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Abstract

Automated methods are needed to facilitate high-throughput and reproducible scoring of Ki67 and other
markers in breast cancer tissue microarrays (TMAs) in large-scale studies. To address this need, we developed
an automated protocol for Ki67 scoring and evaluated its performance in studies from the Breast Cancer
Association Consortium. We utilized 166 TMAs containing 16,953 tumour cores representing 9,059 breast
cancer cases, from 13 studies, with information on other clinical and pathological characteristics. TMAs were
stained for Ki67 using standard immunohistochemical procedures, and scanned and digitized using the Ariol
system. An automated algorithm was developed for the scoring of Ki67, and scores were compared to com-
puter assisted visual (CAV) scores in a subset of 15 TMAs in a training set. We also assessed the correlation
between automated Ki67 scores and other clinical and pathological characteristics. Overall, we observed good
discriminatory accuracy (AUC 5 85%) and good agreement (kappa 5 0.64) between the automated and CAV
scoring methods in the training set. The performance of the automated method varied by TMA (kappa range5

0.37–0.87) and study (kappa range 5 0.39–0.69). The automated method performed better in satisfactory
cores (kappa 5 0.68) than suboptimal (kappa 5 0.51) cores (p-value for comparison 5 0.005); and among
cores with higher total nuclei counted by the machine (4,000–4,500 cells: kappa 5 0.78) than those with
lower counts (50–500 cells: kappa 5 0.41; p-value 5 0.010). Among the 9,059 cases in this study, the corre-
lations between automated Ki67 and clinical and pathological characteristics were found to be in the expected
directions. Our findings indicate that automated scoring of Ki67 can be an efficient method to obtain good
quality data across large numbers of TMAs from multicentre studies. However, robust algorithm development
and rigorous pre- and post-analytical quality control procedures are necessary in order to ensure satisfactory
performance.
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Introduction

Breast cancer is not a single entity but a heterogene-
ous disease [1,2], characterized by subtypes which
differ not only in terms of outcome [3,4] but also
aetiologically [5,6]. Over the years, epidemiologists
have sought to investigate aetiological and/or prog-
nostic heterogeneity among immunohistochemically
defined subtypes of the disease. Recently, along with
other immunohistochemical (IHC) markers, Ki67 has
been recommended for use in the surrogate definition
of the intrinsic subtypes of breast cancer [7,8]. Incor-
porating Ki67 and other IHC markers into large, mul-
ticentre, epidemiological studies into breast cancer
subtypes requires high-throughput standardized scor-
ing of tissue markers.

Visual and automated approaches have been sug-
gested as ways to address the challenge of large-
scale scoring of IHC markers in breast cancer [9].
Visual scoring can be achieved on a large scale by
the utilization of multiple scorers or via web-based
platforms that allow scoring to be performed by sev-
eral expert scorers from different locations. Recently,
the potential usefulness of crowdsourcing of the gen-
eral public for the scoring of tissue markers has

equally been evaluated [10]. While visual scoring
may ensure accuracy in recognition of tumour cells
versus benign ductal epithelial or stromal cells and in
the implementation of quality control protocols, it is
often difficult to organize, slow, laborious and, for
almost all of the markers, exhibits varying degrees of
intra- and inter-observer reproducibility. This is even
more so for Ki67 for which a number of studies have
reported poor inter-observer reproducibility [11–13].
On the other hand, automated algorithms are high-
throughput and reproducible, and several investiga-
tors have reported evidence in support of their use
for the scoring of tissue markers especially oestrogen
receptor (ER), progesterone receptor (PR), human
epidermal growth factor receptor 2 (HER2) [14–19],
B-cell CLL/lymphoma 2 (BCL2) [17,20], epidermal
growth factor receptor (EGFR) [18,21,22], cytokera-
tin (CK) 5/6 [18] and Ki67 [13,23–28].

However, unlike ER, PR and HER2, few studies
have investigated the performance of automated scor-
ing algorithms for the unsupervised scoring of Ki67
in tissue microarrays (TMAs) from large consortia.
This is necessary given the heterogeneity in pre-
analytical variables (including TMA designs, tissue
fixation, TMA age, and staining protocols) that is
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inherent in such study designs. Furthermore, It has
now been shown that the performance of automated
methods can vary by TMA [18] and potentially also
according to other pre-analytical variables [29]. To
our knowledge, most of the studies that have previ-
ously investigated the usefulness of automated scor-
ing for Ki67 were single centre studies, thus were
unable to assess the utility of such methods in the
large-scale scoring of Ki67 in TMAs from diverse
populations. In this study, we developed and applied
an automated protocol for the scoring of Ki67 in
TMAs from multiple study centres within the Breast
Cancer Association Consortium (BCAC). Using the
resulting data, we assessed the associations between
automated Ki67 scores and other clinical and patho-
logical characteristics and how these compare with
what has been reported in the literature.

Materials and methods

Study populations and study design

BCAC is a large ongoing collaborative project of
breast cancer studies involving study groups across
the world [30]. For the current study, we collected
166 TMAs from 13 participating studies based on the
availability of tumour material on TMAs (Table 1).
Ten studies (ABCS, CNIO, ESTHER, KBCP,
MCBCS, ORIGO, POSH, RBCS, UKBGS and kCon-
Fab) submitted unstained TMA slides which were
centrally stained in the Breakthrough Core Pathology
Laboratory at the Institute of Cancer Research (ICR)
while two studies (MARIE and PBCS) submitted
TMAs stained at their local laboratories. One study
(SEARCH) submitted Ariol digital images acquired
using a similar technology to the one at the ICR.
Digitization and centralized automated scoring of all

the TMAs was performed at the ICR. All study
groups provided data on other clinical and pathologi-
cal characteristics for each patient. These data were
centrally queried and quality checked at the NKI-
AVL in Amsterdam. In addition, the PBCS study
provided semi-quantitative visual scores while the
SEARCH study provided categories of visual scores
corresponding to Allred proportions. In terms of
study design, Figure 1 shows the 166 TMAs, 15 of
which containing 1,346 cores were selected as the
training set. These were used to develop an algorithm
that was then applied to the scoring of all 166 TMAs
and the resulting automated scores analysed to deter-
mine agreement with pathologists’ scores and associ-
ation with other clinico-pathological variables.

