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Abstract: The recent rise of deep learning (DL) and its promising capabilities in capturing non-explicit
detail from large datasets have attracted substantial research attention in the field of medical image
processing. DL provides grounds for technological development of computer-aided diagnosis and
segmentation in radiology and radiation oncology. Amongst the anatomical locations where recent
auto-segmentation algorithms have been employed, the pelvis remains one of the most challenging
due to large intra- and inter-patient soft-tissue variabilities. This review provides a comprehensive,
non-systematic and clinically-oriented overview of 74 DL-based segmentation studies, published
between January 2016 and December 2020, for bladder, prostate, cervical and rectal cancers on
computed tomography (CT) and magnetic resonance imaging (MRI), highlighting the key findings,
challenges and limitations.

Keywords: deep learning; pelvic cancer segmentation; radiology; radiation oncology; radiotherapy
planning

1. Introduction

Owning to the recent rise of high-resolution imaging modalities such as X-ray com-
puted tomography (CT) and magnetic resonance imaging (MRI), medical practitioners rely
on spatial visualization of internal organs to evaluate disease and make timely clinical
decisions. Even though radiological assessment of imaging studies is still largely visual and
based on domain knowledge and expertise, there is an increasing shift towards quantitative
and volumetric disease assessment for precision medicine [1,2]. This step requires accu-
rate tissue segmentation, which can improve disease characterization through detection
and division of abnormalities on images into semantically, biologically and/or clinically
meaningful regions based on quantitative imaging measurements.

MRI is increasingly used for the diagnosis, staging and treatment response evalua-
tions of pelvic cancers. With advancing imaging technologies and computer processing
hardware, imaging diagnostics for cancer disease characterization, treatment assessment
and patient follow-up are evolving. Quantitative imaging techniques are showing promise
in providing information that can enhance the understanding of diseases and support
patient care. For instance, multi-parametric MRI that combines one or more functional
MR sequences is now widely used for pelvic tumors. Recently, diffusion-weighted (DW)
MRI has become widely regarded as a reliable quantitative imaging technique that can
provide more sensitive disease detection for the early assessment of treatment response [3].
Additionally, magnetic resonance fingerprinting (MRF) [4] has encouraged developments
towards simultaneous assessment of quantitative tissue MR relaxivity.
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In radiation oncology, the segmentation of organs-at-risk (OARs) and target volumes
are necessary steps to aid the planning of optimal dose delivery to tumors while avoid-
ing delivering toxicity to surrounding healthy tissues. Accurate segmentation of these
structures is also vital during radiotherapy (RT) for effective image-guided treatment.

Radiomics, an image analysis approach, aims to provide additional insight from scan
images that may not be fully appreciated by the human eye. It has shown potential in
detecting distinct imaging phenotypes as indicators for biological behavior, therapeutic
responses and treatment outcomes [5]. However, radiomics is also often reliant on disease
segmentation to inform disease stratification or treatment outcomes. These applications
demand increasing levels of manual region of interest (ROI) delineations which may also be
subject to inter- and/or intra-operator variabilities [6], thus driving the rapid development
of computer-assisted segmentation technologies to improve consistency.

Traditionally, segmentation is performed manually by radiologists and radiation
oncologists, which is time-consuming [7] and it may be associated with inter- and/or
intra-operator variabilities [6,8]. In RT, the time required for manual segmentation (MS) is
also a rate-limiting step for adaptive radiotherapy (ART). ART is a treatment procedure that
aims to account for temporal changes in patient anatomy and, potentially, tumor biology
between each therapy fraction [9]. Furthermore, in RT clinics with limited resources and
patient capacity, significant delays caused by MS were reported to adversely affect patient
admissions as well as overall survival rates [10,11]. Therefore, significant research attention
has been directed towards addressing these shortcomings in medical image segmentation.

With remarkable advancements in computer hardware, deep learning (DL) techniques
have emerged as potential revolutionary solutions for clinical applications. This is due to
their capabilities in learning intricate features from very large medical datasets. Adoption
of advanced DL techniques by clinics may lead to significant improvements to current
radiological and RT workflows. Computer-assisted segmentation technologies are continu-
ously evolving, providing the necessity for a comprehensive review of the state-of-the-art
approaches developed for cancer diagnosis, treatment planning and response monitoring.
Although previous publications have provided technical reviews of recent automatic medi-
cal image segmentation approaches, [12-17] some with a particular focus on radiology [18]
and radiation oncology [19,20], few studies have surveyed the clinical value and potential
of DL-based segmentation approaches for different types of cancer in the pelvis. In this
review, our multidisciplinary team provides an up-to-date overview of the current DL
techniques used for pelvic cancer segmentation, pinpoints key achievements and discusses
limitations for potential adoption in clinical practice.

2. Background
2.1. What Is Deep Learning?

Artificial intelligence (Al) is the concept and theory behind creating the ability for
machines to learn and accomplish human-like intelligence [21]. DL is a sub-category of
Al inspired by the human cognition system. Unlike traditional machine learning (ML)
approaches that rely on pre-programmed sets of instructions and manually-curated input
data, DL offers the possibility of automatic feature extraction and learning from “raw
data”. Whilst many people perceive DL to be a 21st century invention, the first wave
of research on how human/animal brains learn, also known as cybernetics, started in
the 1940s [22,23]. It was not until 1958 that the first fundamental component of artificial
neural networks (ANNSs), the perceptron, was developed, and a single-layer architecture
was trained [24]. However, after a period of stagnation, the second wave of DL research,
connectionism, began in the 1980s-1990s after the introduction of the backpropagation
concept [25]. Backpropagation facilitated training of ANNs with one or two hidden layers
for the first time. Nevertheless, due to a lack of adequate computational processing power
and increased pessimism regarding real-world applications of DL in the mid-1990s, this
wave of DL research was also short-lived. The current and third wave began in 2006, with
development of convolutional neural networks (CNNs) [26], which allowed algorithms to
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be trained with significantly more efficiency than the traditional dense architectures (for
example, fully-connected networks). A key innovation in this approach was the realization
that sharing trained parameters (weights and biases of each perceptron) across the image
through a convolution kernel enabled the development of much deeper networks for image
processing than the previously available architectures [27]. Today, CNNs play a central role
in Al design across a wide range of industries.

2.2. Deep Learning in Oncology

The interpretation of medical images is successfully undertaken by radiologists and
radiation oncologists; however, their approach is often subjective and influenced by clinical
experience. Depending on prior experience, humans may not be able to fully account for
the range of features present on scan images. This limitation can be exacerbated by the
variable appearances of tumors in cancer patients. In recent times, Al has shown potential
in automatic extraction of complex image features not necessarily visible to the human
eye [27].

DL-based approaches have been readily deployed for clinical research since the intro-
duction of CNNs. In oncology, the major applications of DL include tumor characterization
(detection, segmentation and staging) [17,28-33], clinical outcome prediction [34,35], image
synthesis [36,37] and RT dose-response modelling [38,39]. For an in-depth overview of
Al applications beyond autosegmentation in radiology and radiation oncology, we refer
the readers to previous studies by Boldrini et al. [19] and Meyer et al. [20]. We conducted
online search with the keywords “deep learning” and “medical image segmentation” on
Google Scholar for studies published between January 2016 and December 2020. The re-
sults revealed that the number of studies for DL-based segmentation research in medicine
is rapidly rising. A publication search with the additional keyword “cancer” indicated
that cancer research has dictated a large proportion of recent DL-based medical image
segmentation studies (Figure 1).
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Figure 1. Rapid rise in the number of publications for DL-based segmentation research in medical imaging where almost
half of studies were cancer-related between 2016 and 2020.

