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Abstract 
Dose escalated radiotherapy improves outcomes for men with prostate cancer. A plateau for benefit 

from dose escalation using EBRT may not have been reached for some patients with higher risk 

disease. The use of increasingly conformal techniques, such as step and shoot IMRT or more recently 

VMAT, has allowed treatment intensification to be achieved while minimizing associated increases in 

toxicity to surrounding normal structures.  To support further safe dose escalation, the uncertainties 

in the treatment target position will need be minimised using optimal planning and image-guided 

radiotherapy (IGRT). In particular the increasing usage of profoundly hypo-fractionated stereotactic 

therapy is predicated on the ability to confidently direct treatment precisely to the intended target 

for the duration of each treatment.  

This article reviews published studies on the influences of varies types of motion on daily prostate 

position and how these may be mitigated to improve IGRT in future. In particular the role that MRI 

has played in the generation of data is discussed and the potential role of the MR-linac in next-

generation IGRT is discussed. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 



MRI-guided prostate adaptive radiotherapy – a review 
 

A consensus statement from the MR-linac consortium. 

Introduction 
Randomised trials have demonstrated that dose escalated radiotherapy improves outcomes for men 

with prostate cancer [1]. The use of increasingly conformal techniques, such as step and shoot IMRT 

or more recently VMAT, has allowed this to be achieved while minimizing associated increases in 

toxicity to surrounding normal structures [2]. The accuracy of any radiotherapy delivery is however 

limited by multiple factors: organ delineation, set up error and inter-/intra-fraction organ motion, 

rotation and deformation [3]. A plateau for benefit from dose escalation using EBRT may not have 

been reached for some higher risk prostate cancers [4]. To allow further safe dose escalation, the 

uncertainties in the treatment target must be mitigated using optimal planning and image-guided 

radiotherapy (IGRT). In particular the increasing usage of profoundly hypo-fractionated stereotactic 

therapy is predicated on the ability to confidently direct treatment precisely to the intended target 

for the duration of each treatment [5].  

Much work has been carried out over the past 20 years quantifying the degree of prostate motion, 

rotation and deformation that occurs during a course of radiotherapy, allowing rationalization of 

treatment margins based on expansion “recipes” [6]. The use of increasingly sophisticated real time 

imaging has enabled monitoring of the prostate and OAR’s through treatment delivery and has 

provided extensive data on their behaviour.  MRI, with its unrivalled soft tissue delineation, has 

contributed to this data but has not, as yet, emerged as a routine part of daily radiotherapy delivery. 

The long anticipated arrival of a fully integrated MR-Linac may change this [7]. 

The ideal scenario is to guide prostate radiotherapy with MR imaging, identifying the prostate in real 

time while delivering radiation. Two systems (ViewRay and the Elekta MR Linac) hope to 

demonstrate improvement in patient outcomes with this technique.  

This article reviews data on target uncertainties when treating prostate cancer and in particular the 

work performed using MRI. Available techniques to reduce this uncertainty, and the potential 

benefits an MR-Linac may offer for IGRT are discussed. These data underpin the clinical work which 

will be undertaken on the MR-Linac to establish its utility in treating localized prostate cancer.  

Search strategy and selection criteria 
References for this review were identified through PubMed with the search terms “prostate”, 

“adaptive”, “radiation”, “radiotherapy”, “motion”, “MRI”, “MR”.  The literature review was 

performed between June and September 2015. References within identified papers were reviewed 

for relevance. A final reference list was generated on the basis of originality and relevance to the 

scope of this Review. 

 



Non-MR studies of inter- and intra-fractional prostate motion 
The prostate experiences inter- and intra-fractional motion during a course of radiotherapy, as 

reported from an extensive body of work carried out over the past twenty years (figure 1).  A 

comprehensive review of early studies indicates that the inter-fraction motion appears to have a 

standard deviation (SD) of around 1 – 4 mm, with one study finding motion with SD as high as 7.3 

mm [8].  

 

 

With increasing use of IMRT and consequently increased treatment duration, the significance of 

intra-fractional motion has grown, with appreciable variation being demonstrated [9-14]. A minority 

of patients  experience  more pronounced  changes, as illustrated in a series of 427 patients assessed 

using fiducial markers (FM) and portal imaging, with motion > 3mm in 28% of treatment fractions 

over a ten minute period [15].  

Multiple modalities been used to demonstrate that two general types of intra-fraction  motion are 

seen: non-resolving slow drift, predominantly in the posterior direction due to rectal changes, and 

sudden transient motion, largely in the superior and anterior direction, likely a result of peristaltic 

visceral motion [9, 16-18]. Constant assessment also identifies greater intra-fraction motion; one 

study using Calypso 4-D tracking of 7738 records in 200 patients over 12 minutes showed the 

percentage of fractions with prostate shift >2 ,3, 5, and 7 mm for > 30 seconds was 56.8%, 27.2%, 

4.6% and 0.7% [19]. For the worst 10 patients, 5% of the total, these percentages increased to 

91.3%, 72.4%, 36.3% and 6%.  

