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10 Abstract

11 Thousand-and-one amino acid kinases (TAOK) 1 and 2 are
12 activated catalytically duringmitosis and can contribute tomitotic
13 cell rounding and spindle positioning. Here, we characterize a
14 compound that inhibits TAOK1 and TAOK2 activity with IC50

15 values of 11 to 15 nmol/L, is ATP-competitive, and targets these
16 kinases selectively. TAOK inhibition or depletion in centrosome-
17 amplified SKBR3 or BT549 breast cancer cell models increases the
18 mitotic population, the percentages of mitotic cells displaying
19 amplified centrosomes and multipolar spindles, induces cell
20 death, and inhibits cell growth. In contrast, nontumorigenic and
21 dividing bipolar MCF-10A breast cells appear less dependent on
22 TAOK activity and can complete mitosis and proliferate in the
23 presence of the TAOK inhibitor. We demonstrate that TAOK1 and
24 TAOK2 localize to the cytoplasm and centrosomes respectively
25 during mitosis. Live cell imaging shows that the TAOK inhibitor

27prolongs the duration of mitosis in SKBR3 cells, increases mitotic
28cell death, and reduces the percentages of cells exiting mitosis,
29whereas MCF-10A cells continue to divide and proliferate. Over
3080% of breast cancer tissues display supernumerary centrosomes,
31and tumor cells frequently cluster extra centrosomes to avoid
32multipolar mitoses and associated cell death. Consequently,
33drugs that stimulate centrosome declustering and induce multi-
34polarity are likely to target dividing centrosome-amplified cancer
35cells preferentially, while sparing normal bipolar cells. Our results
36demonstrate that TAOK inhibition can enhance centrosome
37declustering and mitotic catastrophe in cancer cells, and these
38proteins may therefore offer novel therapeutic targets suitable for
39drug inhibition and the potential treatment of breast cancers,
40where supernumerary centrosomes occur Q5. Mol Cancer Ther; 1–12.
41�2017 AACR.

42

43 Introduction
44 Thousand-and-one amino acid kinases (TAOK, also referred to
45 as PSKs) belong to the sterile 20 (STE20) group of kinases, and
46 subfamily members include TAOK1, TAOK2, and TAOK3 (1–6).
47 TAOKs can regulate MAPK signaling pathways, and TAOK1 or
48 TAOK2, but not TAOK3, stimulate c-Jun N-terminal kinase (JNK)
49 and p38MAPKs (1–5). TAOK1 and TAOK2 also induce apoptotic
50 morphologic changes via their activation of JNK MAPK and
51 caspases (4, 5). Additional studies have shown that TAOKs can
52 regulate microtubule (MT) dynamics and organization (7–9).

54TAOK1 induces MT instability via activation of MT-affinity–
55regulating kinase (MARK/PAR-1) and phosphorylation of the
56MT-associated protein tau, which dissociates from MTs, resulting
57in their disassembly (8–11). TAOK2 can bind to MTs via its
58C terminus (amino acids 745–1235) and produces stabilized
59perinuclear MT cables that are nocodazole-resistant (7). TAOKs
60appear to be activated during MT-dependent processes when
61increases in MT dynamics occur, and these events include mitosis
62and neuritogenesis (12, 13). Our recent work using small-inter-
63fering RNA (siRNA) to deplete TAOK1 or TAOK2 has shown that
64these proteins are required for mitotic cell rounding and spindle
65positioning, consistent with functional roles for these proteins in
66regulating MTs and mitosis (12).
67Many cancer drugs are antiproliferative and disruptMTs during
68cell division and include the original antimitotic drugs such as
69taxanes and vinca alkaloids (14, 15). Perturbation of the mitotic
70spindle results in erroneous chromosome alignment and activa-
71tion of the spindle-assembly checkpoint, which prevents mitotic
72progression and results in cell death (16, 17). Mitotic catastrophe
73provides an onco-suppressive mechanism that is activated during
74or after defective mitosis and results in cell death or senescence
75that is distinct from apoptosis (18, 19). Cell death may occur
76during mitosis or after premature slippage out of mitosis, or
77alternatively, cells may become senescent in the subsequent G1

78phase of the cell cycle followingmitotic slippage (18, 19). Mitotic
79catastrophe therefore provides a mechanism for avoiding
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82 genomic instability; however, its induction may also provide a
83 therapeutic opportunity whereby drugs and MT poisons disrupt
84 themitoticmachinery and induce cancer cell death. Conventional
85 MT-targeting drugs such as docetaxel, paclitaxel, and epothilones,
86 have proven to be clinically effective and are relatively cancer
87 specific, but these compounds are also prone to debilitating side
88 effects, and patient relapse commonly occurs due to drug resis-
89 tance (14, 20, 21). Consequently, current efforts are underway to
90 develop a new generation of mitosis-selective drugs that are
91 designed to inhibit proteins with essential roles inmitosis. Classic
92 mitotic kinases such as the cyclin-dependent kinases, Polo-like
93 kinases, and Aurora kinases have been targeted already and
94 showed efficacy in recent clinical trials; however, these drugs also
95 appear to have limited efficacy in solid tumors and can cause
96 severe side effects (22–25).
97 Additional strategies are now required to target cancer-specific
98 events that are essential for tumor cell survival. Many solid and
99 hematologic cancers exhibit supernumerary centrosomes, and
100 tumor cells often cluster extra centrosomes to produce a func-
101 tional bipolar-like spindle. Drugs that induce declustering of
102 centrosomes and stimulate multipolar mitosis and cell death
103 could therefore target and kill cancer cells selectively. Here, we
104 have characterized a small-molecule inhibitor of the TAOK family
105 of protein kinases and shown that TAOK inhibition can increase
106 centrosome declustering, delay mitotic progression, and induce
107 mitotic catastrophe in centrosome-amplified SKBR3 breast cancer
108 cells. In contrast, nontumorigenic and bipolar MCF-10A breast
109 cells appear more resistant to the TAOK inhibitor and continue to
110 divide in its presence.