2.3. Quantitative Imaging for Cancer Diagnosis, Characterization and Assessment of
Treatment Response

MRI is increasingly adopted by radiologists for diagnostic and therapeutic pur-
poses [40-43]. MRI is especially advantageous for pelvic cancer diagnosis, as its higher
contrast-resolution compared with CT facilitates visualization and localization of suspi-
cious lesions, delineation of disease extent, and subsequently enables targeted biopsy [44]
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and therapy planning [45]. Segmentation of target pelvic organs and tumors can be used
to render disease volume, which can be further registered with patient scans from differ-
ent imaging modalities for treatment planning. Tumor characterization is a broad term,
which includes diagnosis, segmentation (differentiating from non-tumor tissues), staging
(disease extent) and inferring its biological behavior. These applications may be enhanced
by quantifying imaging characteristics such as size, shape and texture.

Tumor size measurement is important as it directs clinical decisions for the choice of
treatment and evaluation of treatment response [46,47]. Disease monitoring is essential for
assessing response to RT and chemotherapy treatments. The general workflow includes as-
sessment of the tumor across longitudinal scans, and quantitative measurements according
to predefined criteria (for example, the Response Evaluation Criteria in Solid Tumors (RE-
CIST), the World Health Organization (WHO) guidelines [48]). However, unidimensional
tumor measurements can be limiting, and volumetric assessment may be more robust.
In addition, functional MRI techniques can be used to derive quantitative measurements
that reflect on different aspects of tumor biology (for instance, DW-MRI). The apparent
diffusion coefficient (ADC) is an imaging biomarker related to tissue cellularity and has
been shown to be promising for early evaluation of treatment response [49,50].

Radiomic analysis of tumors, a voxel-wise assessment using imaging features derived
from CT or MR images or quantitative MRI parametric maps (for example, ADC) has
shown promise for evaluating tumor aggressiveness [51] and for prognostic modelling [52].
Radiomics can be used to correlate phenotypical tumor characteristics to diagnostic and/or
prognostic factors. However, applications as above are reliant on the accurate segmentation
of tumors, which, when undertaken manually, is both laborious and subjective [6,53].
Hence, automated and robust tumor segmentation tools are highly desirable for the rapid
quantitative characterization of cancers.

2.4. Radiotherapy Treatment (RT) Planning and Optimization

CT remains the mainstay imaging modality for RT treatment planning due to its
high acquisition speed and high spatial resolution, and provides relative electron density
information. However, CT lacks the desired soft-tissue contrast for accurate delineation of
organs and tumors where electron densities of neighboring structures are not significantly
different. Therefore, in radiation oncology, gross tumor volumes (GTVs) are sometimes
derived from MRI for more accurate delineations [54]. The examples of GTVs of MRIs and
CTs are shown in [55] and [56]. Within a treatment planning system (TPS), the radiation
oncologist initially identifies the target volumes and OARs. A series of target volumes are
defined according to the criteria reported by the International Commission on Radiation
Units and Measurements (ICRU) [57], based on initial tumor identification, expanded
to include subclinical disease, and, finally, a planning target volume (PTV) to account
for day-to-day setup variation. Consistent identification of these target volumes during
treatment using automated segmentation frameworks could help to reduce the expansion
margins currently employed, and therefore limit irradiation of normal tissue. Despite
defined delineation protocols, inter-observer variation in target delineation is the greatest
source of uncertainty, necessitating an additional margin of error to be employed in creating
the PTV [58]. Image-guided radiation therapy (IGRT) techniques are increasingly attracting
research attention to mitigate these shortcomings and allow clinicians to adapt treatment
plans prior to and/or intra-fraction to objectively monitor the position of target volumes.
ART is a potentially promising treatment procedure that suits tumor sites with large inter-
fraction deformability (for example, bladder, cervix, prostate, rectum); it allows better
sparing of the OARs from radiation toxicity. However, the need for redefinition of ROIs for
each ART fraction poses a significant limitation in routine treatment workflows. Thus, fast
accurate and automatic segmentation of ROIs is considered the central requirement for the
adoption of ART in clinical practice.
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2.5. Automatic Image Segmentation

Traditional segmentation algorithms were low-level image feature extractors (for
example, intensity-based and edge-based). Common methods included intensity thresh-
olding, region growing and edge-detection, which selected semantic image regions solely
based on visual information from input images. More advanced mechanisms, such as
uncertainty and optimization algorithms, were introduced to overcome the limitations
associated with previous heuristic approaches. For instance, deformable models (for in-
stance, active contours [59], level-set algorithms [60]) were developed to allow contours to
expand/contract to include distinctive regions. Graph-based methods (for instance, graph
cuts [61], watershed algorithm [62]) applied the principles of game theory for segmentations
based on inter-voxel relationships. Probability-based algorithms (for example, Bayesian
classifier [63,64], Gaussian mixture models, clustering, k-nearest neighbor [65], ANNs)
were developed to automatically assign individual voxels to different classes. However,
these approaches lacked contextual information, which led to suboptimal segmentations.
Although these algorithms can be combined with Markov random field models to alleviate
this drawback [66], the success of these techniques is strongly correlated with manual hu-
man interactions. Atlas-based approaches were proposed to incorporate prior knowledge
in segmentation algorithms. Early atlas-based algorithms consisted of a single atlas (a
manually defined set of regions on an existing reference image dataset) from which the
contours from the reference image were transferred to the new image following deformable
registration [67]. However, segmentation heavily relied on registration accuracy and organ
morphology, leading to suboptimal contours, especially for patients with unusual anatomy.

Later approaches proposed the use of more advanced atlas selection techniques [68,69],
selection of an atlas containing average patient anatomy information [70] and multi-atlas
segmentation as prior knowledge [67,71]. Currently, multi-atlas algorithms are the most
common techniques used in defining target tumor volumes [72]. Nonetheless, the major
limitations with atlas-based methods remain the considerable computational and time
constraints. Currently, an array of software programs is available for automatic registra-
tion and segmentation of tumors using pre-defined templates and deformable contour
propagations [73,74]. However, these programs are not suitable for pelvic cancers due to
unclear boundaries between the gross tumor and subclinical malignant regions [75]; tumor
contouring heavily relies on clinicians” experience.

