Pancreas

®

OPEN ACCESS

For numbered affiliations see
end of article.

Correspondence to

Dr Anguraj Sadanandam,
Division of Molecular Pathology,
Institute of Cancer Research,
London, Surrey, UK;
anguraj.sadanandam@icr.ac.uk

KY, RTL and ASa are joint first
authors.

NS, ASa and ASc are joint senior
authors.

This work was previously
presented partly at European
Society for Medical Oncology
(ESMO) Congress 2017

and partly at European
NeuroEndocrine Tumor Society
(ENETS) Conference 2019.

Received 2 March 2020
Revised 11 August 2020
Accepted 12 August 2020

| '.) Check for updates

© Author(s) (or their
employer(s)) 2020. Re-use
permitted under CC BY-NC. No
commercial re-use. See rights
and permissions. Published

by BMU.

To cite: Young K, Lawlor RT,
Ragulan C, et al. Gut Epub
ahead of print: [please
include Day Month Year].
doi:10.1136/
gutjnl-2020-321016

ORIGINAL RESEARCH

Immune landscape, evolution, hypoxia-mediated viral
mimicry pathways and therapeutic potential in
molecular subtypes of pancreatic

neuroendocrine tumours

Kate Young,* Rita T Lawlor,> Chanthirika Ragulan, " Yatish Patil," Andrea Mafficini,*>
Samantha Bersani,*> Davide Antonello,® David Mansfield,” Sara Cingarlini,®

Luca Landoni,® Antonio Pea,® Claudio Luchini
. Gift Nyamundanda,' Daniel Morganstein,” lan Chau,’

Nagarajan Kannan

33 Liliana Piredda,’

Bertram Wiedenmann, '° Michele Milella,® Alan Melcher,” David Cunningham,?

Naureen Starling,” Aldo Scarpa

ABSTRACT

Objective A comprehensive analysis of the

immune landscape of pancreatic neuroendocrine
tumours (PanNETs) was performed according to
clinicopathological parameters and previously defined
molecular subtypes to identify potential therapeutic
vulnerabilities in this disease.

Design Differential expression analysis of 600
immune-related genes was performed on 207 PanNET
samples, comprising a training cohort (n=72) and two
validation cohorts (n=135) from multiple transcriptome
profiling platforms. Different immune-related and
subtype-related phenotypes, cell types and pathways
were investigated using different in silico methods

and were further validated using spatial multiplex
immunofluorescence.

Results The study identified an immune signature of
132 genes segregating PanNETs (n=207) according to
four previously defined molecular subtypes: metastasis-
like primary (MLP)-1 and MLP-2, insulinoma-like and
intermediate. The MLP-1 subtype (26%—31% samples
across three cohorts) was strongly associated with
elevated levels of immune-related genes, poor prognosis
and a cascade of tumour evolutionary events: larger
hypoxic and necroptotic tumours leading to increased
damage-associated molecular patterns (viral mimicry),
stimulator of interferon gene pathway, T cell-inflamed
genes, immune checkpoint targets, and T cell-mediated
and M1 macrophage-mediated immune escape
mechanisms. Multiplex spatial profiling validated
significantly increased macrophages in the MLP-1
subtype.

Conclusion This study provides novel data on the
immune microenvironment of PanNETs and identifies
MLP-1 subtype as an immune-high phenotype featuring
a broad and robust activation of immune-related genes.
This study, with further refinement, paves the way for
future precision immunotherapy studies in PanNETs to
potentially select a subset of MLP-1 patients who may be
more likely to respond.

> Anguraj Sadanandam
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Significance of this study

What is already known on this subject?

» Very little is known about the immune
landscape of pancreatic neuroendocrine
tumours (PanNETs). Early data from a small
number of patients in immune checkpoint
inhibitor trials have demonstrated some clinical
activity in PanNET. However, no subgroup of
patients has been identified that is more likely
to respond.

What are the new findings?

» The current study demonstrates differential
immune-related gene expression in PanNETs
and identified a molecular subtype, metastasis-
like primary (MLP)-1, with enriched immune
gene expression profiles (GEPs). Our data
suggest this enrichment is related to MLP-1
subtype characteristics (poor prognosis and
increased tumour size) and GEPs associated
with increased hypoxia, necroptosis, viral
mimicry and stimulator of interferon gene
pathway, resulting in activation of immune
suppressive microenvironment via the damage-
associated molecular pattern pathway.

BACKGROUND

Pancreatic neuroendocrine tumours (PanNETs)
are rare tumours with widely varying clinical
behaviours. Five-year survival ranges from 60% to
1009% for the localised disease to 25% for metastatic
disease." The WHO classifies PanNETs into three
grades, with grade 3 disease having the worst prog-
nosis.” Treatment decisions are based on the grade
and stage of the disease. However, due to signif-
icant heterogeneity in disease behaviour, particu-
larly within grade 2 tumours, such distinctions are
insufficient and novel approaches are required to
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provide more precise clinical management.
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Significance of this study

How might it impact on clinical practice in the foreseeable

future?

» This study provides novel data regarding the immune
microenvironment of PanNETs with potential therapeutic
implications. The MLP-1 PanNET subtype identifies tumours
with enriched immune suppressive GEPs. This study poses
the basis for potential clinical trials according to PanNET
molecular subtypes to aid the development of precision
immunotherapy in this rare disease.

