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Why prevention?

Despite advances in treatment efficacy, childhood cancers
continue to exert a heavy toll in morbidity and mortality.
Exploring new therapeutic options has been restrained by
the relative rarity of these cancers coupled with their sub-
group diversity and some reluctance to invest in drug
development for rare cancers.

In adult cancers, later stage or metastatic disease remains
largely intransigent with emergent drug resistance as the
portal for malignant escape. Whilst novel combinatorial
strategies involving immunotherapy, evolutionary or adap-
tive control might well thwart resistance [1-3], much
emphasis is placed on early diagnosis and intervention
where prospects for eradication or cure are more tangible.

But it has also been argued that since the belligerence of
cancer is the result of a progressive evolutionary process
with highly variable dynamics Plan A for cancer control
should be prevention [4]. Or, to stop it before it gets started.
In theory, this makes sense but for this to be plausible,
let alone practicable, requires that we can identify critical
components of the causal pathway that are amenable to
interception. For many common adult cancers, including
breast, prostate and colorectal this remains challenging.
However, the consistent, causal links between smoking and
lung cancer, skin cancer and UVB and cervical cancer and
HPV [5] provide hugely encouraging examples of reduction
in disease burden via education, prudent avoidance and, in
the case of HPV, prophylactic vaccination. There is little
doubt that cancer prevention is possible and can have a
substantial, global impact on public health.

For paediatric cancers including both solid tumours and
leukaemia, the picture has been different. Identifying causal
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pathways is extremely difficult for cancers that are both rare
in prevalence and biologically diverse. Moreover, the
common view that many if not most childhood cancers arise
via stochastic, developmental errors compounded by
inherited susceptibility [6] further dampens any enthusiasm
to consider prevention as a possibility.

There is however one exception to this generally pessi-
mistic perspective and that is with childhood acute lym-
phoblastic leukaemia (ALL). This is the most common type
of paediatric cancer (around one-third of all cases) but is
itself heterogeneous, originating from multi-lineage or
lymphoid progenitors. Discriminating between these sub-
types has been a key component of unravelling likely causal
pathways. And for the most frequent subtype, B cell pre-
cursor ALL (~75% of total), a combination of basic biolo-
gical investigations and large collaborative case/control
epidemiological studies has delivered a plausible causal
mechanism which illuminates prospects for prevention [7].

But first, a caveat. ALL has provided one of the real
success stories in oncology. Universally lethal in the
absence of effective treatment [8], this cancer has been
transformed by stepwise, incremental gains via systematic
clinical trials of combination chemotherapy with a current
cure rate of around 90% [9]. So, why should we be inter-
ested in prevention? One glib sounding but the valid answer
would be to say, ‘ask any parent of a patient’. The reality is
that the treatment is traumatic for very young patients and
their families, and toxic with some cost or deleterious trade
off in terms of morbidity and long-term health impacts
[10, 11]. The excellent prospects for curative treatment are
massively important to the affected families but prevention,
if possible, would surely be even better?

Dissecting multifactorial causal mechanisms:
where is the leverage?

Infection has, for almost a century, been considered a
possible causal agent for childhood ALL [12]. But unlike
leukaemias in cats, chickens and cattle [13], no specific
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Fig. 1 The two-hit model for B cell precursor ALL. Initiating
genetic lesions are primarily ETV6-RUNX1 or hyperdiploidy, prob-
ably occurring as developmental accidents. They arise in utero pos-
sibly in foetal liver early B lineage lymphopoiesis [78]. Secondary
mutations are primarily RAG-mediated copy number alterations. ~1%
figure: ALL is initiated in utero at a rate that exceeds by 100-fold, the
incidence of disease indicating a low penetrance and a critical role for
factors promoting chronic inflammation and the secondary mutations.
Adapted from [7]. See text for references.

transforming virus has been identified. Instead, the current
model embodies a paradox, namely that although common
infections may trigger or promote this cancer the key risk
factor is actually a deficit of microbial exposure, in infancy
and especially in more developed or affluent societies
[7, 14]. This causal model of ALL is grounded in the
evolutionary, natural history of the disease, considerations
of how the immune system has evolved to respond to
microbial exposures and extensive epidemiological assess-
ment of risk variables that are surrogates for common
microbial exposures. The detailed evidence has been sum-
marised recently [7]. Figure 1 presents a pictorial version of
the model.