DL-based segmentation methods have shown enormous potential in computer-assisted
clinical applications due to their ability to learn complex information from very large
datasets. Unlike traditional auto-segmentation approaches that rely on human-defined
heuristics, CNNs are able to automatically capture the pertinent information contained
within existing (training) datasets needed for successful segmentation. CNNs are gen-
erally formed by stacking several layers (for example, convolutional /deconvolutional,
fully-connected, pooling, upsampling layers), each of which perform a key operation on
the input images (See Figure 2a for a basic CNN classification architecture). Conventionally,
CNNs performed pixel/voxel-wise classifications to isolate independent pixels/voxels in
order to form ROIs from images. However, this was computationally inefficient due to
repetitive iterations of identical convolutional operations throughout images. In 2015, Long
et al. [76] introduced fully-convolutional networks (FCNs) to mitigate the limitations with
fully-connected layers (final set of layers in CNN) for extracting local spatial correlations.
The FCN architecture includes symmetrical encoding and decoding paths which enable
learning of both low- and high-level feature representations in images (Figure 2b). One
of the most popular DL architectures used for medical image segmentation is U-Net [77],
which is a special type of an FCN with the addition of skip connection pathways between
encoders and decoders (Figure 2c). In recent years, many variations of U-Net and FCNs
have been published to enhance segmentation performance across a wide range of medical
applications. Typical examples include 3D U-Net [78], V-Net [79], DeepMedic [80] and
DeepLab [81]. We direct the readers to [12,14,18,82] for comprehensive technical overviews
of the DL architectures used in recent medical research.
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Figure 2. Illustration of (a) convolutional neural networks (CNN) with fully-connected final layers
for classification tasks, (b) fully-convolutional network (FCN) for image-to-image or image-to-mask
translations and (c) U-Net architecture with skip connections between encoder and decoder in the
network for more efficient feature extraction/reconstruction than FCN.

Evaluating the Quality and Success of Segmentation

One of the most broadly-used metrics for comparing automatically-generated con-
tours with the ground-truth is the Dice similarity coefficient (DSC) [83]. DSC evaluates
the overlap between two sets of contours (A and B) divided by their mean area. DSC
ranges from 0 to 1, where higher values correspond to more accurate segmentation re-
sults (Equation (1)). It considers both false positives and false negatives; therefore, it is
superior to accuracy which only incorporates correctly-identified pixels/voxels in images.
Another variation of DSC reported in the literature is the surface Dice similarity coefficient
(SDSC) [84] that, with the addition of parameter T, incorporates inter-observer variabilities



Diagnostics 2021, 11, 1964

7 of 26

in measuring the overlap between two surfaces. Intersection-over-union (IoU) or Jaccard
index (JI) is another segmentation metric reported in the literature [85] (Equation (2)).

2|ANB]
DSC = 1)
|A[ + [B]
ANB
ToU NG )

One limitation associated with volume-based segmentation evaluation metrics (for
instane, DSC, IoU) is the lack of sensitivity to the boundary of contours with potential
spatial co-location. This is especially important in radiation oncology, where the contours
of adjacent organs/target disease volumes may signify the difference between irradiated
and at-risk regions. Therefore, distance-based metrics are used as additional indicators
to assess segmented contours. The Hausdorff distance (HD) [86] is defined as follows
(Equations (3) and (4)):

HD(A,B) = max(h(A, B),h(B,A)) 3)
h(A,B) = max (minfla b @

where h(A,B) is the largest distance from a point in A to the nearest point in B.
HD is generally inversely correlated with segmentation accuracy. Additionally, the
mean surface distance (MSD) is Equation (5):

MSD L (

= TATLTE] ) Tei% d(a,b) + ) min d(b, a)) 5)

acA beB €

where d(a,b) corresponds to the distance between points a and b.
In the following sections, we review DL-based segmentation publications for different
cancer types within the pelvis.

3. Literature Review

The literature review in this study was conducted by an initial article search in

77

PubMed /Medline and ScienceDirect databases with the keywords “deep learning”, “seg-
mentation”, “cancer”, “organs at risk”, “radiation oncology”, “radiology” and “radiother-
apy”, and a subsequent manual reference check of the relevant publications. This approach
aimed to create a clinically-oriented overview of the DL-based pelvic segmentation algo-
rithms currently used in pelvic cancers. The exclusion criteria for the retrieved publications

were as follows:

non-DL segmentation techniques;

segmentation applied to sites other than the pelvis;

no training/validation of methods on real patient data;
image modalities used other than CT and MRI[;

full articles published in languages other than English;
no clinical application focus or published outcome

Overall, we included 74 relevant studies on bladder, cervical, prostate and rectal
cancer segmentation applications to present a comprehensive review of the state-of-the-art
approaches.
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3.1. Bladder Cancer

Segmentation of the inner and outer bladder wall and tumors on MRI plays an impor-
tant role in the diagnosing and staging of urinary bladder cancer, as it provides excellent
soft-tissue visualizations. On CT, bladder disease segmentation can provide clinicians with
insight on cancer tumor progression and treatment response monitoring [87,88]. Bladder
segmentation on MRI is a challenging task due to large inter-patient anatomical variations
as well as imaging signal inhomogeneities in the urine caused by motion artefacts and
unclear soft-tissue boundaries [89,90]. The difficulty of segmentation increases with the
presence of cancer in the bladder. Previous studies performed automatic bladder segmen-
tation using adaptive Markov random field [91], adaptive shape prior constrained level
set [92] and statistical shape-based algorithms [33]. However, a lack of generalizability due
to large anatomical discrepancies in patient populations and the need for manual feature
and parameter selection prevented their widespread clinical adoption.

To overcome this limitation, Ma et al. [88] developed a U-Net that improved bladder
segmentation on CT compared with their previous combined CNN and level-set segmenta-
tion algorithm [93], particularly in lower-resolution images and scans from patients with
locally-advanced urinary bladder cancer. However, the authors reported that contrast-
enhanced CT images added more complexity to segmentation due to the variable appear-
ance of the bladder based on the effects of urine motion and filling from excreted contrast
material. Xu et al. [94] proposed a 3D bladder segmentation framework on CT involving
a fully-connected conditional random fields recurrent neural network (CRF-CNN) and
fine-localized bladder probability maps; they reported that their approach outperformed
the state-of-the-art V-Net algorithm for volumetric segmentation of the bladder. On the
other hand, only the study published by Dolz et al. [95] incorporated DL for bladder cancer
segmentation on MRI. The authors developed a U-Net to perform multi-region semantic
bladder segmentation and reported that this approach outperformed traditional non-DL
autosegmentation techniques. We hypothesize that the paucity of published studies for
use of DL in bladder cancer segmentation may be due to the lack of public and annotated
datasets, as well as the lower prevalence of the disease compared with other pelvic cancers
(see Table 1 and Figure 3).

Table 1. Summary of previous publications using DL-based automatic segmentation separated by pelvic anatomical regions
(Bladder: 6, Cervix: 7, Prostate: 52, Rectum: 9 studies). The DSC and IoU are shown, where reported, with the DSC metrics
in bold (for studies with multiple test results, the metrics calculated on public/external databases are presented). For studies

that reported neither DSC nor IoU, the metrics used by the authors are included. MRI acquisition modes (2D, 3D) were

retrieved based on the information provided in each published article and/or supplementary documents.

Image Modality Deep Learni DL Number of . .
(MR Acquisition eesp earning Network Patients Segmentatlon'Evaluatlon Year Reference
Mode) trategy Dimension (Train/Test) Metrics
Bladder Cancer
CT U-Net 2D/3D 81/92 Bladder (IoU: 0.85/0.82) 2019 [88]
CNN + FCN . /
CT (CRF-RNN) 3D 100/24 Bladder (DSC: 0.92) 2018 [94]
62 leave-one-out Bladder Tumor (area under the
cT CNN 2D cross validation ROC curve (AUC): 0.73) 2016 [87]
CT CNN 2D 81/92 Bladder (IoU: 0.76) 2016 [93]
T,W (2D), AE + modified residual )
DW (2D) MRI network (BW-Net) 2D 144/25 Bladder Wall (DSC: 0.85) 2020 [96]
U-Net with progressive Bladder Tumor (DSC: 0.68),
T,W MRI (3D) dilated convolutions 2D 40/15 Outer Wall (DSC: 0.83), 2018 [95]

(U-Net Progressive)

Inner Wall (DSC: 0.98)
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Table 1. Cont.