Cohorts of patients assessed using multiple continuous imaging techniques have also found 

significant proportions experiencing movements >2-5mm, demonstrating the consistency of this 

finding within differing imaging modalities [20-23]. Intra-fraction motion has generally been found to 

be patient specific and predominantly random, although this has been challenged [24-26]. The 

observation that initial systematic intra-fraction changes can be predictive for subsequent 

movement may provide some guidance to likely behaviour during therapy [27-29].  

Numerous studies have quantified the systematic and random components of inter- and intra-

fraction motion to allow application of margin expansion formulas (Table 1 and 2).  



Table 1: Inter-fraction systematic and random motion 

Author 
Pt no. 

(fractions 
analysed) 

Imaging 

Inter-fraction motion SD (mm) 

Registration Preparation Systematic motion Random motion 

AP LR SI AP LR SI 

Zelefsky 1999[30] 50 (200) CT 2.4 0.6 2.7 1.6 0.5 2.0 Bone 
Prone, fleet enema at planning, empty bladder, 

immobilisation device 

Stroom1999 [31] 15 (60) CT 2.5 0.5 2.7 2.8 0.6 2.5 Bone 
Foot and knee support Laxative prior to planning, 1 litre 

fluid  1 hour prior to scans 
Hoogeman 2005 [32] 19 (209) CT 2.7 0.3 2.1 2.4 0.4 2.1 Bone Empty rectum, 250ml fluid 1 hour prior 
Schallenkamp 2005 [13] 20 (798) MV EPID + FM 2.5 2.0 1.9 3.5 1.6 2.0 Bone Vacuum cradle 
De Boer 2005 [33] 15 (255) MV EPID + FM 2.1 0.8 2.0 1.9 0.7 1.2 Bone Laxative prior to sim, full bladder 
Litzenberg 2006 [34] 11 (-) EM 1.5 2.2 3.0 5.2 3.4 3.3 Skin markers Foot and knee support 
Van den Heuvel  2006 
[35] 

10 (270) MV EPID + FM 3.6 3.4 3.9 5.7 5.7 2.7 Skin markers Alpha cradle 

O’Daniel 2006 [36] 10 (243) CT 3.9 1.6 3.4 3.6 2.5 2.0 Skin markers Empty rectum, full bladder at simulation 
Soete 2007 [37] 12 (120) kV EPID + FM 4.3 1.3 4.2 2.8 1.6 2.3 Bone Head and knee support 

Van der Heide 2007 [38] 453 (15855) MV EPID + FM 4.8 2.2 2.9 3.5 2.0 2.3 Skin markers 
Knee, cushion. Bladder emptied 15 minutes prior to  

radiotherapy 

McNair 2008 [39] 30 (408) MV EPID + FM 2.5 1.3 1.9 3.1 2.2 2.2 Bone 
Ankle/knee support, partially full bladder, empty 

rectum no prep 
Beltran 2008 [40] 40 (1532) MV EPID + FM 3.5 0.9 3.0 2.8 1.2 2.0 Bone Not specified 

Fiorino 2008 [41] 21 (522) CBCT 0.3 0.2 0.2 1.0 0.6 0.7 Bone 
Leg immobilisation, rectal enema  + gas catheter, 250ml 

fluid 30 minutes prior 

Byland 2008 [42] 24 (984) CBCT 2.0 0.7 1.0 2.9 2.0 2.1 
Mutual 

information 
algorithm 

No bladder/bowel prep 

Frank 2008 [43] 15 (369) CT 4.1 0.9 2.9 1.3 0.5 0.6 Bone Vac-lok bag, enema at sim, 590ml fluid 30 min prior 
Mutanga 2008 [44] 10 (-) MV/kV EPID 2.9 1.7 4.1 3.2 1.6 2.7 Skin markers Not specified 
Nijkamp 2008 [45] 20 (116) CBCT 1.8 0.5 1.7 1.9 0.5 1.5 Bone Empty rectum, 250ml fluid 1 hour prior, dietary advice 
Tanyi 2010 [17] 14 (546) EM 3.4 0.5 2.9 2.5 0.4 2.3 Bone Not specified 
Su 2011 [46] 17 (476) EM 4.7 2.3 3.4 3.5 3.7 2.7 Skin markers Not specified 

Mayyas 2013 [47] 27 (1100) 
CBCT 3.0 2.4 2.7 3.2 2.5 2.2 

Skin markers Empty rectum, partially full bladder BAT US 3.3 2.8 3.5 4.1 3.6 3.8 
kV EPID 3.4 2.6 3.1 2.9 2.4 2.0 

Oh 2014 [48] 17 (546) CBCT 1.1 1.6 1.9 1.8 2.8 2.4 Skin markers Knee support, ERB, full bladder 

Oehler 2014 [49] 20 (172) 
CBCT 

kV EPID 
1.9 
1.8 

0.6 
0.8 

1.7 
1.4 

1.9 
2.0 

0.9 
0.9 

1.7 
2.3 

Bone 
Leg immobilisation, empty rectum with ERB, empty 

bladder 

CBCT, Cone Beam CT; FM, Fiducial Marker; EM, Electromagnetic transponder 

Table 2: Intra-fraction systematic and random motion 

 

Author 
Pt no. 