Ki67 immunostaining

Sections were dewaxed using xylene and rehydrated
through graded alcohol (100, 90 and 70%) to water.
Slides were then placed in a preheated (5 min 800 W
microwave) solution of Dako Target Retrieval solution
pH 6.0 (S1699) and microwaved on high power for 10
min and then allowed to cool in this solution at room
temperature for 10 min. In the next stage, the slides
were placed on a Dako Autostainer and stained using a
standard protocol using Dako MIB-1 diluted 1/50 and
visualized using the Dako REAL kit (K5001). The
MIB-1 antibody was also adopted for the staining of
those TMAs that were not part of those centrally
stained at the ICR but at varying concentrations
(PBCS 5 1:500; MARIE 5 1:400 and SEARCH 5

1:200) (supplementary material, Table S1).

Development of scoring protocol

Computer assisted visual scoring protocol. All TMAs
were digitized using the Ariol 50s digital scanning

Table 1. Description of the source populations, numbers of cases and designs of TMAs used in this study

Study

acronym Country Cases (N)

Age at diagnosis

mean (range) TMAs

Cores

per case

Cores

per TMA

Core

size (mm)

Total cores

per study

ABCS Netherlands 892 43 (19–50) 24 1–6 15–328 0.6 2,449

CNIO Spain 164 60 (35–81) 4 1–2 80–133 1.0 316

ESTHER Germany 258 62 (50–75) 6 1–2 78–91 0.6 461

KBCP Finland 276 59 (30–92) 12 1–3 63–94 1.0 724

MARIE Germany 808 62 (50–75) 27 1–5 32–92 0.6 1,490

MCBCS USA 491 58 (22–87) 7 1–8 131–301 0.6 1,630

ORIGO Netherlands 383 53 (22–87) 9 1–9 67–223 0.6 991

PBCS Poland 1,236 56 (27–75) 22 1–2 66–145 1.0 2,358

POSH UK 73 36 (27–41) 5 1–5 75–114 0.6 194

RBCS Netherlands 234 45 (25–84) 6 1–5 134–199 0.6 642

SEARCH UK 3,528 52 (24–70) 24 1–3 120–167 0.6 4,037

UKBGS UK 367 56 (24–84) 14 1–4 62–114 1.0 1,130

kConFab Australia 349 45 (20–77) 6 1–2 65–114 0.6 531

Totals 9,059 56 (19–92) 166 1–9 15–328 0.6–1.0 16,953
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machine. Our computer assisted visual (CAV)
approach to visual scoring uses the Ariol interface
and software tools for consistent and reproducible
counting of positive and negative tumour nuclei. This
yielded quantitative visual scores which enabled
direct comparison with automated scores in a manner
similar to that reported by Laurinavicious et al [31].
Using this approach, a grid was placed on each
tumour core (Figure 2A) thereby delineating it into
distinct regions (Figure 2B). Within each of these
regions, a 250 mm by 250 mm square (each corre-
sponding to a high power field (340) under the
microscope) was placed and the number of positive
and negative malignant nuclei in each square counted
(Figure 2B and C). This method prevents the double
counting of positive and/or negative nuclei. The Ki67
score for each core was calculated as the percentage
of positive nuclei across the entire spectrum of the
core, including hot spots. This is in keeping with the
recommendations of the International Ki67 in Breast
Cancer working group [32]. Modifications were
made to the standard protocol to account for skewed
distribution of tumour tissue within the core or
unevenly infiltrating clusters or nests of malignant

cells. Counting was performed by a pathologist (MA)
and the intra-observer reproducibility of the protocol
was confirmed by re-scoring a random subset of
cores (N 5 111) 3 months after the first time they
were scored (observed agreement 5 96%;
kappa 5 0.90). The inter-observer agreement was
evaluated by comparing Ki67 values from a ran-
domly selected subset of cores across four TMAs
(N 5 202) scored using this method with those previ-
ously scored by two other scorers (scorer 2 and
scorer 3) and this was found to be good (supplemen-
tary material, Table S2). Here, we refer to scores
derived using this approach as the ‘CAV score’.

The CAV protocol was also used to assign qual-
ity control categories to cores as follows: (1) Inva-
sive satisfactory core (nuclei count >500); (2) DCIS
satisfactory core (nuclei count >500); (3) Subopti-
mal cores, ie, few tumour cells (<500 malignant
nuclei), staining issues (membrane, cytoplasmic and/
or background staining), folded/marginally distorted
core, suboptimal fixation. For the purpose of further
analysis, categories 1 and 2 were considered as
‘satisfactory’ while category 3 was considered
‘suboptimal’.

Figure 1. Study design. Of the 166 TMAs, 15 were selected as the training set and were used to develop an algorithm that was
applied to the scoring of all 166 TMAs, containing 16,953 tissue cores. The agreements between automated and visual scores were
determined for the TMAs in the training set. Furthermore, a subset of the TMAs (N 5 22) had pathologists’ semi quantitative Ki67
scores: as a result, automated scores from these were compared with the pathologists’ scores and the agreement between the two
also determined. In the next stage of the study, scores derived using the automated method were combined with information on
other clinical and pathological characteristic for all subjects in the study (N 5 9,059). The distribution of Ki67 scores across categories
and its association with pathological characteristics were then determined.
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Visual scoring in the external TMAs was per-
formed by two independent scorers (scorers 2 and 3)
by assigning semi-quantitative Ki67 percentages to
cores (ie, 0%, 25%, 50%, 75% and 100%). The Ki67
score for each patient was then taken as the average
score from the two scorers across all cores for that
patient.