Image Modality
(MR Acquisition
Mode)

Deep Learning
Strategy

DL Number of
Network Patients
Dimension (Train/Test)

Segmentation Evaluation Year
Metrics

Reference

Cervical Cancer

CT

CT

CT

CT

CT

MRI (unspecified)

DW MRI (2D)

U-Net with context
aggregation blocks
(CabUNet)

Dual path U-Net
(DpnUNet)

U-Net

U-Net with residual
connection, dilated
convolution and deep
supervision
(DSD-UNet)

V-Net

Mask R-CNN

U-Net

2D 77/14

210 five-fold cross

25D validation

3D 100/25

3D 73/18

2464/140 (+30
3D external test
patients)

5 (646 images
split 9:1 for
training and
testing)

2D

2D 144/25

Bladder (DSC: 0.90),
Bone Marrow (DSC: 0.85),
L Fem. Head (DSC: 0.90),

R Fem. Head (DSC: 0.90), 2020
Rectum (DSC: 0.79),
Small Intestine (DSC: 0.83),
Spinal Cord (DSC: 0.82)
CTV (DSC: 0.86),
Bladder (DSC: 0.91),
Bone Marrow (DSC: 0.85),
L Fem. Head (DSC: 0.90),
R Fem. Head (DSC: 0.90),
Rectum (DSC: 0.82),
Bowel Bag (DSC: 0.85),
Spinal Cord (DSC: 0.82)
CTV (DSC: 0.86),
Bladder (DSC: 0.88),
Rectum (DSC: 0.81),

L Fem. Head (DSC: 0.88),
R Fem. Head (DSC: 0.88),
Small Intestine (DSC: 0.86)
High-risk CTV
(DSC: 0.82, I0U: 0.72),
Bladder
(DSC: 0.86, IOU: 0.77),
Rectum
(DSC: 0.82, I0U: 0.71),
Small Intestine
(DSC: 0.80, IOU: 0.69),
Sigmoid
(DSC: 0.64, IOU: 0.52)
Primary CTV (UteroCervix)
(DSC: 0.85),

Nodal CTV (DSC: 0.86),
PAN CTV (DSC: 0.76),
Bladder (DSC: 0.89),
Rectum (DSC: 0.81),
Spinal Cord (DSC: 0.90),
L Femur (DSC: 0.94),

R Femur (DSC: 0.93), 2020
L Kidney (DSC: 0.94),
R Kidney (DSC: 0.95),
Pelvic Bone (DSC: 0.93),
Sacrum (DSC: 0.91),
L4 Vertebral Body
(DSC: 0.91),
L5 Vertebral Body
(DSC: 0.90)
GTV + Cervix (DSC: 0.84),
Uterus (DSC: 0.92),
Sigmoid (DSC: 0.89),
Bladder (DSC: 0.90),
Rectum (DSC: 0.89), 2019
Parametrium (DSC: 0.66),
Vagina (DSC: 0.71),
Mesorectum (DSC: 0.68),
Femur (DSC: 0.81)
Cervical Tumor (DSC: 0.82) 2019

2020

2020

2020

[97]

[98]

[99]

[100]

[1o01]

[102]

[17]
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Table 1. Cont.
Image Modality Deep Learni DL Number of . .
(MR Acquisition eesp earning Network Patients Segmentatlon'Evaluatlon Year Reference
Mode) trategy Dimension (Train/Test) Metrics
Prostate Cancer
Prostate (DSC: 0.79),
Bladder (DSC: 0.97),
CT cogmliizlg]iéfgt?;;re) 2D 328/20 Rectum (DSC: 0.78), 2020 [103]
Fem. Head (DSC: 0.91),
Seminal Vesicles (DSC: 0.64)
Prostate (DSC: 0.82),
Bladder (DSC: 0.93),
Rectum (DSC: 0.84),
CT U-Net 3D 900/30 L Fem. Head (DSC: 0.68), 2020 [104]
R Fem. Head (DSC: 0.69),
Lymph Nodes (DSC: 0.80),
Seminal Vesicles (DSC: 0.72)
Hlﬁ? -fte:dult 1on Prostate (DSC: 0.88),
CT nacae 2D 180/100 Bladder (DSC: 0.94), 2019 [105]
encoder-decoder Rectum (DSC: 0.87)
network (HMEDN) ec e
CT-to-MR
. . Prostate (DSC: 0.87),
¢t/ synthesis + Deep 3D 112/28 five-fold Bladder (DSC: 0.95), 2019 [106]
Synthetic T;W MRI Attention cross validation Rectum (DSC: 0.89)
U-Net (DAUNet) e
. Prostate: (DSC: 0.89),
CT Modified U-Net 3D 313 f]‘;’ﬁdf;’tli €ross Bladder: (DSC: 0.94), 2019 [107]
Rectum: (DSC: 0.89)
CT Deep Nfl‘)‘lr\‘}‘ll\%)\btwork 3D 771/140 Prostate (DSC: 0.88) 2019 [108]
Deeply-supervised Prostate (DSC: 0.90),
attention-enabled Bladder (DSC: 0.93)
CT boorslt;i« ;fggt?,\l,lé?lfnal 3D 80/20 Rgctum (DSC: 0.83), 2019 [109]
(DAB-CNN) Penile bulb (DSC: 0.72)
Distinctive curve
. . Prostate (DSC: 0.89),
CT guided fully 2D 313 five-fold cross Bladder (DSC: 0.94), 2019 [110]
convolutional network validation Rectum (DSC: 0.89)
(FCN) e
Prostate: (DSC: 0.88),
CT U-Net 2D 60/25 Bladder: DSC: 0.95), 2018 [111]
Rectum: (DSC: 0.92)
2D UNet + Bladder (DSC: 095),
CT 3D U-Net with op/3p  108/28 four-fold Rectum (DSC: 0.84), 2018 [112]
aggregated residual cross validation L Fem. Head (DSC: 0.96)
networks (ResNeXt) ’ C
R Fem. Head (DSC: 0.95)
cT CNN + multi-atlas 2D 92 five-fold cross Prostate (DSC: 0.86) 2017 [31]
fusion validation
FCN (based on 22 two-fold cross .
CT LeNet) 2D validation Prostate (DSC: 0.89) 2017 [113]
Adversarial pyramid
anisotropic
. 110 three-fold Whole Prostate Gland
T,W MRI (2D) convolutional deep 3D cross validation (DSC: 0.90) 2020 [114]
neural network
(APA-Net)
Prostate Central Gland (DSC: 0.81),
T,W MRI (2D/3D) DeeplabV3+ 2D 40 Peripheral Zone (DSC: 0.70) 2020 [115]
Conditional GAN
T,W (2D), (cGAN)/Cycle- Whole Prostate Gland
DW (2D) MRI consistent GAN 2D 40/50 (DSC: 0.75) 2020 [l
(Cycle-GAN)
T,W (2D) 54/16 (+12 Whole Prostate Gland
2 , .
DW (2D) MRI Mask R-CNN 2D external test (DSC: 0.86), 2020 [117]

patients)

Prostate Tumor (DSC: 0.56)
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Table 1. Cont.