(fractions 
analysed) 

Imaging 

Intra-fraction motion SD (mm) 

Treatment time Preparation Systematic  motion Random motion 

AP LR SI AP LR SI 
Beltran 2008 [40] 40 (1532) MV EPID + FM 0.9 0.6 1.0 1.8 1.3 1.2 2 min Not specified 

Li 2013 [50] 105 (775) EM 0.5 0.2 0.4 1.1 0.5 1.0 3 min Not specified 

Aubrey 2004 [10] 18 (282) MV EPID + FM 0.7 0.2 0.4 1.4 0.8 1.0 <5 min Full bladder, empty rectum 
Li 2013 [50] 105 (775) EM 0.6 0.3 0.5 1.2 0.5 1.1 5 min Not specified 
Choi 2015 [51] 12 (336) kV EPID + FM 0.3 0.2 0.4 0.6 0.3 0.5 5 min Ankle immobilisation, enema 

Oehler 2014 [49] 20 (52) CBCT + FM 1.4 0.9 1.4 1.6 1.0 1.4 3-6 min 
Leg immobilisation, empty rectum with ERB, empty 

bladder 
Kotte 2007 (15) 427 (11426) MV EPID + FM 0.6 0.3 0.5 0.9 0.4 0.9 5-7 min Knee support, empty rectum 
Kron 2010 [26] 184 (5778) kV EPID + FM 0.8 0.5 0.7 1.2 0.8 1.2 < 6 min Not specified 
Soete 2007 [37] 12 (120) MV EPID + FM 0.8 1.3 1.1 1.6 1.4 2.4 7.5 min Head and knee support 
Kron 2010 [26] 184 (5778) kV EPID + FM 0.9 0.6 0.8 1.2 0.8 1.1 6-9 min Not specified 
Su 2011[46] 17 (467) EM 0.6 0.3 0.5 1.9 0.7 1.4 8 min Not specified 
Litzenberg 2006 [34] 11 (-) EM 2.2 0.7 2.6 0.8 0.2 1.2 8 min Ankle/knee support, no rectal/bladder prep 
Tanyi 2010 [17] 14 (1638) EM 0.5 0.3 0.7 1.4 0.8 1.3 8-16 min Not specified 
Kron 2010[26] 184 (5778) kV EPID + FM 1.3 1.1 1.3 1.3 0.7 1.2 > 9 min Not specified 

Mutanga 2012 [27] 108 (2894) MV EPID + FM 1.1 - 1.0 1.2 - 1.1 11 min 
Headrest/knee support, void bladder 30 minutes 

prior, laxative at planning 
Li 2009 [52] 105 (775) EM 0.8 0.3 0.8 1.6 0.7 1.4 10-20 min Not specified 

Badakhshi 2013 [53] 13 (427) kV EPID + FM 0.5 2.0 2.1 1.4 2.2 2.6 14.2 min 
Empty rectum + full bladder, head and knee 

support, foot restraint 

Mayyas2013  [47] 19 (-) EM 1.3 0.6 1.5 2.6 1.4 2.4 20-30 min Empty rectum, partially full bladder 

Quon 2012 [28] 53 (265) MV EPID + FM 1.4 0.2 1.2 2.4 1.3 2.0 Time not specified Vac-lok bag, full bladder, empty rectum 

CBCT, Cone Beam CT; EM, Electromagnetic transponder; EPID, Electronic portal imaging device; FM, Fiducial marker 

 

 

 

 

 



MR studies of inter and intra-fraction motion 
The superb soft-tissue contrast and continuous imaging capability of MRI have allowed for confident 

assessment of inter- and intra- fraction prostate and OAR motion [54-65]. 

The first work with MRI to quantify prostatic motion used axial cine-MRI on 55 patients to evaluate 

intra-fraction motion of the rectum and prostate centre of mass every 10 seconds over a 6-7 minute 

period, representative of a radiotherapy treatment delivery time. This identified a median anterior 

shift of 4.2mm, which in 16% of patients was > 5 mm [54]. A subsequent study using sagittal and 

axial cine-MR over 9 minutes, sampling at 20 second intervals, for 42 patients identified 

displacement with SD 2.9mm, 1.5mm and 3.4mm in the AP, LR and SI plane [55]. The prostate was 

identified as tending to return to its original position after large displacements of up to 12 mm, 

motion which would be missed with pre and post treatment imaging alone [57]. This motion 

appeared to increase through the course of treatment, perhaps as a consequence of radiation 

induced toxicity 

More recently intra-fraction prostate motion has been assessed by imaging 47 patients with prostate 

cancer after instructions to remove rectal gas [63]. Eleven points of interest were determined on 

axial and sagittal cine-MRI slices and monitored over a total of ten minutes.  Displacement was more 

marked at the base of prostate than apex, likely a result of distal tethering, with mean of means SI 

and AP displacements of 0.41 mm and 0.86 mm for the former and 0.26 mm and 0.32 mm for the 

latter. 