The automated scoring protocol. The Ariol machine
has functionality that enables the automatic detection
of malignant and non-malignant cells using shape
and size characteristics. Using colour deconvolution,
it can also distinguish between DAB positive and
negative (haematoxylin-stained) malignant cells.
Achieving this however requires the development of

Figure 2. Schematic representation of the stages involved in the development of a centralised scoring protocol. Of the 166 TMAs, 15
were randomly selected as the training set. Two protocols were developed and adopted for scoring: A computer-assisted visual (CAV)
and automated scoring protocols. Using the CAV protocol, a grid was used to demarcate each core and at least six well-delineated
areas of the core were counted for positive and negative nuclei (right hand panel (A) tumour core; (B) demarcation into regions by a
grid and (C) counting of positive and negative nuclei within the squares) and the average score obtained. For the automated scoring
protocol (Stage 1), 15 TMA-specific classifiers were tuned (left hand panel (D) region of interest, (E) colour detection of DAB/positive
nuclei, (F) colour detection of haematoxylin/negative nuclei and (G) combined detection of positive and negative nuclei) and used for
scoring. In the next stage (Stage 2) one classifier was selected, tuned further, and used to score all 15 TMAs. Agreement with the
CAV protocol was further tested and the impact of quality control on the performance of this classifier was then assessed (Stage 3).
In the final stage (Stage 4), this classifier was applied to the scoring of all 166 TMAs in this study.
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classifiers. At first, one classifier was tuned for each
of the 15 TMAs in the training set (known here as
‘TMA-specific’ classifiers). Training involved tuning
colour and shape parameters across several regions of
interest. To determine the negative and positive pop-
ulations of cells, a region of interest (Figure 2D) was
demarcated and two colours were selected to indicate
positive and negative nuclear populations (red for
positive nuclei – Figure 2E; and green for negative
nuclei – Figure 2F). The appropriate colour pixels
were then selected to represent the full range of hue,
saturation and intensity that was considered represen-
tative of the positive and negative nuclear classes.
Subsequently, the best shape parameters that discri-
minated malignant and non-malignant cells according
to their spot width, width, roundness, compactness
and axis ratio were then also selected. The spot width
marks the location of the nuclei and separates them
by size. Larger values select for larger cells while
excluding smaller cells. The width is useful in sorting
cells based on their size while the compactness and
roundness are useful in sorting cells based on how
circular they are. The axis-ratio uses the centre of
gravity of an object relative to its edges to separate
elongated objects from rounder ones; larger values of
this exclude elongated objects.

The TMA 9 classifier, having showed the best
agreement parameters with the CAV, was then

selected and tuned further across other TMA regions

to generate a single (Universal) classifier (supple-

mentary material, Tables S3 and S4). This was then

applied to the scoring of all 15 TMAs and the agree-

ment with CAV re-evaluated. Subsequently, the

impact of quality control – including total nuclei

counted per core – on the performance of the Univer-

sal classifier was determined. In the final stage, the

Universal classifier was applied to the scoring of all

TMAs in this study (Figure 2).
Pre-analytical QC protocols included the identifica-

tion of three control cores (ie, strongly positive, neg-

ative and blank) per TMA while post analytical QC

protocols included the exclusion of cores with total

nuclei count <50 or >15,000 and/or Ki67 score of

exactly 100%.

Statistical methods

The area under the curve (AUC) of the receiver oper-

ating characteristics graph was used to evaluate the

discriminatory accuracy of the quantitative automated

scores to distinguish between positive and negative

visual cores dichotomized using the most commonly

reported visual cut-off point of 10% positive cells

[33]. The linearly weighted kappa statistic [34] was

used to measure the agreement between semi-

quantitative automated and visual scores categorized

Table 2. Agreement parameters (observed agreement and kappa statistic) and discriminatory accuracy (AUC) parameters for visual and
automated scores (derived using TMA-specific and Universal classifiers) overall and for each of the 15 TMAs in the training set

TMA Name N

TMA-specific classifier Universal classifier*

AUC (95% CI)

Observed

agreement (95% CI) Kappa (95% CI) AUC (95% CI)

Observed

agreement (95% CI) Kappa (95% CI)

TMA 1 102 69 (59, 79) 73 (64, 82) 0.29 (0.21, 0.39) 78 (69, 87) 80 (71, 88) 0.37 (0.28, 0.47)

TMA 2 89 93 (88, 99) 82 (72, 89) 0.57 (0.45, 0.67) 91 (84, 97) 90 (82, 95) 0.75 (0.65, 0.84)

TMA 3 120 88 (82, 94) 87 (79, 92) 0.60 (0.51, 0.69) 86 (80, 93) 84 (75, 90) 0.49 (0.40, 0.58)

TMA 4 154 87 (81, 92) 91 (85, 95) 0.71 (0.64, 0.78) 83 (77, 90) 87 (81, 92) 0.58 (0.50, 0.66)

TMA 5 89 94 (88, 99) 93 (86, 97) 0.81 (0.71, 0.88) 87 (80, 95) 89 (82, 95) 0.69 (0.58, 0.78)

TMA 6 74 91 (83, 98) 89 (80, 95) 0.60 (0.47, 0.71) 80 (64, 96) 84 (73, 91) 0.44 (0.33, 0.57)

TMA 7 101 86 (79, 93) 89 (81, 94) 0.62 (0.52, 0.72) 88 (81, 95) 90 (83, 95) 0.67 (0.57, 0.76)

TMA 8 104 96 (93, 100) 84 (75, 90) 0.59 (0.49, 0.68) 91 (84, 97) 80 (71, 87) 0.37 (0.27, 0.47)

TMA 9 70 97 (95, 100) 94 (86, 98) 0.84 (0.74, 0.92) 98 (95, 100) 95 (86, 98) 0.85 (0.75, 0.93)

TMA 10 70 90 (83, 98) 93 (84, 98) 0.79 (0.67, 0.87) 94 (90, 99) 96 (88, 99) 0.87 (0.77, 0.94)

TMA 11 69 91 (84, 98) 90 (80, 96) 0.72 (0.60, 0.83) 89 (81, 97) 90 (80, 96) 0.73 (0.62, 0.84)