Image Modality Deep Learni DL Number of . .
(MR Acquisition eesli (:armng Network Patients Segmentatlon'Evaluatlon Year Reference
Mode) Tategy Dimension (Train/Test) Metrics
Prostate Cancer
Boundary-weighted Whole Prostate Gland
domain adaptive neural (DSC: 0.91)
T,W MRI (2D) network 3D 407146 Prostate Base (DSC: 0.89) 2020 (18]
(BOWDA-Ngt) Prostate Apex (DSC: 0.89)
T,W MRI (2D) Graph;:g:;lltl tional D 140 five-fold cross Whole Prostate Gland 2020 [119]
2 (GCN) validation (DSC: 0.93)
141/47 Whole Prostate Gland
. 3 (DSC: 0.92),
T,W MRI (2D) Dense U-Net 2D fOl;; lfiill;iﬁcor;)ss Central Gland (DSC: 0.89), 2020 [120]
Peripheral Zone (DSC: 0.78)
Prostate Central Gland (DSC:
A 40 four-fold cross 0.86-0.88),
T,W MRI (2D) U-Net/Pix2pix 2D validation Peripheral Zone 2020 [121]
(DSC: 0.90-0.83)
Bladder (DSC: 0.96),
T1W (3D), T,W . . 97 /53 three-fold Rectum (DSC: 0.88),
(unspecified) MRI Multi-scale DeepMedic 3D cross validation L femur (DSC: 0.97), 2020 [122]
R femur (DSC: 0.97)
T,W MRI (2D) Cfggﬂg‘j{‘(‘ggﬁg’“ 3D 40/109 Wh"l?gsrg??g;)clar‘d 2000 [123]
Encoder-Decoder
LWMRIED) e el pyramid 150 e
pooling (DDSPP)
36 (split 7:2:1 for Whole Prostate Gland
ToW (2D), Mask R-C 2D training, P (ITOU: 0'8?' £0.4 201 2
DW (2D) MRI ask R-CNN validation and rostate Tumor (IoU: 0.40), 019 [125]
testing) Central Gland (IoU: 0.78),
estmg Peripheral Zone (IoU: 0.51)
Whole Prostate Gland
T,W (2D), s (DSC: 0.84),
DW (2D) MRI U-Net 2D 100/125 Central Gland (DSC: 0.78), 2019 [126]
Peripheral Zone (DSC: 0.69)
. 250/63 (+46 Prostate Transition Zone
T,W MRI (2D) FCan:‘i’éth tfteitt‘fri 2D external test (DSC: 0.79), 2019 [127]
pyra attentio patients) Peripheral zone (DSC: 0.74)
Spatially-varying Whole Prostate Gland
stochastic residual 50 five-fold cross (DSC: 0.91),
T,W MRI (3D) adversarial network 3D validation Bladder (DSC: 0.97), 2019 [128]
(STRAINet) Rectum (DSC: 0.91)
U-Net with Whole Prostate Gland
T,W MRI (2D) “eombo loss” 3D 700/258 (DSC: 0.91) 2019 [129]
CTV (DSC: 0.83),
Bladder (DSC: 0.93),
T,W MRI Rectum (DSC: 0.82),
(unspecified) DeepLabV3+ 2D 40750 Penile Bulb (DSC: 0.74), 2019 [150]
Urethra (DSC: 0.69),
o Rectal Spacer (DSC: 0.81)
T,W MRI (2D) V'Ne;:’lfg;f:(’ml 3D 85 Wh"l?gsrg??tgz;;la“d 2019 [131]
Propagation Deep
T,W MRI (2D) Neural Network 2D 50/30 Whole Prostate Gland: (DSC: 0.84) 2019 [132]
(P-DNN)
Whole Prostate Gland
D&?‘(%?ix)ﬁu Cascaded U-Net 2D 76/51 (DSC: 0.92), 2019 [133]

Peripheral zone (DSC: 0.79)
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Table 1. Cont.
Image Modality Deep Learni DL Number of . .
(MR Acquisition eesp earning Network Patients Segmentatlon'Evaluatlon Year Reference
Mode) trategy Dimension (Train/Test) Metrics
Prostate Cancer
Prostate Tumor (DSC: 0.92,
19 leave-one-out [oU: 0.67),
T,W MRI (3D) Multi-view CNN 2D 1 Prostate Central Gland 2019 [134]
cross validation
(IoU: 0.65),
Peripheral Zone (IoU: 0.59)
Investigative CNN
study (U-Net,
V-Net, HighRes3dNet, Whole Prostate Gland
TaW MRI (2D) HolisticNet, Dense 3b 173/59 (DSC: 0.87) 2019 [135]
V-Net, Adapted
U-Net)
Whole Prostate Gland
T,W MRI (2D) Z-Net 2D 45/30 (DSC: 0.90) 2019 [136]
Whole Prostate Gland
(DSC: 0.89),
T,W MRI (3D) FCN 3D 60/10 Bladder (DSC: 0.95), 2018 [137]
Rectum (DSC: 0.88)
16/5 (+19
T,W MRI (2D) SegNet 2D external test Whole Prostate Gland 2018 [138]
. (DSC: 0.75)
patients)
CNN + Boundary 50 five-fold cross Whole Prostate Gland
T,W MRI (2D) Detection 3D validation (DSC: 0.90) 2018 [159]
Dynamic U-Net +
Contrast-Enhanced Long-Short-Term 3D (cli/s i)vt:ﬁgea-tfi(c))lr? Whol(eDPSrg.st(;igz)Gland 2018 [140]
(DCE) MRI (3D) Memory (LSTM) o
Whole Prostate Gland
T,W MRI (2D) FCN 2D 50/30 (DSC: 0.87) 2018 [141]
Whole Prostate Gland
T,W MRI (2D) CNN 2D 20 (DSC: 0.85) 2018 [30]
112/28 five-fold Whole Prostate Gland
T,W MRI (2D) CNN (PSNet) 3D cross validation (DSC: 0.85) 2018 [29]
T,W (2D), Deep dense 3D 12?/1_310 1(1—3(1 Whole Prostate Gland 2018 [142]
DW (2D) MRI multi-path CNN erera’ s (DSC: 0.95)
patients)
Whole Prostate Gland )
T,W MRI (2D) U-Net 3D 26 (DSC: 0.88) 2018 [143]
Deeply-supervised Whole Prostate Gland
T,W MRI (2D) CNN 2D 77 /4 (DSC: 0.89) 2017 [144]
Prostate Tumor (section-based
T,W (2D), . 21 leave-one-out evaluation (SBE): 0.89, sensitivity:
DW (2D) MRI Auto-Encoder 2D cross validation 91%, 2007 [149]
specificity: 88%)
. 250 five-fold cross Whole Prostate Gland
T,W MRI (2D) Holistically-nested FCN 2D validation (DSC: 0.89, ToU: 0.81) 2017 [146]
i . Whole Prostate Gland
DW MRI (2D) M‘i’gégeg;i'ﬁikwslth 2D crl(ii %’;ﬁdi"tlgn (DSC: 0.93), 2017 [147]
p Transition Zone (DSC: 0.88)
ConvNet with mixed Whole Prostate Gland
T,W MRI (2D) residual connections 3D 50730 (DSC: 0.87) 2017 [148]
Stacked Sparse AE
66 two-fold cross Whole Prostate Gland
T,W MRI (2D) (SSAE)H:-afglailr“lsg patch 2D validation (DSC: 0.87) 2016 [149]
Whole Prostate Gland
T,W MRI (2D) V-Net 3D 50/30 (DSC: 0.87) 2016 [79]
ToW MRI Stacked independent D 30 leave-one-out Whole Prostate Gland 2013 [150]
(unspecified) subspace analysis (ISA) cross validation (DSC: 0.86)
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Table 1. Cont.