Continuous MRI has been able to demonstrate that intra-fraction motion increases with treatment 

time. A study using an open bore MR-scanner for a total of 68 sagittal cine-MRI sequences 

demonstrated an increasing displacement in the AP and SI planes during treatment with SD of 0.57 

mm and 0.41 mm in the first two minutes increasing to 1.44 mm and 0.91 mm in minutes two to 

four [61]. This increase in motion appears to occur predominantly in the first few minutes of 

treatment with another study using cine-MRI imaging over 12-15 minutes finding motion at 3, 5, 10 

and 15 minutes with an SD  of 1mm, 1.3 mm, 2.1 mm and 1.9 mm in the AP plane and 0.7 mm, 1.8 

mm, 1.5 mm and 1.6 mm in the SI plane [65].   

The increasing intra-fractional motion seen initially over time shows the potential benefit of 

shortened treatments associated with VMAT compared to that with IMRT.  Other studies using non-

MR based imaging have also shown this increase and that it is the strongest predictor of observed 

displacements [18, 23, 26, 66-70]. These increasing movements can contribute 1-2mm to the 

required PTV margin [68, 71]. Shortened treatment times, such as those achievable by VMAT, have 

been shown to achieve a marked reduction in the SD of intra-fraction motion [19, 50, 66].  

Stereotactic radiotherapy is challenging both due to the potential increase in treatment time 

compared to conventional VMAT and the implications of a geographical miss for even a single 

fraction. The necessity to avoid this obliges caution in  margin reduction although it has been shown 

using Cyberknife that repeat imaging every 60 -180 seconds may be sufficient to allow correction for 

the increased prostate motion of longer treatments [72]. Even with regular repeat imaging 6-

dimensional correction for rotation and translation is required if margins as small as 3mm are to be 

achievable. 



Deformation and rotation 
Many studies of prostatic motion have assumed rigid motion of the prostate. Analyses of prostate 

changes have shown this to be a simplification although the degree of deformation identified has 

varied substantially. For example a study comparing the contoured prostate to an average CTV on 8-

12 CT images for 19 patients matched for rotation and translation found “real” shape variation, 

correcting for inter-observer variation, of 1.6 mm at the SV tip and  0.9 mm  at the posterior prostate  

[73]. Another group used three repeat CT scans with prostate and SV contoured and matched to a 

planning CT and non-rigidly registered to represent deformation [74]. Deformation of the prostate 

was small (≤ 1 mm) while the deformation of SV was up to 2.6 mm SD posteriorly. More marked 

variation has been suggested; a study matching 200 cone beam CT (CBCT) images for ten patients to 

planning CT images using B-spline-based deformable registration identified a much larger 

deformation of the prostate, most marked in the anterior direction with a maximum of 10 mm, 5 

mm and 3 mm in 1%, 17% and 76% of cases [75]. Again SV deformation was larger, with changes in 

the posterior direction of >5 mm and >3 mm in 7.5% and 44.9% of cases. For this analysis three 

clinicians delineated contours which were averaged in an attempt to reduce error however the SD of 

the mean centre of mass of the contours was up to 2.2 mm. It may therefore be that the inferior 

CBCT image quality, limiting contouring accuracy, contributed to the larger changes identified. 

MRI, which may mitigate delineation errors associated with CT imaging, has also been used to assess 

deformation. A study of 10 patients using sagittal and axial cine MRI of the prostate to assess 

changes in the volume of contoured prostate over six minutes found similar results to those 

obtained using CT imaging with a deformation with a SD  1.7 mm  in the AP plane shown [76]. 

Interestingly it has been suggested through tracking points of movement in sagittal MRI imaging that 

deformation is only seen with a full rectum, and is most marked at the level of mid-prostate [57].  

The cause of deformation is due both to mass effect from surrounding structures and as a 

consequence of treatment itself with the prostate being shown to change in volume during 

radiotherapy. For example 25 patients underwent MR imaging pre-radiation and at one time point 

during therapy to assess prostate motion and deformation through treatment [58]. Scans were 

compared using finite element modelling aligned on the centroid of three FM. An increase in 

prostate volume by up to 34% was seen in those scanned early in treatment whilst a decrease of up 

to 24% was seen later in the course. The degree of shrinkage seen over a course of radiotherapy is 

affected by the use of neo-adjuvant hormone therapy and pre-treatment volume but may be 

generally of the order of 10-15% [77-80]. This has implications for further development of MR-

guided radiotherapy, which can account for the intra-fraction motion described above, but would 

need further technical developments to adapt for deformation.  