Much of the historical approach to understanding why
we get cancer has courted the implicit concept of singularity
of cause. This makes no more sense than singularity of cure
or a magic bullet. Most if not all cancers are likely to have a
multifactorial causation involving exogenous or endogen-
ous exposures, background genetics and chance, which sit
alongside evolutionary contingencies or liabilities under-
pinning vulnerability [4]. And ALL is no exception. For a
child to develop ALL the following factors may have to
come into play, collectively.

(1) The acquisition, in utero, of an initiating mutation,
most commonly chromosomal hyperdiploidy or
ETV6-RUNXI gene fusion [7]. The founder event is
far more common (~100 times) than overt ALL
[15, 16] and generates a persistent, covert and non-
pathological pre leukaemic clone that can persist for
up to at least 14 years [17]. The cause(s) of the
initiating mutations is unknown but is suggested to be
endogenous oxidative stress [7, 18].

(2) A small fraction (~1%) of pre leukaemias initiated in
utero progress to clinical ALL, usually between the
ages of two and six, after they acquire additional
mutations. The latter most commonly being recombi-
nase enzyme (RAG 1, 2) driven copy number losses
of genes involved in B lineage differentiation or cell
cycle control [19, 20]. The model posits that these
necessary secondary mutations are an indirect con-
sequence of a dysregulated immune response or
chronic inflammation consequent to common infec-
tions [7]. There is some mechanistic insight into how
this might happen [21, 22]. The infections involved
are not identified, though respiratory viruses have
been implicated [23, 24]. Nursery groups and schools
are a likely venue or hot spot for these infections.
When all schools in Hong Kong were closed for a
year due to the SARS pandemic in 2003 rates of ALL
declined (but not brain tumour) as did notifiable
common infections in children [25]. Widespread
social restrictions during the 2020 COVID-19 pan-
demic might be expected to have a similar impact and
is currently being assessed [26].

(3) The abnormal immune response to infection in
children that triggers progression to overt, clinical
ALL is considered to be contingent upon a lack of
microbial exposure in the first year of life which is
required to prime the naive immune network for well-
regulated or balanced responses [7]. This scenario was
first predicted based on immunological principles but
then assessed and endorsed by case/control epidemio-
logical studies and meta-analyses of the accumulated
data [7, 27-29].

Risk is further modified by a number of inherited alleles
expressed in blood cells [7, 30, 31] and may impact pri-
marily by interacting epistatically with the endogenous
mutations to drive transformation [7]. Dietary factors may
also modify risk [32]. All of these variables are imbued with
an element of chance and compound to provide a risk for
ALL of around one in 2000 for the first 15 years of life.

The microbiome link

Of this list of risk variables, only one would seem to be
potentially modifiable. This is the apparent deficit of
microbial exposure in infancy. It has been unclear what
these microbial infections might be and there is no asso-
ciation between documented pathological infections in
infancy and risk of ALL. The surrogate, epidemiological
variables for this exposure [7] have been day-care atten-
dance (protective), protracted breastfeeding (protective), C
section birth (increased risk) and in some but not all studies,
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Fig. 2 Environmental, life exposures that source and impact on the
infant microbiome. Of the five critical factors, three (v in figure) have
been implicated as risk factors in B cell precursor ALL. Birth route—
vaginal versus caesarean. Note: diet and antibiotics also impact on the
composition of the microbiome but those two variables have not been
systematically evaluated for impact on the risk of ALL.

birth order (higher risk for first borne). These variables each
reflect a route via which babies and infants acquire their gut
microbiomes (Fig. 2) [33-35], suggesting that the key
deficit or risk factor for ALL in early life may reside in the
acquisition and composition of the commensal gut
microbes.