In recent years, there have been significant advances in our
understanding of the molecular features of PanNETs.*® Four
transcriptomic (gene and microRNA) PanNET subtypes were
previously defined: metastasis-like primary (MLP)-1 (28%) and
MLP-2 (15%), insulinoma-like (22%) and intermediate (35%).
These were confirmed by next-generation transcriptomic
sequencing analysis.*

Despite our improved understanding of the molecular nature
of PanNETs,*™® novel therapeutic approaches for patients remain
elusive. One prominent area for exploration is immunotherapy,
and multiple trials of immune checkpoint blockade are under
way.” " However, these studies reported only modest to low
clinical benefit of anti-PDL1 agents thus far.

Moreover, little is known about the immune landscape of
PanNETs to date. The majority of studies have been small and
retrospective, considering few biomarkers.”> '® Therefore, it
is still impossible to identify patients with PanNET who may
benefit from immunotherapy. Thus, in this study, we performed
detailed profiling of immune genes to understand the landscape
of immune cell types in PanNETs and its potential to aid immu-
notherapy choices. We analysed immune-related gene expression
in PanNET samples according to clinical parameters, gene muta-
tions, tumour stage and the previously described four molecular
subtypes.’ As the PanNET MLP subtypes were already shown
to be transcriptionally enriched in hypoxia-related genes,® * we
also investigated the role of hypoxia/necroptosis-induced viral
mimicry via damage-associated molecular pattern (DAMP) and
stimulator of interferon gene (STING) pathways in inducing an
enhanced immune-related gene expression. We further validated
the enrichment of particular immune cell types in a subset of
MLP subtype samples using multiplex immunofluorescence.

MATERIALS AND METHODS
PanNET patient samples and gene expression molecular
subtypes
The sample set (n=207) consisted of three cohorts: one training
and two validation cohorts (figure 1A). The training cohort
(with subtype information) was our published gene expression
microarray (18.5 K human oligo microarrays) dataset of 72
PanNETs (GSE73338) data,’” which was also used to develop
the PanNET molecular subtypes.® Tumour grade, gene muta-
tions (MEN1, DAXX/ATRX and MTOR pathway genes), tumour
volume and survival information for the training cohort were
available. Validation cohort-1 of 109 PanNET patient samples
were collected from Verona University Hospital (see Ethical
approval Statement). Validation cohort 2 was a gene expression
microarray (Affymetrix Human Gene V.1.0 ST Array) dataset of
26 PanNETs with molecular subtypes already published by us.’
RNA sequencing (RNAseq) was performed on validation
cohort 1 using fresh frozen PanNET samples as described in

online supplemental methods. PanNET molecular subtypes
for validation cohort 1 was defined using non-negative matrix
factorisation-based unsupervised clustering of 221 subtype-
specific genes, as described previously’ (additional details in
online supplemental methods).

Significance analysis of microarrays (SAM)

SAM (supervised analysis) was used to identify differentially
expressed immune-related genes between four PanNET subtypes
in the training cohort. Six hundred immune-related genes (from
730 immune genes from NanoString Technologies’ curated list)
were selected as input from the training cohort. When more than
one probe represented a gene, the highest variable probe was
selected for that gene. For SAM, false discovery rate (FDR) was
set to <0.05and false calls to <1 as described.® '* ¥ The list
of significant genes from the training cohort was validated by
applying SAM to the four PanNET subtypes in the two valida-
tion cohorts.

Shannon entropy plots of diversity versus specialisation
Shannon entropy analysis was performed on the training cohort
to measure diversity and sample specialisation of gene expression
for each sample as previously described.* Diversity and speciali-
sation values were normalised between 0 and 1 as recommended
in the R-based Bioconductor package BioQC.*' The average
diversity and sample specialisation values for each subtype were
then calculated.

Immune cell type genes

Expression of genes associated with various cell types across the
innate and adaptive immune systems was analysed for all PanNET
subtypes using a set of transcriptomic markers comprising cell
types from Rooney et al.*

Probabilistic principal component analysis with covariates

A full description of the PPCCA method implemented in the
exploBATCH tool is provided in online supplemental method.
The PPCCA method® ** was used to confirm the association
between PanNET subtypes (primary factor), hypoxia (secondary
factor) and DAMP gene expression data (subset of genes). The
tool is available at https://github.com/syspremed/exploBATCH.

RESULTS

The large cohorts of samples (n=207) and the design of the
study, including different methods and analyses, are illustrated in
figure 1A. The summary characteristics of the training cohort of
72 PanNETs classified into four subtypes are reported in online
supplemental table 1A, those of 109 cases of validation cohort
1 in online supplemental table 1B and those of 26 cases of vali-
dation cohort 2 in online supplemental table 1C. The subtypes
of validation cohort 1 (RNAseq) samples are in online supple-
mental table 1D.

PanNET molecular subtypes have distinct profiles of immune-
related gene expression

PanNET molecular subtype-based differentially expressed
immune genes were identified using a supervised differen-
tial expression analysis of the training cohort (n=72) and 600
immune-related genes, where subtype information was already
provided to the statistical method, SAM, to identify differential
genes between subtypes as described.® This analysis identified
132 (22% of 600) differentially expressed genes (FDR<0.05)
between the four subtypes (online supplemental table 2A,B,
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Figure 1 Differential immune gene expression and diversity associated with PanNET subtypes. (A) Schematic showing the complete cohort of 207
PanNET samples, platforms and computational approaches used in this study. The validation cohort 1 was profiled by RNAseq, and the training and
the validation cohort 2 was profiled using microarrays. Samples for verification of subtype-specific immune genes were selected from validation
cohort 1 and profiled using nCounter platform from NanoString Technologies. (B) Heatmap of 132 differentially expressed immune-related genes
according to PanNET molecular subtypes (SAM, FDR<0.05). Top bar indicates subtypes. In the rainbow bar below the heatmap, red indicates elevated
expression; blue indicates decreased expression; and white indicates no change. (C) Proportions of differentially expressed 132 immune-related genes
in each PanNET molecular subtype. (D) Overlap of the 132 differentially expressed immune-related genes in PanNET subtypes between the training
cohort and validation cohorts 1 and 2. (E) Heatmap showing the mean expression of the 132 immune-related genes according to PanNET subtype

