-US-fusion 0.84 [0.11]** 1.26 [0.23]** 7 [2]** 
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Table 2: Pairwise interobserver contour agreement and confidence from Experienced observer 

cohort (3 observers).  

 

Median and interquartile range [IQR] results from the pairwise analysis from the 3 observers in the 

Experienced cohort for: (column 1) the Dice similarity coefficient (DSC), (column 2) the mean 

contour-to-contour distance (MCCD) and (column 3) observer ratings of contour confidence (1 = 

extremely unconfident and 10 = extremely confident). Symbols indicate significant differences (p < 

0.005) between imaging modalities within a column (Ψ indicates a significant difference between 

CBCT and US and ** indicates that CBCT-US-fusion is significantly different to both CBCT and US).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 DSC MCCD (mm) Observer rating 

CBCT 0.82 [0.13] 2.94 [1.58] 4 [4] 

Ultrasound (US) 0.81 [0.14] 2.25 [2.67]Ψ 7 [3]Ψ 

CBCT-US-fusion 0.87 [0.07]** 1.63 [0.63]** 8 [2]** 
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Table 3: Highest level contour agreement categorized by imaging method 

 

Frequency that each modality (CBCT, ultrasound (US) and CBCT-US-fusion) had the highest median 

DSC (column 1) and lowest median MCCD (column 2) in absolute cases and as a percentage of total 

time points (n = 40). 

 

 DSC MCCD 

CBCT 11 (27.5%) 5 (12.5%) 

Ultrasound (US) 13 (32.5%) 5 (12.5%) 

CBCT-US-fusion 16 (40%) 30 (75%) 
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Summary: 

Ultrasound (US) and CBCT were assessed (1) as independent modalities and (2) in 

combination for localising the uterus in eleven cervix cancer patients for adaptive 

radiotherapy purposes.  Interobserver uterine contour agreement was similar on 

independent US and CBCT images, though observers were significantly more confident 

in their US-based contours. However, both interobserver contour agreement and 

contour confidence were significantly improved when US and CBCT were combined, as 

the two modalities were shown to be complementary. 

 