There is now substantial evidence that establishment of
the gut microbiome at birth and over the first few years of
life [34, 35] has profound and long-lasting effects on both
metabolism and immune system function [36, 37]. The
mechanisms involved are still being investigated but
involve both metabolic products of bacteria [38] and direct
microbial binding to Toll receptors on innate immune cells
[39]. The key downstream consequence appears to be the
activation of regulatory T cells that orchestrate the
dynamics of immune responses [40, 41]. And the crucial,
long-lasting impact is that the immune system’s complex
network is ‘primed’ or hardwired for balanced responses
and avoidance of chronic inflammation.

ALL and other childhood diseases of
‘affluence’

Microbial dependency of the immune system, registered
very early in life, is likely to be evolutionarily ancient [42]
but several aspects of modern life styles in westernised
countries, including childbirth and breastfeeding practices,

SPRINGER NATURE

Table 1 Shared risk factors between ALL, type 1 diabetes and
allergies in children.

Risk factor for ALL Risk Type 1 diabetes (ref.) Allergy (ref.)

Day-care attendance Down  +[72]* +[73]
Breastfeeding Down +[74]* +[7571°
C-section birth Up +[76]* +[77]

Risk factors for ALL (reviewed in [7]) also reported (4) for type 1
diabetes or allergies. There are some caveats to this summary. There is
some heterogeneity of results reported and variation in parameters
measured that could be important for immune priming in infancy, e.g.
age and time spent in day care and length of time breastfeeding. Type
of allergies or asthma measured is another variable. These data merit
further scrutiny.

*Meta-analysis study.

antibiotic use, diet and social contacts have disrupted this
arrangement resulting in less diverse microbiomes or dys-
biosis [43, 44]. This evolutionary mismatch might be
expected to have many important pathological con-
sequences in both children and adults for both metabolism
and immune function, one of which now seems likely to be
childhood leukaemia. And for children with an immune
priming deficit the risks or consequences are not just
for ALL.

Childhood allergies and type 1 diabetes are both linked
epidemiologically with a deficiency of early life microbial
exposure [45, 46] and more recent studies have provided
some direct evidence for dysbiosis of the gut microbiome in
these conditions [47, 48]. The aetiological model for these
childhood diseases was originally named the ‘hygiene
hypothesis’ but it has become clear that risk is less to do
with hygiene as ‘cleanliness’ and more to do with ‘mixed
blessing’ lifestyle changes that diminish opportunities for
exposure to both deleterious pathogens and beneficial
commensals as ‘old friends’ [49, 50]. Microbiome dysbiosis
can therefore be considered as an unintended and deeply
paradoxical consequence of ‘progress’.

Childhood allergies and type 1 diabetes share many of
the same early life risk factors as ALL mirroring routes of
gut microbiome acquisition (Table 1). Incidence rates of all
three childhood illnesses have increased over recent decades
in developed societies and internationally track together
with markers of affluence. Scandinavian countries topping
the list [7, 45].

Could childhood ALL, allergies and type 1 diabetes, and
possibly some other autoimmune diseases, such as multiple
sclerosis (MS) [51], all share the same underlying, predis-
posing condition—an early life gut microbiome dysbiosis
resulting in an immune priming deficiency? This concept
might appear to be contradicted by the observation that they
tend not to co-occur in families and have very distinct
pathologies. But this could be explained by the impact of
differing inherited susceptibility alleles plus distinctive
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triggering factors targeting separate tissues. The notion that
all three childhood illnesses might share the same under-
lying fault could, if correct, have major implications, not
least for therapeutic or preventative intervention.