as detected by nCounter PanCancer immune profiling panel of genes from NanoString technologies in 38 samples selected from training cohort

and validation cohort 1. (F) Shannon entropy analysis shows the measured diversity and sample specialisation of gene expression in each PanNET
subtype. (G,J) GSEA analysis of the training cohort's whole gene expression profiles against the C7-immunogenic gene sets from MSigDB database,?
performed according to PanNET subtypes: (G) MLP-1, (H) MLP-2, (I) insulinoma-like and (J) intermediate. DAMP, damage-associated molecular pattern;
FDR, false discovery rate; GSEA, gene set enrichment analysis; MLP, metastasis-like primary; PanNET, pancreatic neuroendocrine tumour; RNAseq, RNA
sequencing; SAM, significance analysis of microarrays.
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with overview of expression levels shown in figure 1B). MLP-1
subtype was highly enriched for 74 of these 132 immune genes
(56%), MLP-2 for 25 (19%) and intermediate for 21 (16%).
Insulinoma-like samples had the lowest figure, with only 12
(9%) immune genes (figure 1C).

The differential enrichment of the 132 immune genes in
PanNET subtypes detected in the training cohort was validated
using two additional cohorts (n=1335), profiled using different
technologies: validation cohort 1 (n=109, RNA-seq) and valida-
tion cohort 2 (n=26, microarrays; figure 1A and online supple-
mental figures 1A,D). One hundred twenty-seven (96%) of 132
immune genes were found to be differentially expressed across
PanNET subtypes in all three cohorts, highlighting the robust-
ness of these genes in discriminating the immune landscape of
PanNET subtypes (figure 1D and online supplemental table 2C).
Moreover, this was further confirmed by performing the gene
expression profiling and data analysis using the nCounter plat-
form (NanoString Technologies) on a subset of 38 cases from
validation cohort-1 (figure 1E and online supplemental figure
1E).

Additionally, we quantified the immune-related gene enrich-
ment in PanNET subtypes of the training cohort by measuring
diversity and specialisation of gene expression, using Shannon
Entropy statistical analysis?® (figure 1F). Shannon diversity index
provides an overall measure of the enrichment and abundance
of immune gene expression in each subtype. If a greater number
of genes are highly expressed and enriched within a subtype,
then the diversity of that subtype will be high and vice versa. In
contrast, the Shannon sample specialisation index will be high if
a subset of genes—even a small subset—is highly and specifically
expressed in a particular subtype, thus representing a charac-
teristic of that subtype. MLP-1 subtype had the highest diver-
sity of immune gene expression (with 56% of the genes highly
expressed) and the lowest specialisation. MLP-2 had the second
highest diversity but was the most specialised, potentially due to
enrichment for metastases® (online supplemental table 1A). Both
insulinoma-like and intermediate subtypes demonstrated lower
diversity and high specialisation. The increased specialisation for
insulinoma-like subtype was due to the high expression of f cell-
related genes (highlighted in online supplemental figure 1F).

To establish whether the high diversity and low specialisa-
tion of MLP-1 translated into enhanced immune pathways and
network activity, we performed gene set enrichment analysis
(GSEA) on the whole gene expression profiles (GEPs) of the
training cohort against the gene set ‘C7: immunologic signatures’
from the MSigDB.* Positive GSEA (enrichment) scores of gene
sets were markedly highest in the MLP-1 subtype compared with
insulinoma and intermediate subtypes (figure 1G-J), confirming
that MLP-1 is enriched in multiple immune pathways. Although
MLP-2 showed positive enrichment scores of gene sets similar
to MLP-1, there was also a negative enrichment score of gene
sets representing that MLP-2, unlike MLP-1, contains a balance
between high and low enrichments of immune gene sets.

Current stratification of PanNETs is based on clinicopatho-
logical and mutational parameters.' To check whether PanNET
subtype-based immune profiles may provide independent addi-
tional information, we performed differential gene expression
analysis of the training cohort (n=72)>"" for the 600 immune-
related genes by grouping samples according to clinicopatho-
logical parameters and mutations. Analysis according to tumour
grade identified only 12 (2%) differentially (FDR<0.05)
expressed genes (online supplemental figure 1G and online
supplemental table 2D). No association was detected between
the expression of specific genes and presence of different

mutations (MEN1, DAXX/ATRX or mTOR pathway gene muta-
tions), tumour stage or size (online supplemental figure 1H-K
and online supplemental table 2E-I), showing that clinico-
pathological parameters and immune profiles are independent
features.

Enhanced immune-related gene expression in MLP-1 PanNETs
is associated with hypoxia and necroptosis
Previously, MLP-1 was described to be less vascularised than
other subtypes and enriched for genes associated with hypoxia
and Hypoxia-inducible Factors (HIF) signalling.’> * Here we
confirmed that MLP-1, which bears poorer prognosis, featured
a higher hypoxia gene score (based on single-sample gene set
enrichment analysis (ssGSEA)) and larger tumour size than the
other subtypes (figure 2A-D, online supplemental figure 2A,B
and online supplemental table 3A-C show hypoxic gene changes
in the training cohort; and online supplemental figure 2C,D
represents validation cohort 1). This is consistent with the fact
that larger tumours are more prone to hypoxia.?®

Both hypoxia and immune/inflammatory responses have been
associated with necroptosis, a form of programmed cell death.*”**
Therefore, we investigated this association in PanNET subtypes.
The MLP-1 subtype was primarily associated with a high (greater
than the median value) necroptosis gene score, which in turn
showed a trend (p=0.1) towards poorer survival (figure 2E,F
and online supplemental table 3A and D for the training cohort;
online supplemental figure 2E-H for the training cohort and
validation cohort 1). Hypoxia and necroptosis scores were posi-
tively correlated (p<0.01, figure 2G). These results suggest a
link between hypoxia, necroptosis and the enhanced immune-
related gene expression characterising MLP-1 tumours.

