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showed clinical resistance to ponatinib.

However, 22 cases of compound muta-

tions without T315I patterns of variable

effectiveness was demonstrated across

the panel of TKIs, which suggests that

early detection of compound mutations

could be combined with sensitivity

studies to shape a therapeutic change in

TKIs and thus abort the emergence of

resistant clones.

Computer modeling suggested the

impact of compoundmutations on TKI ac-

tivity. The proliferation studies noted

above found that, for compound muta-

tions not containing T315I, ponatinib

anddasatinib had similar activities, except

with the Y253H/E55V compound muta-

tion, where dasatinib is considerably

more active. The binding sites of ponatinib

and dasatinib are known to be different;

can modeling explain the difference?

Indeed, it can; molecular dynamic simula-

tions showed that Y253H and E255V mu-

tations force a shift in the P loop of the

ABL kinase domain, obstructing the pona-

tinib binding site. Similar simulations sug-
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gested poor ponatinib activity in clinically

relevant disease evolution, such as thedif-

ference in the binding domains of a single

T315I and the resistant T315I/E255V

mutation. Thus, the authors elegantly fol-

lowed the interplay of structure, in vitro

and in vivo function.

Why is this study important? First, it is a

demonstration of how clinical material,

wet bench work, and computer modeling

can be melded to develop a clear under-

standing of clinically important biology.

Second, it provides a clear roadmap of

how future studies can be performed to

understand disease resistance. As ‘‘tar-

geted therapy’’ becomes an increasing

reality in cancer care, it will become

increasingly important to understand

and anticipate how Darwinian selection

will select for resistance. This manuscript

helps prepare us for that future.
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A better understanding of genetic interactions in cancer might help identify new therapeutic approaches that
exploit the concept of synthetic lethality. Ruppin and colleagues have developed a new computational
method, DAISY, that predicts such interactions and potentially facilitates the delineation and validation of
comprehensive genetic interaction networks.
Most of the major recent advances in the

development of targeted therapies for

cancer have originated from the identifica-

tion and exploitation of genetic depen-

dencies that operate specifically in tumor

cells. Many of these dependencies are

considered as oncogene addiction ef-

fects, where tumor cells become reliant

upon the activity of key driver genes

such as BCR-ABL and EGFR; pharma-
cological inhibition of these drivers has

therapeutic benefit. Other dependencies

include those that arise as a consequence

of the ‘‘cancer state,’’ also called nonon-

cogene addictions (Luo et al., 2009). How-

ever, inmany cases these gene addictions

are difficult to target directly with drugs.

Moreover, there aremany recessive driver

mutations in tumor genomes, the so-

called tumor suppressors, in which absent
or reduced gene function contributes to

tumorigenesis. Synthetic lethality (SL)

provides a potential approach to targeting

these latter two classes of alterations. The

term describes the relationship between

two genes whereby individual defects in

either gene are compatible with cell

viability, but the synthesis or combination

of gene defects results in cell death (Ash-

worth et al., 2011). Recently the
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Figure 1. The DAISY Approach to Predicting SL
DAISY integrates information from three data sources—copy number profiles from tumors and tumor cell lines, gene expression profiles, and tumor cell line
shRNA screens—to predict SL effects.
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exploitation of SL effects involving tumor

suppressor genes such as BRCA1 or

BRCA2 in cancer cells has led to the

development of new therapeutic ap-

proaches (Lord and Ashworth, 2012).

In yeast and other model organisms,

high-throughput reverse genetic screens

have enabled the systematic mapping of

SL networks on a genome-wide scale

(Dixon et al., 2009). In human cancer cell

lines, RNA interference (RNAi) and small

molecule screens have also been em-

ployed to identify SL effects of potential

therapeutic value (Sandmann and Bou-

tros, 2012). Although such screens have

proven useful, they have largely focused

on the identification of genetic interactions

with individual genes or drugs. More sys-

tematic approaches have recently been

developed (Hart and Moffat, 2013), but
these are not yet as robust as those in

more genetically tractable organisms. As

a complement and alternative to these

relatively elaborate experimental studies,

computational methods for predicting

SLs would be beneficial. In model sys-

tems, many predictive approaches have

been proposed, but these primarily focus

on extending experimentally derived SL

networks rather than de novo prediction

of interactions (Wong et al., 2004), limiting

their utility for cancer.