Prospects for microbiome boosting

Gut microbiome dysbiosis has also been linked in recent
years to a number of common adult conditions including
inflammatory bowel disease (IBD) and obesity [52]. Dys-
biosis could also be involved in the considerable fraction of
adult cancers associated with chronic inflammation [53, 54]
with important implications for unpicking causation and
treatment or prevention.

Notwithstanding the need for more exploration of the
considerable complexities of the gut microbiome ecosys-
tem, there is already clinical exploration of the potential
clinical benefits of gut microbiome reconstitution or
boosting. Examples include adult IBD [55], compensation
for the microbiome deficit of C-section birth [56] and to
combat the emergence of antibiotic resistant bacteria [57].
Gut microbiome reconstitution has been used for leukaemia
patients having received bone marrow transplants coupled
with microbiome crippling antibiotics [58]. Boosting of the
gut microbiome may enhance the efficacy of immunother-
apy in cancer [59].

Some of these clinical trials, and animal modelling,
involve transfer of total stool samples or faecal microbiota
transplants. This tactic may capture the microbial diversity
of the gut microbiome, but standardised use and regulatory
approval will require well defined, and non-pathogenic
bacterial species. In this respect, it is encouraging that
‘keystone’ [60] bacterial species of the healthy infant
microbiome ecosystem—Bifidobacteria sp., as well as
Lactobacilli, administered with or without milk oligo-
saccharides, as synbiotic regimes, have provided clinical
benefit or risk reduction to infants in the context of sepsis
[61], allergies [62] and pre-term birth consequences
[56, 63].

Collectively, these data raise the possibility that gut
microbiome boosting might present a viable strategy for risk
reduction or prevention in childhood ALL. A similar
argument has been made for prophylactic intervention for
type 1 diabetes in children [64]. But for this to be translated
into practice requires additional questions to be addressed.

The challenges ahead

First, there is a need for more direct evidence that the
microbiome in patients developing ALL is indeed deficient
or lacking in diversity. Prospective monitoring of a very

large (tens of thousands) cohort of infants might provide
that evidence and such studies are initiated or in planning
phases to screen for multiple heath impacts. One study [65]
reports that at diagnosis, patients with ALL do have a less
diverse oral microbiome than controls. This study requires
scale up, confirmation for the gut microbiome and also
needs to accommodate the potentially confounding effects
of prior antibiotic use or the disease process itself. A proof
of principle demonstration that microbiome boosting can
indeed prevent infection promoted ALL in an animal model
that faithfully mimics the clinical disease in children would
also be very encouraging. These models are currently under
development [66] (MG, VC and AF unpublished). In this
respect studies on rodent models of type 1 diabetes are more
advanced than leukaemia with accumulating evidence for
risk reduction via microbiome-based immune modulation
[45, 67-T1].

But even if these issues were resolved there are several
other impediments to translation of this idea into a public
health measure. First, there is the substantive issue of
defining the precise bacterial mix or cocktail that might be
effective, coupled with the challenge of delivery and
safety. But, with common adult diseases primarily in mind
this is now high on the agenda in both biotech industry
and academia and is likely to be resolved soon. Second,
there is the question of who would receive any potential
protective treatment in infancy. Although the main risk
factors for ALL are now recognised, it remains very
difficult to identify individuals at risk in the population.
Any prophylactic intervention might therefore have to be
unselective or population wide. How would this be
justified for a cancer that is rare and largely curable? It
could be argued that the current suite of vaccines given to
young children provide a precedent but this might prove
unpersuasive.

There is one strategy that could be taken to both address
this challenge and maximise potential benefit. This is to ask
the audacious question of whether population wide micro-
biome boosting in infancy, with a single defined, and safe,
bacterial preparation, might not deliver multiple health
benefits, including risk reduction for childhood leukaemia,
allergies and autoimmune disease. And, very likely, long-
term benefits for adult health.
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