The effect of systematic and random inter-fraction rotations on prostate motion has been assessed 

by various groups using CT, kV and MVCT or EM imaging. These rotations predominate  in the 

sagittal plane and appear to correlate with rectal filling; this moves the prostate in the AP direction, 

causing rotation due to  apex tethering [81].  The differing bowel preparations employed by various 

groups may affect rectal volumes and contribute to the variation in degree of rotation identified.  

Intra-fractional rotation has been less well characterised and although appearing smaller, it remains 

relevant (table 3). A study using continuous kV imaging with FM during the treatment of 10 patients 

with prostate cancer found for 35% of treatment time the prostate rotated more than 5◦ around the 



lateral axis [82]. These intra-fraction rotations may be clinically significant. For example even with 

daily translations the intra-fraction rotation during RT can cause significant under-dosing, and 

margins of 3mm may be required to account for rotations of up to 5◦ [72, 83]. The significance of 

prostatic rotation is only likely to increase as treatment margins further reduce. 

Table 3: Studies of intra- and inter-fraction rotation 

Author 
Pt no. 

( Fractions 
analysed) 

Imaging 

Inter-fraction rotation SD (degrees) 
around each axis Registration Preparation 

Systematic Random 

AP LR SI AP LR SI   

Stroom 1999 [31] 15 (60) CT 0.8 3.6 1.7 0.9 3.3 1.5 Chamfer match  
Laxative prior to simulation. 500ml 1hr prior to 

imaging. Knee, foot, arm support 
Dehnad 2003 [84] 10 (241) CT + MV EPID + FM 2.0 4.7 2.7 1.7 3.6 1.9 Prostate COM Knee support 
Aubrey 2004 [10] 7 (348) MV EPID  + FM 2.2 5.6 2.4 2.0 6.1 2.8 Prostate COM Full bladder, empty rectum 
De Boer 2005[33]  15 (255) MV EPID + FM 1.5 4.9 1.9 1.6 4.7 1.0 Bone Laxative prior to simulation, full bladder 
Hoogeman 2005 [32] 19 (209) CT 1.3 5.1 2.2 1.6 3.6 2.0 Chamfer match empty rectum 

Van der Heide 2007 [38] 234 (8190) MV EPID  + FM 2.8 2.8 2.8 1.7 3.1 2.0 Prostate COM Empty bladder, knee support 
Mutanga 2007 [44]  10 (3382)  kV/MV EPID + FM 1.7 4.9 1.3 1.3 4.2 1.6 Prostate COM Not specified 

Nijkamp 2008 [45] 20 (128) Weekly CBCT 0.9 2.9 1.0 1.0 3.0 1.1 Bone 
Dietary advice, daily mild laxative, empty rectum,  
250ml fluid1 hr prior to imaging 

Mutanga 2011 [85] 
(from van der 
Wielen[74]) 

21 (84) CT + FM 2.0 4.3 2.2 1.2 4.5 1.8 Prostate COM Laxative prior to simulation 

Graf 2012 [86] 38 (969) kV EPID + FM 1.6 4.1 2.3 2.0 3.1 1.8 Bone 
Enema prior to simulation, empty rectum, bladder 

filling, head/knee support foot immobilization 
Smeenk 2012 [87] 15 (576) EM 2.9 10.2 7.0 1.3 3.9 1.5 EM Knee support, foot immobilization 

Author 
Pt no. 

(Fractions 
analysed) 

Imaging 

Intra-fraction rotation SD (degrees) 
around each axis 

Treatment time Preparation 
Systematic Random 

AP LR SI AP LR SI 
Aubry 2004 [10] 7 (44) MV EPID + FM 0.3 1.0 0.8 0.6 1.8 1.1 <5 minutes Full bladder, empty rectum 

Badakhshi 2013 [53] 13 (427) kV EPID + FM 2.3 2.2 2.4 2.5 5.1 3.5 14.2 minutes 
Full bladder, enema., head and knee support, foot 

restraint 

CBCT, Cone Beam CT; CMO, Centre of Mass; EPID, Electronic portal imaging device; FM, Fiducial Marker; EM, Electromagnetic transponder 

 

Relative motion of prostate and seminal vesicles 
In high risk disease the likelihood of occult involvement of the SV is increased [88]. It is therefore 

generally necessary to include this area in the intended CTV for radiotherapy planning. The base of 

the SV is the region most likely to harbour occult disease, with one pathological series finding 

disease 2cm beyond this in only 1% of all patients [89]. This area must therefore be prioritised to 

receive the full prescribed dose. CT imaging has demonstrated that the SV tips undergo greater 

inter-fraction movement than the base and consequently larger expansion margins are required if it 

is clinically necessary to treat its entirety [90, 91] . 