Image Modality Deep Learni DL Number of . .
(MR Acquisition eep Learning Network Patients Segmentation Evaluation Year Reference
Mode) Strategy Dimension (Train/Test) Metrics

Rectal Cancer

CTV (DSC: 0.88),
Bladder (DSC: 0.90),
CT DeepLabV3+ 2D 98/63 Small Intestine (DSC: 0.76), 2020 [32]
L Fem. Head (DSC: 0.93),
R Fem. Head (DSC: 0.93)

CNN with cascaded
atrous convolution 100/70
CT/ . . Rectal Tumor (DSC: 0.78)
T,W MRI (2D) (CAQ) e.md spa.tlal 2D five fold cross CTV (DSC: 0.85) 2018 [151]
pyramid pooling validation
module (SPP)
CTV (DSC: 0.87),
Dilated CNN L Fiﬁdﬁ;(? ?Ség-gg )éz)
CT (transf(il}cl;eél_‘rllg)lg from 2D 218/60 R Fem., Head (DSC: 0.92), 2017 [152]
Intestine (DSC: 0.65),
Colon (DSC: 0.62)
T,W (2D) 293/31 (+50
2 . Mask R-CNN 2D external test Lymph Nodes (DSC: 0.81) 2020 [153]
DW (2D) MRI !
patients)
CNN (transfer learning .
T,W MRI (2D) from ResNet50) 2D 461/107 Rectal Tumor (DSC: 0.82) 2019 [154]
93 ten-foldcross Rectal GTV
TW MRI (3D) U-Net 2D validation (DSC: 0.74, ToU: 0.60) 2018 [155]
FCN (transfer learning .
T,W MRI (2D) from VGG-16) 2D 410/102 Rectal Tumor (DSC: 0.84) 2018 [28]
Hybrid loss FCN 64 four-fold cross .
T,W MRI (2D) (HL-FCN) 3D validation Rectal Tumor (DSC: 0.72) 2018 [156]
T, W (unspecified), .
DW (2D) MRI CNN 2D 70/70 Rectal Tumor (DSC: 0.69) 2017 [157]
Modality
s CT
400 [ MRI
1]
c
Q
& 300
2
£
o
£ 200
5]
72
€
>
Z 100
0
Bladder Cervical Prostate Rectal

Figure 3. Boxplot of number of training patients used in segmentation applications for bladder (CT
studies: 4, MRI studies: 2), cervical (CT:2, MRI:5), prostate (CT:12, MRI:40) and rectal (CT:2, MRI:6,
CT/MRI:1) cancers. The average number of training patients was 165 from the 74 reviewed studies.
The outliers were excluded from this figure for visualization purposes.

3.2. Cervical Cancer

Segmentation of cervical tumors remains a challenging task due to large geometrical
variations in patient populations and indistinctive soft-tissue boundaries. Previous studies
have reported the utility of DW-MRI and ADC for cervical cancer staging, histological grad-
ing and nodal status evaluations [158]. Despite growing interest in quantitative assessment
of tumors in radiology, to date, only one previous study, by Lin et al. [17], incorporated the
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use of DL for automatic segmentation and radiomic feature extractions of cervical tumors
from ADC maps. The authors demonstrated that their framework outperformed previous
ML techniques by a factor of two, potentially providing clinicians with an automated tool
to minimize tumor delineation (GTV equivalent) discrepancies. Moreover, Breto et al. [102]
developed a Mask R-CNN framework for automatic segmentation of OARs and GTVs
for MR-only RT treatment planning for patients with locally advanced cervical cancer.
The authors reported that while the generated contours for the cervix, rectum, bladder,
uterus, femur and sigmoid were in good agreement with expert MS, their network under-
performed for segmenting smaller and less distinctive soft-tissue structures such as the
vagina, parametrium and the mesorectum. However, their results were only based on five
test patients and not clinically validated. The considerable segmentation complexities in
cervical cancer as well as the lack of high-quality and annotated databases may have also
contributed to the low numbers of studies for DL-based segmentation of cervical tumors
on MRI (Table 1).

In the RT literature, Wang et al. [99] proposed a 3D U-Net model for clinical target vol-
ume (CTV), which typically encompasses the tumor, cervix, uterus, ovaries and parametria,
and OAR delineations on CT from 25 patients, and suggested that their automatic contours
were as accurate as MS performed by a clinical resident with 8 months” experience. Liu
et al. [97] developed a 3D U-Net architecture for segmentation of OARs and reported that
over 90% of their generated contours were “highly acceptable” for RT planning through
expert oncologist evaluation (>15 years of experience). However, this network underper-
formed for CTV delineations. In a later study, the authors developed a dual-path U-Net
network (DpnUNet) consisting of more hidden layers in order to make it more suitable
for CTV segmentations where tissue boundaries are unclear. However, despite promising
segmentation results, their framework was only evaluated on patient scans from a single
institution. In contrast, Rhee et al. [101] used a V-Net [79] model to generate CT treatment
plans and reported that their algorithm achieved on average 80%, 97% and 90% clinical
acceptance rates for primary CTVs, OARs and bony structures, respectively. Their frame-
work was validated on 30 cervical cancer patients scanned across three hospitals. The list
of the publications for cervical cancer segmentation studies is shown in Table 1.

3.3. Prostate Cancer

Previous review studies have investigated various automatic segmentation approaches.
However, only one previous study, published by Almeida and Tavares [16], provided a
systematic review of advances in prostate segmentation, and included 28 publications for
studies until 2019 (CT: 9, MRI: 19). This study provides an up-to-date review of 52 pub-
lications on prostate and/or prostate cancer segmentation (CT: 12, MRI: 40) (see Table 1).
Based on our literature search, it is apparent that in recent years, the clinical attention
on segmentation of prostate cancers has gravitated towards MRI due to its unparalleled
soft-tissue contrast. There remains limited literature for automatic segmentation of prostate
cancers themselves, in part because of the technical challenges imposed by the relatively
small size of the tumors, background changes within the prostate gland also because major
treatments (for example, RT) are usually directed towards the whole prostate gland rather
than the focal disease. However, as automated decision support tools for prostate cancer
diagnosis in MRI are being developed, together with internal radiation boost for prostate
cancer and other focal therapies becoming more widely used, prostate cancer segmentation
will become increasingly important.

At present, whole prostate gland (WG), central gland (CG), transition zone (TZ) and
peripheral zone (PZ) segmentations have been developed to aid disease assessment and
prostate cancer staging [159]. WG segmentation is also the basis for RT planning. Earlier
prostate zonal segmentation algorithms included active appearance [160], continuous max-
flow [161] and C-means algorithms [162]. However, these techniques failed to generalize to
patient populations from multiple institutions. Due to high clinical demand and technology
advancement, DL rapidly found its way into prostate segmentation research. Amongst the
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MRI-based prostate segmentation studies in our review, 33 studies performed segmentation
of WG. However, from these publications, only eight studies also investigated CG, TZ and
PZ segmentations [115,120,121,125-127,134,147]. In these studies, WG segmentation accu-
racy was superior to PZ and TZ due to large anatomical variations and indistinguishable
soft-tissue boundaries. Moreover, only four studies provided results on prostate cancer
segmentation on MRI [117,125,134,145] (see Table 1).