TMA 12 86 90 (83, 96) 85 (76, 92) 0.35 (0.25, 0.46) 91 (84, 97) 88 (80, 94) 0.47 (0.36, 0.58)

TMA 13 72 70 (58, 82) 69 (57, 80) 0.27 (0.17, 0.38) 84 (72, 96) 92 (83, 97) 0.73 (0.62, 0.83)

TMA 14 75 87 (79, 95) 75 (65, 85) 0.40 (0.29, 0.52) 85 (75, 94) 87 (77, 93) 0.64 (0.52, 0.75)

TMA 15 71 70 (57, 82) 82 (71, 90) 0.34 (0.23, 0.46) 80 (70, 91) 87 (77, 94) 0.56 (0.44, 0.68)

Overall 1,346 83 (81, 86) 85 (83, 87) 0.58 (0.55, 0.61) 85 (83, 87) 87 (86, 89) 0.64 (0.61, 0.66)

TMA-specific classifiers represent automated algorithms that were trained specifically for each individual TMA. Universal classifier is a single automated algo-
rithm tuned across the spectrum of TMAs in the training set and used for the scoring of all 15 TMAs. The Area Under the Curve (AUC) was determined by plot-
ting a Receiver Operating Characteristic (ROC) curve of the continuous Ki67 automated score against categories of the visual scores – dichotomised using the
most commonly reported cut-off point in the literature of 10% (33)
The agreement and kappa statistics were determined by comparing quartiles (<25th, 25th–50th, >50th–75th and >75th percentiles) of both the visual and
automated scores using weighted kappa statistics. N, Represents the number of cores on each TMA.
*The Universal classifier was adopted for use in the scoring of all TMAs (N 5 166) in this study.
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into quartiles as follows: Q1 5<25th percentile;
Q2 5 25th–50th percentile; Q3 5>50th–75th percen-
tile and Q4 5>75th percentile. Frequency tables were
used to evaluate categories showing marked discrep-
ancy, ie, cases in which either the machine or the vis-
ual scorer scores a core Q4 and the other scores it Q1
or vice versa, overall and for each TMA (supplemen-
tary material, Table S5). Agreement analyses were
stratified by classifier type (TMA-specific versus Uni-
versal), quality control category (satisfactory versus
suboptimal) and by total nuclei counted by the
machine (categorized at intervals of 500). The subject-
level Ki67 score was calculated as the average score
across all cores for that subject. These were used:
firstly, to determine the subject-level agreement

between automated and pathologists’ semi quantitative
scores for a subset of patients that had pathologists’
scores from the study groups; secondly, to determine
the distribution of Ki67 across categories of other clin-
ical and pathological characteristics; and thirdly, to
test the association between Ki67 and other clinical
and pathological characteristics. Automated Ki67 was
dichotomized at a cut-off point of 10% and the associ-
ations between dichotomous categories of Ki67 and
other pathological characteristics were determined in
logistic regression models adjusted for age at diagnosis
and study group. All analyses were conducted using
STATA 13.1 software (StataCorp, College Station,
TX, USA), were two-sided and p values of <0.05 were
considered as significant.

Table 3. Agreement (observed agreement, kappa statistic) and discriminatory accuracy (AUC) parameters for the automated and visual
scores according to quality control status (satisfactory, N 5 950 and suboptimal, N 5 396) overall and among the 15 TMAs in the
training set

TMA Name

Satisfactory QC Suboptimal QC

N AUC (95% CI)

Observed

agreement (95% CI) Kappa (95% CI) N AUC (95% CI)

Observed

agreement (95% CI) Kappa (95% CI)

TMA 1 65 82 (71, 92) 78 (67, 88) 0.31 (0.20, 0.43) 37 79 (64, 94) 84 (68, 94) 0.42 (0.25, 0.58)

TMA 2 63 93 (85, 100) 91 (82, 97) 0.78 (0.66, 0.87) 26 88 (74, 100) 86 (65, 96) 0.61 (0.41, 0.79)

TMA 3 73 92 (86, 98) 87 (76, 93) 0.61 (0.50, 0.73) 47 82 (69, 95) 79 (64, 89) 0.28 (0.17, 0.44)

TMA 4 98 86 (79, 93) 90 (83, 96) 0.69 (0.59, 0.78) 56 80 (67, 93) 82 (70, 91) 0.34 (0.25, 0.81)

TMA 5 76 91 (84, 97) 90 (80, 95) 0.70 (0.60, 0.81) 13 69 (37, 100) 89 (64, 100) 0.51 (0.60, 0.81)

TMA 6 61 89 (77, 100) 85 (74, 93) 0.49 (0.36, 0.62) 13 58 (14, 100) 77 (46, 95) 0.19 (0.10, 0.54)

TMA 7 84 88 (81, 95) 91 (82, 96) 0.69 (0.58, 0.79) 17 79 (48, 100) 88 (64, 99) 0.57 (0.33, 0.81)

TMA 8 87 89 (81, 97) 80 (71, 88) 0.38 (0.28, 0.49) 17 99 (95, 100) 78 (50, 93) 0.31 (0.10, 0.56)

TMA 9 44 100 (99, 100) 95 (85, 99) 0.85 (0.70, 0.93) 26 96 (91, 100) 95 (80, 100) 0.79 (0.61, 0.93)

TMA 10 48 98 (95, 100) 96 (86, 99) 0.88 (0.75, 0.95) 22 82 (63, 100) 95 (77, 100) 0.82 (0.60, 0.95)

TMA 11 48 92 (84, 99) 93 (83, 99) 0.81 (0.67, 0.91) 21 91 (79, 100) 85 (64, 97) 0.54 (0.30, 0.74)

TMA 12 53 93 (86, 100) 89 (77, 96) 0.55 (0.40, 0.68) 33 83 (65, 100) 87 (72, 97) 0.30 (0.16, 0.48)

TMA 13 45 86 (73, 99) 89 (76, 96) 0.68 (0.51, 0.80) 27 97 (91, 100) 96 (81, 100) 0.85 (0.66, 0.95)

TMA 14 55 89 (78, 100) 91 (80, 97) 0.75 (0.61, 0.85) 20 69 (44, 93) 76 (51, 91) 0.27 (0.11, 0.54)

TMA 15 50 91 (82, 100) 90 (78, 97) 0.71 (0.58, 0.84) 21 49 (20, 78) 78 (53, 92) 0.03 (0.01, 0.23)

Overall 950 86 (84, 89) 89 (86, 91) 0.68 (0.65, 0.71) 396 82 (78, 86) 85 (81, 88) 0.51 (0.46, 0.56)

Suboptimal QC were cores which did not meet the criteria to be considered satisfactory but which were sufficiently suitable for scoring, eg, cores with few
tumour cells (50–500 cells), partially folded cores, staining artefact or suboptimal/poor fixation. N, Represents the number of cores on each TMA that have
been classified as being either of satisfactory or suboptimal QC.