Necroptotic MLP-1 tumours influence immune phenotype
through DAMP pathway and viral mimicry

Necroptosis results in an inflammatory phenotype through
DAMP, such as cytosolic DNA or double-stranded (ds)RNA,
which imitate viral infection and elicit immune responses (viral
mimicry).*** To investigate this connection in MLP-1, we anal-
ysed the expression of 14 key DAMP genes (unbiasedly selected
from the entire microarray gene set) in both the training cohort
and validation cohort 1 (n=181). Twelve of 14 genes were
significantly enriched in the MLP-1 subtype (figure 3A and
online supplemental table 4A for the training cohort and online
supplemental figure 3A—C for validation cohort 1). Furthermore,
12 of these DAMP genes were positively correlated and signifi-
cant (p=<0.05) with the necroptosis score (figure 3B and online
supplemental figure 3D and online supplemental table 4B). This
suggests that the MLP-1 subtype, but not the other subtypes, may
be associated with increased DAMP genes via changes in hypoxia
and necroptosis.

To further validate if this enrichment of DAMP genes is
specific to the MLP-1 subtype and to evaluate if this is linked to
hypoxic changes, we performed a machine learning-based statis-
tical association analysis on the training cohort. As this is not
possible using simple correlation analysis, we used our published
PPCCA method (see Methods section of online supplemental
information). This method exploits a combination of principal
component and multivariate regression analyses, which was
used to model 12 DAMP GEPs as a function of both PanNET
subtype (MLP1 vs non-MLP1) and hypoxia (high vs low) and
test their mutual association in samples from the training cohort.
This analysis showed that the MLP-1 subtype and hypoxia are
statistically associated with DAMP gene (n=12) expression
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Figure 2 Association of hypoxia and necroptosis with PanNET molecular subtypes. (A) Overall survival of MLP-1 versus other subtypes. (B) Hypoxia
score as determined by ssGSEA using the MSigDB gene set”® across PanNET subtypes of the training cohort. The orange line represents the median
score, used as a cut-off to categorise samples into high and low for hypoxia. (C) Proportion of MLP-1 samples with a high (89%) or low (11%) ssGSEA
hypoxia score. (D) Tumour size across the PanNET subtypes. (E) Necroptosis score as determined by ssGSEA using the MSigDB gene set?® across
PanNET subtypes of the training cohort. The orange line represents the median score, used as a cut-off to categorise samples into high and low for
necroptosis. (F) Proportion of MLP-1 samples with a high (78%) or low (22%) necroptosis score. (G) Correlation of hypoxia and necroptosis scores

in PanNET samples. Colours illustrate subtypes, and the dashed ellipse highlights samples with concurrent high necroptosis and hypoxia scores. MLP,
metastasis-like primary; PanNET, pancreatic neuroendocrine tumour; ssGSEA, single-sample gene set enrichment analysis.

profiles (p<0.001; figure 3C, before; online supplemental
figure 3E). Thus, PanNET samples and DAMP GEPs were statis-
tically normalised to account for differences between MLP-1
and other subtypes using the same method (p not significant;
figure 3C, after). Consequently, the association between DAMP
gene expression and hypoxia also lost significance (p>0.03,
figure 3D). Overall, DAMP gene expression changes are signifi-
cantly associated with both MLP-1 subtype and hypoxia gene
programme.

Among the DAMP genes, TLR3 (toll-like receptor-3) was the
most significantly enriched in MLP-1 (FDR<0.001). High TLR3
expression (greater than the median value) was associated with
poorer overall survival and featured in 83% of MLP-1 samples
(figure 3E,F, online supplemental figure 3F and online supple-
mental table 4C). This receptor is expressed by dendritic cells
(DCs) which are antigen-presenting cells that activate T cell-
based adaptive immune response.’® ** Accordingly, the MLP-1
subtype was also found to be enriched for genes related to
DCs with high DC score, which was also positively correlated
with most of the DAMP genes (p<=0.05 for 9 of 12 genes)
(figure 3G,H and online supplemental figure 3G and online
supplemental table 3A). These results suggest that DAMP via
TLR3 may affect immune-related gene expression and immune
escape in the MLP-1 subtype.

MLP-1 subtype is enriched for T cell-mediated adaptive
immunity and monocytes

Investigation on the function of the 74 MLP-1-specific immune
genes (figure 1B and online supplemental table 4D) showed

19 genes (figure 3I) that coded for proteins that play a major
role in T-cell functioning and immune checkpoints (including
CD274/PD-L1, PDCD1LG2/PD-L2 and LAG3) and interferon
signalling/STING pathway (IFNAR1, IFIT2, IFI16, SPP1, IL18
and ISG15). The second group of genes coding for proteins
are important in macrophage/monocyte and DC functioning
(CCRL2, TREM1/2, ANXA1 and MSR1) and antigen processing
and presentation (PSMB8, PSMB10, PSMB9, HLA-DPA1 and
CTSS). Other toll-like receptors that are involved in monocyte
functioning in MLP-1 are also listed in online supplemental
table 4D. We formally confirmed these observations by using
enrichment analysis to identify overlaps between genes with
increased expression in the MLP-1 subtype and the C7: immu-
nologic signatures MSigDB gene sets. Among the top 100 gene
sets with FDR<0.01, >75% were involved in Tcell functioning,
myeloid cell functioning or interferon signalling (online supple-
mental table 4E and the top 10 significant gene sets are shown
in figure 3]).