It has been shown that the SV and prostate can behave independently making appropriate 

expansions to PTV challenging [49, 73, 92]. The SV volume may vary by as much as 100% during a 

course of radiotherapy and experience significant independent deformation [78, 92]. Inter-fraction 

SV motion appears more significant than that of the prostate gland with a SD in the order of 2.9 – 

7.3 mm, 1.9 - 3.1 mm and 2.1 - 5.5 mm  in the AP, LR and SI planes [30, 43, 79, 91, 93, 94]. Despite 

direct tumour invasion reducing SV mobility, this motion may remain considerable [95].  

Allowing for intra-fractional motion is also problematic. Overall intra-fractional displacement of the 

SV appears greater than for the prostate and increases over time. In one series using cine-MRI it was 

found that for 95 % of the images SV centroid  movement at 3, 5, 10 and 15 minutes was 4.7 mm, 

5.8 mm, 6.5 mm and 7.2 mm respectively in the SI plane and 4.0 mm, 4.5 mm, 6.5 mm and 7.0 mm 

in the AP plane [65]. The correlation between prostate and SV intra-fraction movement was shown 

to vary greatly with no relationship between the two for most patients 



The lack of correlation between prostate and SV inter- and intra-fractional motion has implications 

for the use of prostate tracking devices, such as calypso transponders, when simultaneously treating 

the SV. Caution must be employed when considering reducing treatment margins on the basis of an 

assumed confidence about exact CTV location. 

Contributing factors to prostate motion 

Rectal and bladder volumes 

 Rectal distension is a major contributor to, and correlates with, prostate motion (figure 2).  This 

likely relationship was identified in some of the earliest prostate motion analyses [96, 97] and 

subsequent studies have confirmed this association particularly in relation to AP translation and 

rotation around the prostate apex [54, 55, 57, 98-100].  

This relationship has also been demonstrated with MRI. A small study of seven patients measured 

the prostate midpoint relative to bony anatomy on pre and post treatment MRI and found variation 

in rectal filling that correlated strongly with anterior displacement and a lesser correlation between 

bladder filling and superior motion [56]. A larger study of 42 patients used cine-MRI scans every nine 

seconds for nine minutes at baseline without any bowel preparation, before CT planning with bowel 

preparation and at a random point during RT with bowel preparation [58]. This demonstrated rectal 

gas and stool to be responsible for 74% of identified > 3mm prostate motion. Despite this voiding 

prior to imaging and bowel preparation did not significantly reduce intra-fraction motion. 

 

 

Rectal diameter may have a threshold above which its effect on prostate motion becomes more 

significant. It has been suggested that maximum rectal diameters above 3.5 - 4.5 cm or mean cross 

sectional areas ≥ 9.5 cm2 at planning imaging are predictive of significant variation in rectal size and 

prostate position during therapy[101-103].  

The increased motion associated with initial large rectal volumes may also negatively influence 

treatment outcome. In one series of 127 patients those with a mean rectal cross sectional area 

greater than the group average of 11.2cm2 at the time of planning experienced greater biochemical 

failure rates (HR 3.89) and more toxicity from treatment [104]. Another study examined outcomes 

for 549 patients, stratified by anorectal volumes ≥90cm3 at time of planning CT, and found that in 



patients with a risk of SV involvement >25%  those with a larger rectal volume had a 15% reduction 

in freedom from failure at five years (p=0.01) [105].   

Various approaches such as diet modification, bowel regimens (enemas, laxatives, etc.) and 

immobilizing endorectal balloons have been used in an attempt to reduce rectal variation. The 

evidence for efficacy of these techniques is mixed and a recent systematic review concluded that it 

was impossible to recommend one particular interventional strategy with further prospective 

studies required [106]. The use of effective daily image guidance may mitigate any effects of initial 

rectal distension.  

Although the potential effect of rectal volume on prostate motion appears clear, the effects of 

changes in bladder volume appear at most to be minimal. Various studies have provided some 

limited evidence suggesting a weak relationship between the two [30, 56, 100, 107] but other groups 

have failed to find any association [108-111].  It would therefore seem likely that simple bladder 

filling protocols are sufficient to minimise any bladder volume effects. However, for prone patients 

or patients with restricted abdominal movement, e.g. due to MR coils, bladder filling may affect 

prostate motion and such setups should be avoided. 

Target delineation 

Inter- and intra- operator variation in target delineation, particularly at the SV and apex, can be 

significant [49, 112, 113]. This is in part due to poor soft tissue definition on CT imaging making 

identification of the boundaries of the prostate challenging. It is known that CT delineated prostates 

are routinely larger than the true anatomical site. One study comparing the CT delineation by six 

radiation oncologists with photographic anatomical images found that the contoured prostate was 

on average 30% larger that the true gland but only included 84% of its volume, such that posterior 

portions were always missed and anterior normal tissue always included [114]. MRI provides better 

distinction between adjacent soft tissue structures and has been shown to be superior at identifying 

the prostate apex, SV and posterior border (figure 3). Multiple studies have demonstrated a 

reduction in volume of contoured prostate, of between 30-35% in the three largest series, when MR 

imaging is used to provide addition information for planning [115-117]. These reductions are 

primarily due to reduced variation at the superior and inferior extent of the prostate and translate 

into reductions in delivered dose to the rectum [117-120].  