From the 40 reviewed MRI-based prostate segmentation publications, 32 and 4 used
2D and 3D imaging data for training their DL networks, respectively, whilst one study used
a combination of 2D and 3D input MRI to train their segmentation algorithms. Additionally,
the MR imaging acquisition mode was unspecified for one or all MRI contrasts in three
studies. Although using volumetric images for training incorporates vital spatial informa-
tion for organs, it requires considerable computational resources to facilitate training. One
advantage of training DL algorithms with 2D convolutional kernels is the ability to use
knowledge transfer (transfer learning) from previous models trained on natural images
in order to achieve greater segmentation performance. Tian et al. [29] proposed a variant
of FCN called PSNet, and through transfer learning, achieved satisfactory results. Zhu
et al. [144] developed a CNN with deep supervision to better capture multi-level feature
maps. Attempting to investigate the performance of generative adversarial networks
(GANS), Birbiri et al. [116] proposed a conditional GAN (cGAN) and reported that their
algorithm with a U-Net generator outperformed the standalone U-Net model. On the other
hand, benefiting from volumetric model training, Milletari et al. [79] developed a 3D CNN
called V-Net to perform prostate gland segmentation. Feng et al. [137] used a multi-task
FCN for training in a semi-supervised manner to overcome lack of adequate training data.
Zhu et al. [118] proposed a boundary-weighted strategy to enforce feature learning at the
base and apex of the prostate from a limited training dataset.

The considerable difficulty in automatic delineation of pelvic organs have inspired
the introduction of various segmentation challenges. These include PROMISE12 [163],
ASPS13 [164] and PROSTATEX [165]. Amongst the reviewed articles in this study, 28
publications used public datasets for network training and/or validation. For exam-
ple, Yu et al. [166] developed a 3D CNN with mixed long and short residual connec-
tions that enabled high training efficiency and superior feature learning capability from
small training datasets. This framework outperformed other proposed algorithms in the
PROMISE12 challenge in 2018. Moreover, Brosch et al. [139] developed a framework con-
taining regression-based boundary detection and CNN-based prediction of the distance
between a surface mesh and its associated boundary point which ranked first place in the
PROMISE12 challenge in 2019. Geng et al. [124] proposed an encoder-decoder architecture
with dense dilated pyramidal pooling, and, after validating their technique on PROMISE12
and ASPS13 datasets, reported that their framework outperformed the then state-the-of-art
algorithms for segmentation. Dai et al. [117] developed a region-based CNN (Mask R-
CNN) and suggested that their approach was able to perform end-to-end segmentation of
the prostate as well as the highly suspicious lesions from the PROSTATEx repository. Based
on our literature research, it is evident that the introduction of segmentation challenges
along with public and annotated databases for prostate cancer have encouraged research
from the wider ML community. The list of available databases and publications for prostate
segmentation are shown in Table 2.
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Table 2. Public datasets available for prostate cancer segmentation along with the studies that their results were evaluated
on in these databases. T{W: T1-weighted; T,W: T,-weighted; DW: Diffusion-weighted; PDW: Proton density-weighted;
DCE: Dynamic contrast-enhanced; MRSI: Magnetic resonance spectroscopic imaging.

Image Modality

Dataset (MRI Acquisition Num.ber of Ground-Truth URL Studies
Mode) Patients Contours
https: [29,79,114,116,118,
PROMISEIL2 T,W MRI (2D) 80 Whole Prostate / /promisel2.grand-challenge.org/ 119,123,124,128,
[163] Gland 130-133,136,141-
[Accessed 21 October 2021] 143,147,148]
T,W (2D/3D), Whole Prostate
12CVB [167] DW (2D), 40 Gland, Peripheral https:/ /i2cvb.github.io/ [115,125,134,138,
DCE (3D), Zone, Central Gland, [Accessed 21 October 2021] 140,168]
MRSI (3D) MRI Prostate Tumor
T;W (2D/3D), Whole Prostate https:
BWH [169] T,W (2D) MRI 230 Gland / / prostatemrimagedatabase.com/ (118,131]
[Accessed 21 October 2021]
https:/ /wiki.cancerimagingarchive.
T{W (2D), isplay /Publi -IS
1W (2D) Whole Prostate net/display/Public/NCI-ISBI+20
ASPS13 [164] 156 Gland. Peripheral 13+Challenge+-+Automated+ [29,114,123,124]
T,W (2D) ’Z P Segmentation+of+Prostate+ ey
, one Structures
DCE (3D) MRI [Accessed 21 October 2021]
ToW (2D), 330 https:
PRO[?E?]TEX 11133‘/\\/]\7((2?%5 (%alljlegrizr: ll:Ssilgrr::f Prostate Tumor / / prostatex.grand-challenge.org/ [120,125,127,129]

DCE (3D) MRI

245) [Accessed 21 October 2021]

PROMISE12: MICCAI Grand Prostate MR Image Segmentation 2012; I2CVB: Initiative for Collaborative Computer Vision Benchmarking;
BWH: The Brigham and Women'’s Hospital Database; ASPS13: NCI-ISBI 2013 Challenge for Automatic Segmentation of Prostate Structures;
PROSTATEx: SPIE-AAPM-NCI Prostate MR Classification Challenge.

Traditionally, OARs and segmentation for RT planning in prostate cancer were per-
formed using volumetric deformable model surface [170], organ-specific modelling [171]
and atlas-based techniques [74]. However, contouring through these techniques was poor
for patients with abnormal anatomy and data from external institutions, hence hindering
the possibility of their integration for online adaptive treatments. Therefore, recent studies
have employed DL-based algorithms to develop more efficient, generalizable and consis-
tent segmentation pipelines. The current RT planning workflow uses CT for ROI contouring
and radiation dose estimations. Hence, despite poor soft-tissue contrast, segmentation on
CT remains desirable. Ma et al. [31] proposed a framework combining a 2D CNN with
multi-atlas label fusion to segment ROIs on CT. Balagopal et al. [112] used a 2D-3D hybrid
U-Net model containing aggregated residual networks (ResNeXt) to enhance algorithm
feature learning capability, and achieved an average DSC of 0.9. However, this was only
based on ground-truth data defined by only one expert. Wang et al. [107] proposed a 3D
FCN with boundary sensitive representations for enhanced organ-specific feature learn-
ing and verified their results based on data from 313 patients, acquired from multiple
CT scanners. On the other hand, Dong et al. [106] used a Cycle Consistent Generative
Adversarial Network (Cycle-GAN) to generate synthetic MRI from CT to enhance their
algorithm'’s soft-tissue learning capability. However, the impact of registration for contour
propagations from MRI to CT was not reported. MRI-only RT planning was also proposed
to mitigate these geometrical uncertainties. To the best of our knowledge, there are no
public CT databases for prostate segmentation and RT planning.