Table 4. Agreement (observed agreement, kappa statistics) and discriminatory accuracy (AUC) parameters for automated and visual
scores according to categories of the total nuclei counted by the machine among the 15 TMAs in the training set (N 5 1,346)

Total nuclei count N AUC (95% CI) Observed agreement (95%CI) Kappa (95% CI)

50–500 151 80 (73, 87) 78 (71, 84) 0.41 (0.33, 0.49)

>500–1,000 227 80 (74, 86) 86 (81, 91) 0.57 (0.51, 0.64)

>1,000–1,500 207 85 (80, 90) 87 (82, 91) 0.61 (0.54, 0.68)

>1,500–2,000 172 90 (85, 95) 90 (85, 94) 0.72 (0.65, 0.79)

>2,000–2,500 106 88 (82, 95) 91 (83, 95) 0.72 (0.62, 0.80)

>2,500–3,000 87 82 (72, 92) 89 (81, 95) 0.67 (0.56, 0.76)

>3,000–3,500 90 88 (81, 95) 88 (79, 94) 0.67 (0.57, 0.77)

>3,500–4,000 74 92 (86, 98) 93 (85, 98) 0.77 (0.66, 0.86)

>4,000–4,500 56 91 (83, 99) 92 (80, 97) 0.78 (0.66, 0.88)

> 4,500 176 90 (85, 95) 88 (82, 92) 0.68 (0.61, 0.75)

N.B: Evidence for a strongly positive linear relationship between mean total nuclei count and agreement parameters was observed [kappa (r 5 0.85,
p-value 5 0.004); observed agreement (r 5 0.80, p-value 5 0.01); AUC (r 5 0.79, p-value 5 0.01)]. N, Represents the number of cores for each category of total
nuclei count.

144 M Abubakar et al

VC 2016 The Authors The Journal of Pathology: Clinical Research published by The Pathological Society of
Great Britain and Ireland and John Wiley & Sons Ltd

J Path: Clin Res July 2016; 2: 138–153



Results

TMAs design and clinico-pathological
characteristics of cases

A total of 166 TMAs containing 19,039 tumour cores

representing 10,005 patients were collected from the

13 collaborating studies. Of these, 2,086 cores repre-

senting 946 cases failed QC (9.9% ductal and 8.7%

lobular). As a result, a total of 16,953 tumour cores

from 9,059 breast cancer patients were evaluated in

this analysis (Table 1). The average age at diagnosis

in these studies was 56 years (range 43–62 years).

The designs of the TMAs differed among the 13

study groups according to a number of characteristics

including core size (range 5 0.6–1 mm); number of

cores per case (range 5 1–9); and number of cores

per TMA (range 5 15–328) (Table 1).

Agreement between automated and CAV methods
among the 15 TMAs in the training set
(N 5 1,346 cores)

The TMA-specific classifier showed better accuracy than

the Universal classifier in discriminating between visu-

ally determined positive and negative cores in eight of the

15 TMAs even though this was significant in only one of

the TMAs (TMA 5, p 5 0.04). On the other hand, the
Universal classifier showed better kappa statistics in ten

of the 15 TMAs (Table 2). Overall, good discriminatory

accuracy (AUC (95% CI) 5 83% (81–86%)) and moder-

ate kappa agreement (agreement 5 85%; kappa 5 0.58)

were observed between the TMA-specific classifier and

the CAV scores. This was slightly better for the Universal

classifier which showed good discriminatory accuracy

(AUC (95% CI) 5 85% (83–87%)) and good agreement

(agreement 5 87%; kappa 5 0.64) with the CAV scores.

The overall performance of the TMA-specific classifier

was affected by three classifiers with low kappa values,

ie, TMAs 1, 13 and 15. Heterogeneity was observed in
the performance of the automated methods according to
TMAs in both the TMA-specific (range (AUC 5 69–
97%; agreement 5 69–94%; kappa 5 0.27–0.84)) and
Universal (range (AUC 5 78–98%; agreement 5 80–
96%; kappa 5 0.37–0.87)) classifiers (Table 2, Figure 3
and supplementary material, Figure S1). Overall, the dis-
criminatory accuracy and kappa agreement were better
among satisfactory (AUC 5 86%; agreement 5 89%;
kappa 5 0.68) than suboptimal (AUC 5 82%;
agreement 5 85%; kappa 5 0.51) cores (p value for
comparison 5 0.005) and this pattern was seen in 11 of
the 15 TMAs (Table 3, Figure 4 and supplementary mate-
rial, Figure S2).

The agreement between automated and visual meth-
ods was observed to differ by the numbers of nuclei
counted by the machine, with significant evidence for
a positive linear correlation between mean total nuclei
count and agreement parameters including kappa
(r 5 0.85; p 5 0.004), observed agreement (r 5 0.80;
p 5 0.01) and discriminatory accuracy (r 5 0.76;
p 5 0.01). Kappa agreement values were highest
among cores with total nuclei count >4,000–4,500
(kappa 5 0.78) and least among cores with total nuclei
count 50–500 (kappa 5 0.41; p-value for
comparison 5 0.01) (Table 4 and supplementary mate-
rial, Figure S3). Discrepancies in extreme categories
between visual and automated scores categorized in
quartiles were not very common overall (�1.3% of
the cores) and this varied according to TMA as well
(range 5 0–4%) (supplementary material, Table S5).