 

This improved soft tissue visualisation on MRI has also been shown to reduce intra- and inter-

observer variation in prostate contouring (figure 4) [115, 121]. Using MRI in combination with an 

education program it may be possible to reduce this inter-observer variation further [122]. A final 

benefit from use of MRI for prostate delineation comes from the reduced metal artefact degradation 

from prosthetic hips which may significantly affect CT imaging and subsequent contour consistency 

[123]. Good correspondence with MR imaging and prostatectomy specimens has been shown with a 

correlation coefficient of up to 0.86 [124, 125].  

 

Therefore it appears MR-based contouring of the prostate can be done more consistently and with 

higher fidelity than CT, leading to reduced treatment volumes and radiation to surrounding 

structures. 

Recently work has focused on the use of multi-parametric (MP) MR to identify areas of high grade 

tumour within the prostate gland [126]. The use of modelling for voxelwise prediction of disease 

presence on MR imaging has been shown to have promise [127]. Confident identification provides 

the potential to focus dose intensification to this region, which may be the most likely site of 

ultimate disease recurrence [128]. MPMR guided targeted dose escalation is the subject of the 

ongoing phase III FLAME study and results are awaited with interest [129]. It has been shown that 

the dominant lesion within the prostate can be reliably identified on MP-MR but as yet data on how 

this region may be affected by prostatic deformation during therapy is scarce and requires future 

work [130]. In a study using collimator adjustments to account for prostate rotations, patients with 



and without focal boost were equally sensitive to rotations, indicating a limited effect of prostate 

rotations on boost dose [131]. 

 

Adaptive radiotherapy for inter-fraction motion 
The current standard practice to manage inter-fraction variations is to use IGRT by repositioning the 

patient based on the rigid-body registration of the planning image and the image of the day acquired 

just before treatment, followed by delivery of the original (unchanged) plan. IGRT addresses the 

translational motions, including set-up errors, but cannot completely account for the organ 

deformation, rotation, and independent motion between different organs. The ideal method to fully 

account for the inter-fractional variations is to adapt the treatment plan based on the anatomy of 

the day. Such adaptive planning process may be performed in an online or offline manner [132, 133]. 

The offline adaptive process, i.e. using the information from previous treatments to provide 

feedback for future deliveries, has been used to correct systematic, predictable variations [45, 134, 

135]. 

Online adaptive radiotherapy (ART), on the other hand, is capable of addressing both systematic and 

random variations and is the most effective strategy for precisely irradiating concurrent targets that 

move independently. Online planning must be fast enough to be completed within a few minutes 

while the patient is lying on the table waiting for treatment. Although such fast planning is generally 

challenging using conventional planning technologies, adaptive re-planning does not need to start 

completely from scratch. For example, it can start with an initial plan fully optimized from the 

planning images for the same patient and adapt for the anatomy of the day (‘warm start’ 

optimization). Technologies to facilitate this, such as the quality of in-room imaging, image 

registration and segmentation, plan optimization algorithm and computing hardware, are advancing 

significantly and rapidly. For example, integration of diagnostic-quality MRI in the treatment room, 

graphic-processing unit (GPU) accelerated auto-segmentation and dose calculation, rapid plan 

modification algorithms, and plan adaptation based on previous knowledge or a previously-created 

plan library are among the technology advances that can speed up adaptive planning significantly. In 

particular, among a number of online planning algorithms [136-139], an online adaptive planning 

scheme [138] has been developed that features two distinct steps: a) segment aperture morphing 

(SAM), and b) segment weight optimization (SWO), and has been used for prostate cancer [140]. It 

has been demonstrated that the online SAM+SWO scheme can adequately account for all inter-

fraction variations and can be completed within 10 minutes for prostate RT [140]. Alternative 

techniques for ART of prostate cancer are reported [141-144] and reviewed previously [145, 146]. 

With online ART, a CTV-PTV margin can reach as low as 3 mm, depending mainly on intra-fraction 

variations. Such a small margin would be highly desirable to reduce treatment-related toxicities 

and/or to allow dose escalation. Online ART is particularly important for hypo-fractionated RT or 

SBRT where the penalty of a geographical miss and/or over dosing of normal tissue for a single 

fraction is significant. However, with such small margins, target definition accuracy becomes much 

more critical to avoid the risk of compromising clinical outcome [147] 



MRI-guided adaptive radiotherapy for inter- and intra-fractional motions 
The high soft tissue contrast makes MRI an ideal imaging modality for online ART. MRI-guided RT 

delivery systems that integrate MR scanners with radiation delivery machines are being introduced 

into the clinic [148]. For example, ViewRay system (Oakwood Village, OH) combines a 0.35 T MRI 

scanner with three 60Co sources with multi-leaf collimators (MLC). Integration of a diagnostic MRI 

scanner with a Linac (MR-Linac) is also under development. The MR-Linac proposed by Lagendijk et 

al at the University Medical Center Utrecht [149] that integrates a 1.5 T MRI scanner with a 6 MV 

Linac is being developed for commercialization [7]. With CT based IGRT, image quality adversely 

affects the CTV-to-PTV margins required for targeting and ART, mainly due to the residual 

uncertainties from the soft-tissue contrast for the image modality [150].  It is anticipated that the 

residual uncertainty with diagnostic quality MRI will be drastically smaller than those with CT or 

CBCT, allowing a smaller CTV-to-PTV margin. 