In a recent issue of Cell, Jerby-Arnon

et al. (2014) describe a new computational

approach termedDAISY (datamining syn-

thetic lethality identification pipeline) that

aims to facilitate the large-scale identifica-

tion of SLs in cancer. DAISY is elegantly

built upon three principles. The first,

termed ‘‘genomic survival of the fittest’’
Cancer Cell 26, S
(gSOF) makes the assumption that SL be-

tween two genes can be discovered by

identifying pairs of genes whose coinacti-

vation in tumorsoccursmuch less thanex-

pected by chance alone; the premise is

that cells with inactivation in both partners

of a SL pair have a survival disadvantage

and thus are rarely observed. Similar ap-

proaches based on ‘‘mutually-exclusive’’

mutations have previously been proposed

(Ciriello et al., 2012), but large-scale

benchmarking and evaluation of results

has been lacking. The second component

ofDAISYexploits publishedgenome-wide

short-hairpin RNA (shRNA) screens per-

formed inpanels of human tumor cell lines.

By combining these data with genomic

and transcriptomic profiles of each cell

line model, SL pairs were captured by

seeking shRNAs that specifically cause
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cell inhibition when a particular gene has

either reduced expression or reduced

copy number. Finally, a third approach ex-

ploits the observation that SL pairs

frequently engage in functionally related

processes and are therefore often coex-

pressed. Each of these three heuristics is

used independently to assign an interac-

tion score for each gene pair using a vari-

ety of expression, copy number, and

shRNA data sets. These scores are then

integrated to predict candidate SLs

(Figure 1). In addition to SL, Jerby-Arnon

et al. (2014) use the sameapproach topre-

dict what they term ‘‘synthetic dosage le-

thal’’ (SDL) interactions, where overex-

pression of one gene (for example, driven

by copy number amplification) renders a

second gene essential.

To validate their approach, they first

demonstrated that DAISY is capable of

predicting dependencies previously iden-

tified by RNAi experiments in human cell

lines. They evaluated each feature (coex-

pression, gSOF, and shRNA results) indi-

vidually and found that a combination

of the three proves to be the strongest pre-

dictor and that data from shRNA screens

in large cell line collections offer little

predictive power on their own. To further

demonstrate the utility of DAISY, they pre-

dicted novel SLs for the tumor suppressor

VHL and validated a number of these

using either siRNAs or drugs. Having

shown DAISY capable of predicting

known and novel SLs, they applied their

algorithm on a genome-wide scale to

predict high-confidence SL and SDL net-

works encompassing �3,000 SL and

�3,600 SDL interactions. Although these

data have considerable utility, a weighted

network containing interactions that pass

some but not all criteria might also be

beneficial to those planning to experimen-

tally test interactions associated with spe-

cific genes.

Subsequent analyses in the paper high-

light the utility of the SL and SDL high-
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confidence networks in predicting both

patient and cell line phenotypes. The SL

network is applied to predict the sensi-

tivity of cell lines to RNAi of specific

genes, while the SDL network is used for

predicting sensitivity to specific drugs. A

drug targeting a specific gene is predicted

to impact growth if its SDL partner is over-

expressed in the cell line being measured.

This effect is shown to be cumulative—

the greater the number of SDL partners

of a gene are overexpressed, the more

likely that a drug targeting a gene is to

impact cell growth, suggesting that the

predicted interactions may be synthetic

sick (causing a growth defect) rather

than SL (causing cell death).

In an indirect validation of the predicted

networks, the authors suggest that tumors

with low expression of two SL partners

should have reduced fitness, potentially

indicating an improved outcome for pa-

tients. Using a large cohort of breast can-

cer patients, the authors demonstrate that

this might indeed be the case; patients

with tumors underexpressing two SL part-

ners have a better overall survival. This ef-

fect is also cumulative; the more SL pairs

a tumor underexpresses, the better the

outcome.

In the present study, the authors have

focused primarily on SLs and SDLs as-

sociated with copy number alterations

(loss and amplification respectively).

This approach enables uniform applica-

tion of the DAISY algorithm to all genes

in a variety of copy-number data sets.

However, many tumor suppressors and

the majority of oncogenes are subject to

more subtle missense mutations (Vogel-

stein et al., 2013), and information on

these are largely missing from the pre-

dicted SL networks. In principle, there is

no reason that the DAISY approach

cannot be applied in a more fine-grained

approach to identify synthetic depen-

dencies associated with specific onco-

genic mutations.
4 Elsevier Inc.
Perhaps the most promising aspect

of the DAISY approach is that it relies

primarily on data from sequencing and

gene expression studies. As the number

of patient and cell line samples with

such data available is increasing expo-

nentially, we can expect significant im-

provements in the accuracy and coverage

of the predicted SL networks. This may

facilitate the identification of SL inter-

action partners for rare driver muta-

tions. For more commonly mutated genes

(e.g., KRAS, PTEN), it may become

possible to identify higher-order depen-

dencies (e.g., gene X is essential if KRAS

and APC are both mutated) of therapeutic

relevance.
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