Distribution of Ki67 scores by method of scoring
(CAV, TMA-specific, Universal classifier) among
the 15 TMAs in the training set (N 5 1,346 cores)

The TMA-specific classifier yielded higher Ki67 values
(mean 5 17.5%; median 5 12.9%; range 5 0–85.9%)
than the CAV (mean 5 11.2%; median 5 5.3%; range 0–

Table 5. Subject level AUC and kappa agreement between automated Ki67 and visually derived scores for a subset of the participating
studies for which visual scores were available (N 5 1,849)

Study Cases (N) AUC (95% CI) Observed agreement (95% CI) Kappa

ABCS 215 86 (79, 94) 87 (82, 87) 0.52 (0.45, 0.59)

CNIO 154 87 (78, 97) 79 (72, 85) 0.39 (0.32, 0.47)

ESTHER 244 95 (93, 98) 92 (88, 95) 0.69 (0.62, 0.74)

PBCS 1,236 88 (87, 91) 89 (87, 91) 0.50 (0.47, 0.52)

TMA in training set*
Yes 613 90 (86, 93) 87 (84, 90) 0.54 (0.50, 0.58)

No 1,236 89 (87, 91) 89 (87, 91) 0.50 (0.47, 0.52)

Overall 1,849 90 (88, 91) 88 (87, 90) 0.65 (0.63, 0.67)

Semi-quantitative categories of visual scores were used to determine kappa agreement. AUC was determined using continuous automated scores and dichoto-
mous categories of visual scores.
*Agreement analyses were stratified by whether or not a study had TMAs in the training set. ABCS, CNIO and ESTHER all had TMAs in the training set while
PBCS did not have TMAs in the training set.
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96.7%) or the Universal classifier (mean 5 8.8%;

median 5 3.7%; range 5 0–84.9%) overall and in all but
two of the TMAs (ie, TMAs 2 and 8) (Figure 5). Gener-
ally, the Universal classifier was tuned to count more

cells than the individual TMA-specific classifiers; this
leads to a reduction in the proportion of positive relative
to negative nuclei counts and hence lower Ki67 scores.

As a result, the observation of lower Ki67 scores for the
Universal classifier was not unexpected. In TMA 2, the

Universal classifier counted fewer nuclei (supplementary
material, Figure S4) than the corresponding TMA-
specific classifier and this was due to higher parameter

values for axis-ratio in the Universal relative to the TMA-
specific classifier. Lower spot width and width values for

the negative relative to positive nuclei in TMA-specific

classifier 8 meant that, despite counting fewer nuclei than

the Universal classifier, the TMA-specific classifier 8

counted more negative relative to positive nuclei than the

Universal classifier thereby leading to lower Ki67 scores

(supplementary material, Table S4).

Agreement between automated and visual Ki67
scores according to tumour morphology and study
group for a subset of cases with visual and
automated scores (N 5 1,849 cases)

We observed better kappa agreement between the auto-

mated and visual Ki67 scores among invasive ductal

Figure 3. Graphs comparing the ROC curves for the discriminatory accuracy of the automated continuous Ki67 scores against categories
of the visual score by classifier type (TMA-specific and universal) among representative TMAs. In TMA 1, the universal classifier showed
better discrimination than the TMA-specific classifier; in TMA 6, the TMA-specific classifier showed better discrimination while in TMA 9
no difference was observed between the two classifier types. Overall, both classifiers showed similar discriminatory accuracy.
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(observed agreement 5 90%; kappa 5 0.65) than lobu-
lar (observed agreement 5 86%; kappa 5 0.46; p value
for comparison 5 0.003) carcinomas. Among the four
study groups with visual quantitative scores in addition
to automated scores, we observed good discriminatory
accuracy (AUC (95% CI) 5 90.0% (88–91%)) and good
kappa agreement (agreement 5 88.0%; kappa 5 0.65)
between the automated and visual scores overall. This
however differed by study, with the ESTHER study
showing better agreement parameters (AUC 5 95%;
agreement 5 92%; kappa 5 0.69) than the others (Table
5). It is not immediately clear what is responsible for the
observed heterogeneity according to study groups given
that all but one of these studies had TMA’s in the train-
ing set. Indeed, when we stratified the analyses accord-
ing to whether or not a study had TMAs in the training
set we observed similar agreement parameters among
those with TMAs in the training set (AUC 5 90%;
agreement 5 87%; kappa 5 0.54) and those without
(AUC 5 89%; agreement 5 89%; kappa 5 0.50; p value

for comparison 5 0.29) (Table 5). These findings sug-
gest that the absence of TMAs as part of the training set
from which a classifier was developed does not lead to
significant attenuation of the performance of the auto-
mated methods in such TMAs.

Distribution of automated Ki67 scores by study
group and its association with other clinical and
pathological characteristics among 9,059 patients

Overall, Ki67 values differed according to the differ-
ent study groups (p-value <0.05) and this difference
was observed when we further stratified the analysis
according to whether or not TMAs were stained at
the ICR; and between studies that were stained at the
ICR and those that were stained externally (supple-
mentary material, Figure S5). Analysis of histological
grade as a proxy for Ki67 showed similar patterns of
heterogeneity (p-value <0.05). All clinical and patho-
logical variables were seen to be significantly

Figure 4. Graphs comparing the ROC curves for the discriminatory accuracy of the automated continuous scores against categories
of the visual score by QC status among representative TMAs. The discriminatory accuracy was better among cores with satisfactory
QC, overall and in TMAs 1 & 15. This difference was however not as obvious in TMA 9 as in 1 and 15.
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associated with Ki67 in logistic regression models

adjusted for study group. As seen in Table 6, and as

is well-established for visual Ki67 scores, we
observed strong evidence for a positive correlation

between automated Ki67 and histological grade. Sim-

ilarly, we observed an inverse relationship between

automated Ki67 and ER and PR status. Relative to

ductal carcinomas, lobular cancers were less likely to

be high proliferating. The associations between

HER2, EGFR and Ki67 are yet to be fully under-

stood. In this analysis, we observed strong evidence

for a positive correlation between Ki67 and HER2,

CK5/6 and EGFR (Table 6).