The design of the MR-Linac system  comprises a 6 MV Linac (Elekta Inc) mounted on a ring around a 

modified 1.5 T MRI scanner (Achieva, Philips Healthcare, Best, The Netherlands) and an online ART 

planning system [7].  The system is designed to be able to simultaneously image and irradiate the 

patient. The radiation beam is shaped by a 160-leaf MLC system and travels through the closed-bore 

MRI before it enters the patient. The accelerator and MRI are designed to be magnetically decoupled 

so that the MR images are not distorted by the presence of magnetized accelerator components, 

and the operation of the accelerator is not hampered by the magnetic field. A series of MR 

sequences can be scanned to produce pre-, during- and post-treatment images. Once the MR-Linac 

is fully developed, the pre- and post-treatment MRI can include both morphological (T1, T2...) and 

functional (DWI, DCE etc.) images. The during-treatment MRIs include cine MRI (2D), morphological 

3D (e.g., T1, T2) and 4D images.      

The online planning system integrated in the MR-Linac should be designed to generate an adaptive 

plan based on the pre-treatment MRI in the following steps: 1) deformably register the pre-

treatment MRI with the planning images, 2) rapidly generate a plan by modifying or re-optimizing 

the original plan or by fast adaptive re-planning to account for the different anatomy based on the 

registered images, and 3) quickly perform a software-based QA check on the new plan. To be 

successful the system should complete this 3-step online process within 5 minutes while the patient 

is still lying on the couch. Then, the new adaptive plan is delivered simultaneously with the during-

treatment images acquired.        

The MR-Linac system is designed to able to track/monitor organ (e.g., prostate gland) motion in real-

time on 2D (cine) MRI during the radiation delivery. Because of superior soft tissue contrast, this 

tracking should be very accurate and effective. The radiation beam can be paused, via the capability 

of exception gating, if prostate motion is detected outside a pre-defined range, and can be resumed 

if the prostate moves back to the range. Alternatively, it is anticipated that with technical 

enhancements, the radiation beam may be dynamically shaped to trace the prostate motion 

detected from the cine MRI acquired on the plane perpendicular to the beam orientation. Either 

way, the intra-fractional variations can be managed effectively, thus the margin required to account 

for intra-fraction variation can be reduced.   

The superior soft tissue contrast along with function/physiological information with MRI will 

significantly improve the performance and implementation of the online ART strategy (e.g., 



improved target definition, image registration, auto-segmentation). In addition, with the availability 

of real-time MR imaging during RT delivery to measure and monitor intra-fraction motion, the 

motion management techniques (gating or tracking) can be improved. With both inter- and intra-

fractional variations being accounted for, the CTV-to-PTV margin may be safely reduced to ≤3 mm. 

Because the PTV often overlaps with rectum and bladder, such a drastic reduction in PTV margin 

should reduce toxicities or allow RT doses to be safely escalated to eradicate the tumour, thus 

improving treatment outcomes.      

Conclusion 
Extensive literature demonstrates that substantial inter- and intra-fractional variations occur in 

radiation therapy for prostate cancer. These variations include translational and rotational motions, 

deformations, and independent motions between the structures, and consist of both random and 

systematic components. While the current standard practice of IGRT based on CT or CBCT can only 

address translational motion, adaptive radiotherapy has the potential to fully account for these 

variations. The superior soft-tissue contrast and the continuous imaging capability of MRI are highly 

desirable for the management of inter- and intra-fraction variations. Integration of MRI radiotherapy 

delivery and ART capability, such as with the MR-Linac, holds the promise to optimize radiotherapy 

to the prostate. Using this approach the improved delineation of target and OARs in both planning 

and delivery, will mean inter- and intra-fractional variations may be confidently accounted for, 

permitting use of a decreased CTV-to-PTV margin.  
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Legend 
 

Table 2: Inter-fraction systematic and random motion 

Table 2: Intra-fraction systematic and random motion 

Table 3: Studies of intra- and inter-fraction rotation 

Figure 1: Inter-fraction prostate, rectum, and bladder motion measured on repeat CT imaging 

Figure 2: Effect of rectal filling on prostate position 

Figure 3:  Axial MR and CT imaging of the prostate  

Figure 4:  Prostate apex contoured by multiple operators on MR and CT images 

 