In addition, we assessed PanNET subtypes for the enrichment
of immune cell types using the specific gene sets published by
Rooney et al.** Differential expression analysis showed that
14 of the 80 genes from Rooney et al had increased expres-
sion (fold change =1.5, FDR<0.05) in the MLP-1 subtype
compared with the other PanNET subtypes in the training
cohort (figure 4A,B and online supplemental table 5A). These
included T-cell and macrophage-specific genes mainly involved
in adaptive immunity. Accordingly, ssGSEA®® analysis for the
immune cell type-specific genes sets confirmed the significant
(FDR<0.05) enrichment of MLP-1 subtype for coinhibition of

Young K, et al. Gut 2020;0:1-10. doi:10.1136/gutjnl-2020-321016

5

ybuAdoo Aq paroaloid 1senb Ag 020z ‘v Jaquisidas uo /wod fwg b/ :dny woly papeojumoq "0Z0z 1aquisidas € uo 9T0TZE-0Z0z-UinB/9ETT 0T Se pays!ignd is1y 1IN


https://dx.doi.org/10.1136/gutjnl-2020-321016
https://dx.doi.org/10.1136/gutjnl-2020-321016
https://dx.doi.org/10.1136/gutjnl-2020-321016
https://dx.doi.org/10.1136/gutjnl-2020-321016
https://dx.doi.org/10.1136/gutjnl-2020-321016
https://dx.doi.org/10.1136/gutjnl-2020-321016
https://dx.doi.org/10.1136/gutjnl-2020-321016
https://dx.doi.org/10.1136/gutjnl-2020-321016
https://dx.doi.org/10.1136/gutjnl-2020-321016
https://dx.doi.org/10.1136/gutjnl-2020-321016
https://dx.doi.org/10.1136/gutjnl-2020-321016
https://dx.doi.org/10.1136/gutjnl-2020-321016
https://dx.doi.org/10.1136/gutjnl-2020-321016
http://gut.bmj.com/

Pancreas

A B C. PanNET subtypes D. Hypoxic scores
MLP-1 normalisation MLP-1 normalisation
Before After Before me,
_

1N

|||'h|||u

DAMP genes

DAMP genes
MYD88
TICAM1
TLRY
TREM1
TLR4
TLR3
HsPB1
TLR7
iL18
iL1g

M Insulinoma-Like

M Intermediate
MLP-1

W MLP-2

MLP-1 Samples

——Low TLR3
—— High TLR3

=3
S

I
N
a

o
N
G

Overall Survival Probability
o
w1
o

p <0.04

=4
o
S

M Low TLR3
M HighTLR3

0 50 100 150 200 250
No. at risk Months

LowTLR332 30 18 8 3 0
HighTLR331 23 15 3 1 1

B N subtypes

CD274 (PD-L1)
T cell functioning PDCD1LG2 (PD-L2)

/FNAR1
M Insulinoma-Like

Interferon and STING IFI16 i
Pathway /UE M Intermediate
| ISG15 MLP-1
ccrL2 EMLP-2
TREM1
mmphage MSR1
andDC TREM2
ANXAT

PMSB8
PSMB 1 0

HLA DPA1

Antigen processing
and presentation

-:
a0+

B subtypes =y pens p<0.001
5
1 1 I II IHMGE1 . %P <=0.05 DAMP genes
st k HMGBI
TLR4
Irl 11 TREM1 HsPB1
MYD88 . TLR4
TICAM1 TREM1
I 1 n TLRY E MYD88
TLRS . TICAM1
- \IJ " e TLR7 k | 1L18
IL18
l | I CAsP1 r H CASP1
N s o ,TLLY:
7
—_— C—
3 0 +3 3 TLRY vt
DAMP genes TLR3
—
-1

GSE37534_UNTREATED_VS_PIOGLITAZONE_TREATED_CD4_TCELL_PPARG1_AND_FOXP3_TRASDUCED_DN

GSE19888_ADENOSINE_A3R_INH_PRETREAT_AND_ACT_BY_A3R_VS_TCELL_MEMBRANES_ACT_MAST_CELL_UP

GSES589_LPS_AND_IL10_VS_LPS_AND_IL6_STIM_IL6_KO_MACROPHAGE_45MIN_UP

GSE37533_PPARG1_FOXP3_VS_PPARG2_FOXP3_TRANSDUCED_CD4_TCELL_PIOGLITAZONE_TREATED_DN

—

0 41 o+

M Insulinoma-Like

M Intermediate
MLP-1

B MLP-2

I High Hypoxia Score
M Low Hypoxia Score

G Dendritic Cell Score H

*p <=0.05
1000!