Discussion

This large-scale study indicates that the Ariol auto-

mated method for high-throughput Ki67 scoring

shows good agreement with visual reads in breast

cancer TMAs from multiple study populations. These

findings are relevant to epidemiological research,

where studies often require very large sample sizes

and TMAs are frequently used to facilitate tumour
characterization.

The overall agreement between the automated method
and visual reads across the 166 TMAs in our study
(kappa 5 0.64) was within the range of kappa values
previously reported by Konsti et al [26] (kappa 5 0.57)
and Mohammed et al [27] (kappa 5 0.70). Our study
however, is six times larger than the largest previously
published report (Konsti, N 5 1,334 cases), and includes
multiple studies from different populations.

Some important considerations in the application of
automated methods to the unsupervised scoring of
Ki67 in TMAs from multiple studies are those of clas-
sifier type and the impact of core and TMA quality on
the performance of these methods across the different
TMAs. Compared to the Universal classifier, the
TMA-specific classifier is more time consuming, may
introduce additional sources of variability, and makes
comparison of results across different TMAs and/or
study groups difficult to achieve. In this study, using a
single Universal classifier produced similar agreement
with visual scores as when using TMA-specific classi-
fiers. Therefore, our findings do not support any
advantages of TMA-specific over Universal classifiers.

Figure 5. Distribution of Ki67 scores by method of scoring. Ki67 scores for the Computer-Assisted Visual (CAV) and automated (TMA-
specific and Universal classifier) methods for each of the 15 TMAs in the training set and overall. The TMA-specific classifier yielded
higher Ki67 scores in all but two TMAs, ie, TMAs 2 and 8 (red arrows).
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As previously reported [18], we observed heteroge-
neity in the performance of the automated methods
across TMAs, particularly when the TMA-specific
classifier was used. TMAs with the worst agreement
parameters tended to have the highest number of
cores with suboptimal QC. Discrepancies in extreme
categories between visual and automated scores cate-
gorized in quartiles were not very common overall
(�1.3% of the cores). Almost all instances of such
discrepancies were the direct result of poor core qual-

ity. While staining quality (background, membrane
and cytoplasmic staining) was the main cause of high
automated scores for cores with low visual scores,
low automated scores for cores with high visual
scores were mainly due to the presence of negative
cell populations (such as marked lymphocytic infil-
tration and dense stromal components) (supplemen-
tary material, Figures S6 and S7, respectively). These
reasons were also proposed to explain discrepancies
in other studies [26,29]. In this study, we have also
shown the impact of tissue sufficiency, using total
nuclei counted by the machine as a surrogate, on the
performance of the automated method. Our findings
reveal that below 500 cells the performance of the
automated method becomes greatly attenuated.

The analyses of the distribution of Ki67 scores
among categories of other clinical and pathological
characteristics showed similar patterns to those that
have been previously described [24,35–43]. As
expected, higher levels of Ki67 were strongly associ-
ated with higher histological grade [44,45], and with
ER/PR negative status [40–42,45]. Furthermore, in
keeping with what is widely reported as the low pro-
liferative activity of lobular carcinoma relative to
invasive ductal carcinoma [46–48], lobular carcino-
mas had significantly lower Ki67 scores than inva-
sive ductal carcinomas in this study. Our study
provides strong evidence in support of a positive
relationship between HER2 status and Ki67, which
had been long suspected [38,39,45]. Regarding basal
markers, while the reported association between
EGFR and Ki67 is largely conflicting [38,45,49–52],
that between Ki67 and CK5/6 is seldom reported. In
this study, we observed higher rates of EGFR and
CK5/6 positivity among high Ki67 expressing
tumours, providing the most definitive evidence to
date in support of these associations. The evidence
for a relationship between Ki67 and nodal status is
not conclusive despite this being one of the most
studied aspects of Ki67. In a review by Urruticoechea
and colleagues [45], while a few large studies (>200
patients) were reported to show a positive relation-
ship between Ki67 and nodal status [53–55], numer-
ous small ones favoured a lack of correlation [45].
Our findings support a positive correlation between
Ki67 and nodal status.

A major strength of this study is its large size,
detailed information on pathology variables, and the
inclusion of TMAs from diverse populations con-
ducted in different time periods, reflecting a likely
scenario in epidemiological pooling studies. Our
algorithm was validated against quantitative visual
scores derived using the CAV protocol. Additionally,
the algorithm performed well against other methods

Table 6. Odds ratio and 95% CI for the association between
clinical and pathological characteristics of breast cancer with
categories of Ki67 ( £ 10% vs. >10%) among 9,059 patients

Characteristic Cases (N) OR* (95% CI) p-value

Age at diagnosis
<35 328 1.00 (Referent)

35–50 3,043 0.64 (0.50–0.83) 1.00E-03

>50–65 4,064 0.55 (0.43–0.72) 4.79E-06

>65 1,414 0.60 (0.45–0.80) 2.43E-04

Tumour grade
Low grade 1,696 1.00 (Referent)

Intermediate grade 3,684 1.69 (1.45–1.97) 4.71E-12

High grade 2,552 4.18 (3.57–4.89) 3.57E-72

Stage
I 3,214 1.00 (Referent)

II 3,534 1.15 (1.03–1.27) 1.00E-02

III 473 1.41 (1.13–1.28) 2.00E-03

IV 97 1.77 (1.15–2.72) 9.00E-03

Morphology
Ductal 4,315 1.00 (Referent)

Lobular 860 0.36 (0.29–0.43) 1.98E-25

Other 648 0.68 (0.56–0.82) 4.62E-05

Tumour size
<2 cm 4,492 1.00 (Referent)

2–4.9 cm 2,565 1.31 (1.17–1.46) 6.64E-07

>5 cm 244 1.29 (0.96–1.72) 8.60E-02

Node status
Negative 4,758 1.00 (Referent)