3.4. Rectal Cancer

MRI is the technique of choice for the diagnosis and preoperative staging of rectal can-
cer [172]. MRI is more accurate in the diagnosis, staging and treatment planning of rectal
cancer compared with CT, and also provides quantitative tumor assessment, which can in-
form treatment response assessment and disease outcomes [173]. Although in recent years,
numerous studies were published for automatic contouring of pelvic tumors [101,174-177],
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only a few reported to address rectal cancer [32,152,178]. Based on our article search,
nine studies incorporated DL for rectal cancer segmentation applications (CT: 2, MRI: 6,
MRI/CT: 1) (Table 1). Trebeschi et al. [157] published the first CNN-based rectal tumor
segmentation study on multi-parametric MRI. Their framework included classification
of fixed patches and segmentation of the identified voxels. Although this approach was
designed to reduce image redundancy, it ignored context information which adversely
affected their network’s generalizability in cross-institution model evaluations. Huang
et al. [156] developed a volumetric hybrid loss fully-convolutional network (HL-FCN) that
used Dice-based loss to overcome class imbalance in their training data, however their
results were not clinically evaluated. Jian et al. [28] proposed an FCN-based segmentation
framework and used transfer learning to outperform the conventional U-Net architecture
for rectal tumor segmentation on MRI. Similarly, Wang et al. [154] deployed an FCN model
from a pre-trained ResNet50 model to enrich hierarchical feature extraction during network
training. The authors evaluated their results on 107 patients from four centers and reported
that their network was superior than U-Net for tumor contouring. Unfortunately, due to a
shortage of public databases, direct and meaningful comparison of these algorithms for
rectal cancer segmentation remains a challenging task.

To date, only three studies were published on uses of DL for rectal cancer RT treatment
planning on CT images. Men et al. [152] proposed a 2D CNN with dilated convolutions and
suggested that their network outperformed the traditional U-Net architecture. However,
the authors reported that their model failed to accurately perform colon and intestine
segmentations due to large inter-patient anatomical variabilities and inhomogeneous dis-
tribution of the contrast material and gas in these structures. Song et al. [32] investigated
DeepLabV3+ and ResU-Net architectures for OARs and CTV segmentations, and sug-
gested that while automatic contouring using these models outperformed the framework
proposed by Men et al. [152], they offered different advantages for feature extraction and
contouring of pelvic structures. While ResU-Net was reported to be an effective algo-
rithm for segmenting visually distinctive structures (for example, femoral heads, bones),
DeepLabV3+ achieved superior segmentation performances for soft tissues with unclear
boundaries (for example, bladder/small intestine). Their results were in line with a later
study by Men et al. [151], who employed cascaded convolutions along with spatial pyra-
mid pooling (SPP) to enhance CTV delineations. However, both of these techniques were
based on 2D training that disregards the inter-slice spatial information of OARs and tumor
volumes for training.

4. Discussion

Significant research attention has recently shifted towards bridging the gap between
computer vision and patient care. In this review, we presented an overview of the recent
DL-based automatic segmentation algorithms used in bladder, cervical, prostate and rectal
cancers from 74 studies. We included studies that incorporated in their DL-based anal-
yses the use of input CT and/or MR images. CT is widely used as the desired imaging
modality for radiation dose estimations and RT treatment planning. However, the inade-
quate soft-tissue contrast on CT necessitates the concurrent adoption of MRI for enhanced
visualization of pelvic structures to improve the accuracy of tumor definition, leading to
potential segmentation uncertainties caused by mis-registration. On the other hand, the
major limitation with cancer tumor segmentation on MRI remains the difficulty in confi-
dently identifying abnormal structures from healthy tissues. This is due to highly variable
inter-patient geometrical appearance and potentially poorly-defined soft-tissue boundaries.

Unfortunately, unlike DL applications for natural images, access to medical images
for training and evaluating algorithms is restricted. This limitation is largely due to patient
data privacy and labor-intensive ground-truth contour definitions. Difficulty in accessing
high-quality and adequately large in-house repositories may hinder research motivation
from the wider ML community. We demonstrated, through comprehensive literature
review, that, although partially due to higher prostate cancer prevalence, the introduction
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of grand MRI segmentation challenges and publicly-accessible datasets have played an
important role in driving prostate cancer research forward. Regrettably, to the best of our
knowledge, there are no public and annotated repositories for other pelvic cancer types
(MRI or CT). Therefore, global and institutional efforts are necessary to initiate public
datasets to encourage future widespread research. However, appropriate quality control
and external expert auditing need to be in place to ensure data are of high quality [179,180].

Lack of common datasets also creates difficulty in fairly and accurately comparing
new DL algorithms with previous research studies. Based on the reviewed articles, the MRI
acquisition mode (2D or 3D) for five studies were labelled as “unspecified” since insufficient
acquisition information was provided for training MR images. Whilst DL network dimen-
sionality and architecture selection are important for the success of automatic segmentation
algorithms, the understanding of input data as well as the reproducibility of network
outcome are of great significance. Researchers routinely use quantitative segmentation
evaluation metrics such as DSC and HD to compare their results with other proposed
algorithms. Although it may be tempting to rely on these measures to draw definitive
conclusions on one algorithm’s performance over another, qualitative assessment of results
by experts is also necessary to ensure fair judgement and that the clinical demands are met.
A few studies incorporated qualitative evaluations to assess the clinical acceptance rate of
generated contours [101]; however, this step is not yet widely undertaken for most pelvic
cancer segmentation applications.

The generalizability of DL algorithms can be enhanced by use of multi-vendor pa-
tient scans for training; however, differences in institutional MR imaging protocols may
adversely affect segmentation performance. Contour definition by experts with varying
clinical experience (radiologist vs. radiation oncologist) and the source of training data
(single- vs. multi-center) are other contributing factors to variabilities in ground-truth ROI
delineations which can confound segmentation performance.

The DL-based segmentation publications reviewed in this study proposed improve-
ments in network architectures, image processing techniques, use of multi-parametric
input data, loss functions, use of pretrained models (transfer learning) and adversarial
training. The fields of DL, particularly computer vision and image segmentation, are
still evolving. The industry/application-specific requirements continually encourage in-
novation and the development of sophisticated networks. The future outlook for pelvic
cancer segmentation may include intricate knowledge transfer from pre-trained models
on very large datasets or perhaps adaption of key developments from non-medical ap-
plications [181] or ones not yet configured for the pelvis [182,183]. The examples of this
may include explainable/interpretable Al, domain adaptation and continuous and/or
federated learning.

In conclusion, DL in the eyes of clinicians, is still seen as a “black box algorithm”
due to its limited interpretability for predicted outcome. Therefore, the clinical adoption
of Al-based frameworks is hindered by their lack of interpretability and explainability
when generating inaccurate outcomes. Although DL is a powerful and promising tool for
many supervised computer-aided applications, it heavily relies on the quality of input data
for training. With the absence of standardized and international contouring consensus
guidelines to reduce segmentation variabilities, and lack of accessible and annotated public
databases, there remains a formidable challenge for true investigation of novel segmen-
tation techniques against existing algorithms. Our review demonstrated the challenges;
incentives and public datasets can lead to research contribution from groups from different
domains and considerable advancements in technology. Lastly, while embracing the excit-
ing future of DL as a catalyst for a paradigm shift in disease detection, characterization
and treatment planning, researchers and clinicians should be aware of the current short-
comings and requirements of automatic pelvic segmentation algorithms in order to push
the boundaries of Al in healthcare.
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