03
500

0.2

Correlation with Dendritic Cell Score

-500! p<0.01 o.ozg_mm‘m'\‘_FF_
N r S8GLEEEE3I0G
M Insulinoma-Like STFFRRFEIe2
M Intermediate DAMP genes
MLP-1
W MLP-2

GSE41978_ID2_KO_VS_BIM_KO_KLRG1_LOW_EFFECTOR_CD8_TCELL_UP

GSE42021_CD24HI_VS_CD24LOW_TCONV_THYMUS_DN

GSE7509_UNSTIM_VS_IFNA_STIM_IMMATURE_DC_DN

GSE7509_UNSTIM_VS_FCGRIIB_STIM_DC_DN

GSE37533_PPARG2_FOXP3_VS_FOXP3_TRANSDUCED_CD4_TCELL_DN

GSE37533_PPARG1_FOXP3_VS_FOXP3_TRANSDUCED_CD4_TCELL_DN

o
E

o

-log,(FDR)

Figure 3  Association of DAMP pathway with PanNET subtypes, hypoxia and necroptosis. (A) Heatmap of the 12 DAMP pathway genes across the
PanNET subtype samples, demonstrating enrichment in the MLP-1 subtype. Red indicates elevated expression; blue indicates decreased expression;
and white indicates no change. TRL3, TLR7 and CASP1 (black rectangles) are most significantly enriched in MLP-1 subtype (FDR<0.0001). Kruskal-
Wallis test with correction for multiple testing was used. (B) Correlation (Pearson) of DAMP pathway genes with necroptosis score across all samples.
(C) Heatmap of 12 DAMP pathway genes (median expression across samples from each subtype) demonstrating enrichment in the MLP-1 subtype
before and after MLP-1 subtype normalisation using PPCCA method. (D) Heatmap of 12 DAMP pathway genes (median expression across samples
from each subtype) demonstrating enrichment in the hypoxia high group before and after MLP-1 subtype normalisation using PPCCA method. Red
indicates elevated expression; blue indicates decreased expression; and white indicates no change. (C,D) P values represent association analysis using
regression-based p values from PPCCA. (E) Kaplan-Meier survival plot and number of patients at risk according to low and high TLR3 expression.
Log-rank test p value is reported. (F) Proportion of MLP-1 cases with high (83%) or low (17%) TLR3 expression. (E,F) Median score of TLR3 was used
as a cut-off to categorise samples into high and low expressions. (G) DC score as determined by ssGSEA using MSigDB gene set®® across PanNET
subtypes. The orange line represents the median ssGSEA score. (H) Correlation (Pearson) of DAMP pathway genes with DC score in the MLP-1 samples
of the training cohort. (I) Heatmap showing median expression of genes associated with T-cell functioning, the STING pathway, macrophage/DC
functioning and antigen processing/presentation across PanNET subtypes. Red indicates elevated expression; blue indicates decreased expression;
and white indicates no change. (J) Top 10 significant enrichment analysis for genes highly expressed in MLP-1 subtype from the training cohort using
MSigDB's” ‘investigational analysis’ tool and C7 gene sets. DAMP, damage-associated molecular pattern; DC, dendritic cell; FDR, false discovery rate;
MLP, metastasis-like primary; PanNET, pancreatic neuroendocrine tumour; PPCCA, probabilistic principal component analysis with covariates; ssGSEA,
single-sample gene set enrichment analysis; STING, stimulator of interferon gene.

T cells, MHC class I and macrophages (figure 4C-E and online
supplemental table 5B). We obtained similar results in the two
validation cohorts (online supplemental figure 4A-F and online
supplemental table SD-E). Furthermore, there was an increase
in M1 macrophage (proinflammatory)-specific gene expression
in the MLP-1 subtype and a reduction in M2 macrophage (anti-
inflammatory) genes (figure 4F,G and online supplemental table
5C). These results suggest the costimulation of T cells through
M1 macrophages in the MLP-1 subtype. Overall, these data

suggest that the MLP-1 subtype features immune modulation
via T cells, M1 macrophages and the DAMP pathway, resulting
primarily in an immune suppressive gene expression phenotype.

Multiplex spatial immune profiling validates immune changes
in subtypes

To validate the patterns of immune-related gene expression
demonstrated in the PanNET subtypes, we performed multiplex
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Immune cell type landscape in PanNET subtypes. (A) Differential expression of immune cell type-specific genes in MLP-1 versus other

subtypes. FDR values were computed on the training cohort based on t-test. Pink dots highlight 14 overexpressed genes in MLP-1 subtype (fold
change>1, FDR<0.05). (B) Heatmap of the 14 overexpressed immune cell type-specific genes across the four PanNET subtypes. Genes with a fold
change >2 are highlighted (*). The immune cell types associated with the specific genes are displayed on the right. Top bar represents PanNET
subtypes. In the rainbow bar below the heatmap, red indicates elevated expression; blue indicates decreased; and white indicates no change. (C—E)
Enrichment scores (ssGSEA) of immune cell type-specific gene sets, namely,(C) macrophages, (D) coinhibition T cells,and (E) MHC class | across
PanNET subtypes (FDR<0.05 based on Kruskal-Wallis test). (F,G) Heatmaps showing median expression of genes associated with (F) M1 and (G)
M2 macrophages across PanNET subtypes in the training cohort. Red indicates elevated expression; green indicates decreased expression; and
black indicates no change. FDR, false discovery rate; IFN, interferon; MHC, major histocompatibility complex; MLP, metastasis-like primary; PanNET,
pancreatic neuroendocrine tumour; ssGSEA, single-sample gene set enrichment analysis.

immunofluorescence using available samples and gene expres-
sion data (n=28, no insulinoma-like samples). The number of
cells positive for CD68 (macrophage marker), CD8 (cytotoxic
T cell marker), FOXP3 (T-regulatory cell marker) and CD20
(B cell marker), per megapixel of tumour tissue, were counted
(figure SA).