Positive 3,168 1.11 (1.00–1.23) 4.00E-02

ER expression
Negative 2,222 1.00 (Referent)

Positive 6,128 0.42 (0.38–0.47) 1.09E-55

PR expression
Negative 2,853 1.00 (Referent)

Positive 4,919 0.51 (0.46–0.56) 1.68E-36

HER2 expression
Negative 5,379 1.00 (Referent)

Positive 1,060 1.61 (1.40–1.85) 1.30E-11

EGFR expression
Negative 2,407 1.00 (Referent)

Positive 356 3.08 (2.40–3.95) 4.61E-19

CK5/6 expression
Negative 4,184 1.00 (Referent)

Positive 623 1.73 (1.45–2.07) 5.69E-10

All variables were modelled separately and each model was adjusted for age
at diagnosis and study group. Other morphology includes all other histologi-
cal subtypes of breast cancer that are neither invasive ductal (NOS) nor
invasive lobular.
*OR refers to the odds of each clinico-pathological characteristic being high
Ki67 expressing
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of manually counting Ki67 other than the CAV
method thereby providing additional validation for
the automated method.

Stringent pre and post analytical QC protocols were
applied to the generation of Ki67 scores. While this
improves the performance of automated scoring, it also
reduces its comparative advantage by being more time
consuming. Furthermore, although good agreement
was observed between the automated and the CAV
scores, misclassification of malignant as benign ductal
epithelial or stromal cells and/or positively staining as
negatively staining malignant cells is likely to lead to
the underestimation of relationships between Ki67 and
other pathology markers, risk factors and/or survival
outcomes. Misclassification can result from a number
of factors including the inability of the automated meth-
ods to distinguish between benign and malignant epi-
thelial cells and quality control issues. Future work is
thus needed to improve the detection of cancer cells by
automated methods, and to develop automated meas-
ures of quality control, such as total nuclear count,
intensity values, proportion of poor quality cores/TMA
etc. For instance, we observed that TMA spots with
extremely low total nuclei counts (<50) were mostly
those in which no tissue core was present; that those
with Ki67 scores of exactly 100% were mostly those
with staining problems; and that those with spuriously
high total nuclei counts (>15,000) were mostly lymph
nodes showing occasional metastatic foci of malignant
cells. Based on these observations, we believe that
‘automation-derived quality control indices’ can be
developed and, if validated, used a priori for the defini-
tion of core/TMA exclusion and/or inclusion criteria.
Lastly, even though the Ariol system is not widely
available, increasing compatibility between platforms
coupled with the gradual rise in the number of open
source software should allow for the application of
automated systems on a wider scale [29,56].

In conclusion, investigating aetiological and prog-
nostic heterogeneity among IHC defined subtypes of
breast cancer requires the incorporation of measures
of Ki67 and other IHC markers in large-scale collab-
orative molecular epidemiological studies. Even
though high-throughput and reproducible, concerns
remain about the accuracy of automated methods and
the quality of the data derived when such methods
are used on a large-scale. Here, we have shown that
when applied to the large-scale scoring of Ki67 in
breast cancer TMAs from different populations, auto-
mated systems constitute highly efficient methods for
generating good quality data. However, concerted
efforts at algorithm development together with rigor-
ous pre-analytical quality control processes are neces-
sary to ensure satisfactory performance.
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SUPPLEMENTARY MATERIAL ONLINE

Table S1. Immunohistochemistry reagents and antigen retrieval protocols

Table S2. Core (N 5 202) and subject (N 5 101) level inter-rater agreement and agreement between the CAV protocol and each scorer with
the Ariol automated quantitative Ki67 scores

Table S3. Colour parameters (hue, saturation, intensity) for distinguishing negative (haematoxylin) and positive (DAB) nuclei using the Ariol

automated scoring algorithm for TMA-specific classifiers – TMA 1–15, and Universal classifier

Table S4. Shape parameters (spot width, width, compactness, roundness and axis ratio) for distinguishing negative (haematoxylin) from posi-

tive (DAB) nuclei using the Ariol automated scoring algorithm for TMA-specific classifiers – TMA 1–15, and Universal classifier

Table S5. Cross-tabulation of visual and automated Ki67 scores (TMA’s 1–15 and overall)

Figure S1 (TMAs 1–15 & overall). Graphs comparing the ROC curves for the discriminatory accuracy of the automated continuous Ki67

scores against categories of the visual score by classifier type (TMA-specific and universal) among each of the 15 TMAs in the training set

and overall

Figure S2 (TMAs 1–15 & overall). Graphs comparing the ROC curves for the discriminatory accuracy of the automated continuous scores

against categories of the visual score by QC status among all 15 TMAs in the training set and overall

Figure S3. ROC curves, by total nuclei count, for the discriminatory accuracy of the automated quantitative Ki67 scores against categories of

the visual score

Figure S4. Distribution of total nuclei counted by the machine for the TMA-specific and universal classifiers among the 15 TMAs in the train-
ing set and overall

Figure S5. Distribution of the subject level (N 5 9,059) Ki67 score among (A) the different study groups, (B) according to whether the TMAs

were stained at the ICR or in an external location, (C) among study groups whose TMAs were stained at the ICR and (D) among study groups

whose TMAs were stained in an external location

Figure S6. Screengrab for a representative core in which discrepancy (ie, visual category 1 and Ariol category 4) between visual and auto-

mated scores was observed. The most common causes of ‘false positive’ by the machine are related to quality control: more specifically, the

presence of background staining, core folding and membrane (instead of nuclear) staining. Of these, membrane staining was more prevalent

and was observed in 8.7% of the cores

Figure S7. Screengrab for a representative core in which discrepancy (ie, visual category 4 and Ariol category 1) between visual and auto-

mated scores was observed. The most common causes of ‘false negatives’ by the machine include marked lymphocytic infiltration with only

occasional nests of invasive malignant cells, poor fixation, nuclear halo, and very low intensity DAB
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