The MLP-1 subtype demonstrated a higher count of CD68
positive cells compared with Intermediate and MLP-2 subtypes
(FDR<0.05) (figure 5B), consistent with increased expression of
CD68 gene in MLP-1 subtype in validation cohort-1 (figure 5C).
There was no significant difference in CD8 or FOXP3 staining
across the three subtypes in keeping with the lack of specific
enrichment in gene expression data (online supplemental table
6). These immunofluorescence spatial and protein expression
findings are consistent with gene expression data.

Potential immunotherapeutic opportunities using patients
with PanNET with MLP-1 subtype

To assess the potential immunotherapeutic significance of
the MLP-1 subtype, we verified the expression of known and

potential immunotherapy targets across the PanNET subtypes,
including PD-L1 expression, which has already been used
as an inclusion criterion for immunotherapy clinical trials in
PanNETs.'” PD-L1 (CD274) and PD-L2 were significantly
(FDR<0.2) highly expressed in MLP-1 (figure 6A,B). Additional
inhibitory immune checkpoints, which resulted to be enriched in
the MLP-1 subtype, included LAG3, IDO1, and C1007f54 (V-do-
main Ig suppressor of T-cell activation, figure 6C-E).

The T cell-inflamed GEP is a set of 18 genes whose enrich-
ment has been reported to predict response to PD-1 blockade
in several tumour types.*® We thus analysed this as a signature
(T-cell GEP) score, and there were increased scores in MLP-1
versus the other subtypes in all the three cohorts (figure 6F and
online supplemental figure 4G,H).

To further validate these results, we compared our data to
melanoma, where immune therapy is known to be successful. We
used a publicly available dataset—GSE15605°—and combined
the two datasets after batch correcting the differences between
profiling platforms. There was a significantly high expression
of PDL-1 and PDL-2 genes and T-cell GEP scores in metastatic

Young K, et al. Gut 2020;0:1-10. doi:10.1136/gutjnl-2020-321016

7

ybuAdoo Aq paroaloid 1senb Ag 020z ‘v Jaquisidas uo /wod fwg b/ :dny woly papeojumoq "0Z0z 1aquisidas € uo 9T0TZE-0Z0z-UinB/9ETT 0T Se pays!ignd is1y 1IN


https://dx.doi.org/10.1136/gutjnl-2020-321016
https://dx.doi.org/10.1136/gutjnl-2020-321016
https://dx.doi.org/10.1136/gutjnl-2020-321016
http://gut.bmj.com/

A MLP-1 subtype - high CD68

ate subtype - low CD68

v N,

o

Marker: CD68 cD8 CD20  FOXP3 DAPI K

Appearance: ° ° .

Classification: Macrophage Cytotoxic B-Cell ~ Treg  Nucleus Tumour
T-Cell Cell

CD68 (gene expression)

CD68 (Macrophage immunofluorescence Marker) (FDR 20.001)

(FDR = 0.041)
= 6
£ <
a 45 S
& 2

[
2 35 N
2 £
§ zo S 4}
[
§ 20 3
= >
= 15 a
[C 2 2
£ g, .
o
v
2 o
Subtypes
. Intermediate W Insulinoma-Like
O MLP-1 M Intermediate
MLP-1
MLP-2
. W MLP-2

Figure 5 Multiplex immunofluorescence validates cell type
differences across PanNET subtypes. (A) Representative multiple
immunofluorescence images demonstrating protein expression of CD68
(macrophages), FOXP3 (Tregs), CD8 (cytotoxic T cells), CD20 (B cells) and
pan-CK (cancer cells) in MLP-1 (left) and intermediate (right) samples.
Nuclei are stained with DAPI. Bars represent x20 magnification. (B)

The median score of CD68 immunofluorescence staining (cell type/
megapixel) computed from multiple regions of multiple slides for 30
PanNET samples and plotted for subtypes. (C) Gene expression levels of
(D68 across PanNET subtypes in validation cohort 1. CK, cytokeratin;
DAPI, 4’,6-diamidino-2-phenylindole; FDR computed by Kruskal-Wallis
test after multiple testing corrections. FDR, false discovery rate; MLP,
metastasis-like primary; Treg, T-regulatory cell.

melanoma compared with primary melanoma and normal skin.
Similarly, there was a significant increase in the expression of
these genes in MLP-1 compared with the other subtypes of
PanNET. Thus, PDL1, PDL2 and T-cell GEP scores in the MLP-1
subtype were similar to metastatic and primary melanoma
samples (online supplemental figure SA-C).

DISCUSSION
To our knowledge, this report describes, for the first time, the
global immune-related gene expression of PanNETs in one of the
largest sets of patients. Four molecular PanNET subtypes based
on gene expression had previously been defined: MLP-1, MLP-2,
insulinoma-like and intermediate.” These subtypes were used as
a starting point to explore immune-related gene expression.
Our results, consistent in both the training cohort (n=72)
and two validation cohorts (n=135), can be summarised as
follows: (1) the four PanNET molecular subtypes® identified
groups of tumours with different immune gene expression, and
~20% of cases exhibited the MLP-1 subtype, which featured
the highest and more diverse immune-related gene expression;
(2) PanNETs clinical parameters, including grade, tumour stage
and size, or specific genetic mutations, did not associate with
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cell-inflamed GEP (to predict potential response to anti-PD1 treatment)
for the training cohort. Expression (mean) data for 14 of the 18 relevant
genes were available. FDR (after multiple testing correction) or p value
computed by Kruskal-Wallis test. FDR, false discovery rate; GEP, gene
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immune gene expression, suggesting that molecular subtype-
based immune profiles may provide independent and additional
information; (3) the MLP-1 phenotype (demonstrated robustly
using the machine learning approach) featured a close associa-
tion between its known hypoxic phenotype,® * necroptosis and
signalling through DAMP and the STING pathway, promoting
an immune enhanced expression profile; (4) accordingly,
immune cell type-specific gene expression analysis showed an
enrichment in M1 pro-inflammatory macrophages and DCs,
mirrored by enhanced expression of TLRs and MHC class I; (5)
this increased macrophages was confirmed using spatial profiling
and pan-macrophage marker CD68; and (6) as expected from its
enhanced immune gene expression, the MLP-1 subtype showed
overexpression of PD-L1, PD-L2 and other markers of sensi-
tivity to immunotherapy, including the T cell GEP signature.*®
Overall, our study provides insights into the heterogeneity of the
immune microenvironment in PanNETs and highlights various
potential immunotherapeutic targets.

The MLP-1 subtype is enriched for genes involved in hypoxia
and HIF signalling.’* These have been linked to many aspects of
immunity in the tumour microenvironment, including the upreg-
ulation of checkpoints such as PD-L1.*® Hypoxic cell damage was
associated with necroptosis and signalling through DAMP and
the STING pathways. These signalling avenues reportedly lead to
the production of type I or II interferons and recruitment/induc-
tion of M1 when combined with TLR stimulation®® 3! 3% #0; all
demonstrated to be enriched in the MLP-1 subtype. DAMP path-
ways provide links between cell damage, danger signals such as
cytosolic DNA or dsRNA (sensed by TLR3) and adaptive immune
response.’” *! While much remains to be learnt about these path-
ways and their potential to either promote or inhibit tumour
progression, our data suggest that the intrinsic MLP-1 characteris-
tics (including progenitor origin, prometastatic, stroma-rich and/
or epithelial-mesenchymal transition phenotypes) in association
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hypoxia drive enhanced expression of DAMP genes. The latter
in turn affects the immune landscape in this subtype. Conversely,
a consistent fraction of intermediate subtype PanNETs featured
enhanced hypoxia and necroptosis signalling without DAMP
activation and with poor enrichment of immune cell-specific
hallmarks. On the other hand, insulinoma-like samples showed
low hypoxia and necroptosis, with increased expression of 8
cell-specific genes and a small number of immune genes. While
this potentially relates insulin signalling and immune response in
insulinoma, it is beyond the scope of the present study.

Moreover, DCs, neutrophils and TLRs were also enriched in
the MLP-1 subtype. Tumor-associated DCs have been described
as dysfunctional, causing upregulation of immune checkpoints,
an increase in regulatory T cells and decreased overall survival in
various tumors.*' As both DC-targeted and TLR targeting treat-
ment strategies are in development,** this is another area which
warrants consideration in MLP-1 patients.

The enrichment of genes involved in the above immune-
related pathways and the reported induction of PD-L1 by M1
macrophages in other tumors™ provided a rationale to investi-
gate whether MLP-1 subtype patients are more likely to benefit
from checkpoint inhibitor therapies than other patients.

Recent clinical trials in patients with neuroendocrine tumour
(NET) have used PD-L1 positivity as an inclusion criterion for
immunotherapy,'!® as PD-L1 (CD274) expression in gastro-
oesophageal NETs was associated with tumour grade and
survival.’® *** In our study, PD-L1 was differentially expressed
across PanNET subtypes, with the MLP-1 subtype demon-
strating the highest expression, again suggesting that checkpoint
inhibitor therapy may be appealing in this subtype. That said,
PD-L1 alone has been shown to be an insufficient biomarker
of response to checkpoint blockade, highlighting the need for
more refined and reliable predictive biomarkers for personalised
immunotherapy treatments.*®

These observations led us to consider other putative predictive
biomarkers according to the immune profiles of our PanNET
subtypes, including PD-L2 and T-cell GEP. The latter is based on
18 genes coexpressed with interferon-y and has been reported
to predict response to PD-1 blockade in a number of different
solid tumors.’® * Again, the MLP-1 subtype showed enhanced
expression of these markers. We also evaluated the adverse
prognostic factor FOXP3 and did not find any change in T-reg-
ulatory cell marker FOXP3 by either immunofluorescence or
gene expression (figure SA and online supplemental figure 5D),
which corroborates with a published report that FOXP3 is low
expressed in PanNETs.*

Clinical trial data are still relatively limited regarding immuno-
therapy for PanNETs, but recent reports suggest only a fraction
of PDL-1-positive tumours may actually respond to immuno-
therapy.* While this can be partially overcome by additional
markers such as GEP or PDL-2,* other unknown factors may be
involved as predictors of response to immunotherapy. Therefore,
our MLP-1 subtype, while correlating with the aforementioned
described predictors, also included other characteristics, such as
a broad activation of immune related genes, higher tumour stage
and grade and an overall more aggressive phenotype. Hence, the
selection of patients bearing the MLP-1 subtype may be a prom-
ising way to increase the success rate.

Despite PanNET being a rare tumour type, we have analysed
207 cases. We acknowledge that our study used only resected
cases and note the importance of studying dynamic immune
changes in PanNETs. That said, our study poses the basis for
further prospective analysis of primary and metastatic disease
at different time points in patients undergoing immunotherapy.

CONCLUSION

We demonstrate that the MLP-1 subtype of patients with
PanNET has an enhanced immune phenotype, associated with
increased tumour size, hypoxia, necroptosis and DAMP/STING/
TLR pathway activation. There is a complex interplay between
tumour and immune cells in MLP-1 PanNETs. The data we
present here may serve as the springboard for further investi-
gation of this interplay. In the meantime, our data suggest that
immunotherapy (alone or in combination with other treatments)
in selected PanNET (MLP-1) patients may be clinically beneficial.
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