111 Materials and Methods
112 Reagents and antibodies
113 PRK5-MYC vector, pRK5-MYC-TAOK1, pRK5-MYC-TAOK1
114 (K57A), pRK5-MYC-TAOK2, and pRK5-MYC-TAOK2 (K57A)
115 were made as described previously (1, 5). PCMV-FLAG-JNK1 was
116 a gift from Dr. M. Karin (University of California, USA). siRNA
117 oligonucleotide sequences targeting TAOK1 (#1 and #4) or
118 TAOK2 (#1 and#4)were described previously (12). Recombinant
119 TAOK1 (1-319) and TAOK2 (1-319) were purchased from Sig-
120 nalChem (#T24-11G, #T25-11G). Rabbit TAOK1 or TAOK2 anti-
121 bodies were obtained from Proteintech (#26250, #21188),
122 and TAOK-pS181 antibody was produced by Eurogentec (4).
123 Rabbit anti-FLAG and mouse anti–a-tubulin (DM1A) or anti-
124 MYC antibodies and DAPI were obtained from Sigma-Aldrich
125 (#F7425, #T9026, #M5546), and rabbit anti–JNK-pT183/Y185
126 antibodywaspurchased fromCell Signaling Technology (#9251).
127 Mouse anti-GFP antibodies were obtained from Millipore
128 (#MAB3850). Rabbit anti-pericentrin and anti–a-tubulin anti-
129 bodies were purchased from AbCam (#ab44481, #ab18251).
130 Goat anti-rabbit Alexa-Fluor568 and Goat anti-mouse Alexa-
131 Fluor488 antibodies were obtained from ThermoFisher Scien-
132 tific (#A11036, #A11029).

133 Cell culture and overexpression or knockdown of TAOKs
134 Cell lines were obtained from the ATCC (2008) and authen-
135 ticated with karyotyping and short tandem repeat DNA profiling
136 (2014). Cells were frozen within 4 weeks of purchase and used
137 within 10 weeks after resuscitation and media checked routinely
138 for mycoplasma using DAPI staining. MCF10-A cells were grown
139 inDMEM/F12Hammedium containing 5%horse serum (Sigma-
140 Aldrich, #H1138), 20 ng/mL EGF (Sigma-Aldrich, #E4127),

142100 ng/mL cholera toxin (Sigma-Aldrich, #C8052), 500 ng/mL
143hydrocortisone (Sigma-Aldrich, #H4001), and 10 mg/mL insulin
144(Sigma-Aldrich, #I9278). SKBR3 cells were maintained in
145McCoy's/5A medium supplemented with 10% FCS. COS1 cells
146were grown in DMEM supplemented with 10% FCS. BT549 cells
147were grown in RPMI containing 10 mg/mL insulin and 10% FCS
148(ThermoFisher #10270). All media contained antibiotics and
149cultures grown in a humidified atmosphere (10% CO2, 37�C).
150For soft-agar growth and colony formation assays, cells were
151plated in growth medium and 0.3% SeaPlaque low-melting
152agarose (Lonza, #50101). The bottom layer was made up of
153growth medium and 0.6% agarose. Colonies were stained with
1540.005% crystal violet. For transfection, cells were treated with the
155indicated plasmids and Lipofectamine 2000 according to the
156manufacturer's instructions (ThermoFisher Scientific, #1166027).
157For TAOK depletion experiments, growing cells were treated with
158the indicated siRNA(50nmol/L) oligonucleotides targeting TAOKs
159andHiPerFect (Qiagen, #301705) asdescribedpreviously, and cells
160on the culture plate and in the media pooled to determine cell
161numbers (12).

162Immunoprecipitation and Western blot analysis
163Transfected COS1 cells were incubated for 22 hours and then
164extracted in lysis buffer (500 mL; ref. 12). For immunoprecipita-
165tion, samplesweremixedwith 15mLofmouse anti–FLAG-agarose
166beads (Sigma-Aldrich, #A2220) for 2 hours/4�C and thenwashed
167in lysis buffer (x4) and bead pellets extracted in gel sample buffer.
168Protein extracts were resolved by SDS-PAGE (10%) followed by
169immunoblotting with the indicated antibodies, and blot patterns
170were analyzed using ECL and densitometry (1).

171Flow cytometry
172Cells were treatedwith compound 43 (10mmol/L or equivalent
173DMSO) for 24 to 72hours. To determine themitotic fraction, cells
174were fixed with 2% PFA/PBS for 10 minutes, permeabilized with
17590% methanol, and blocked in 0.5% BSA/PBS before staining
176with Alexa-Fuor488-histoneH3-pS10 antibody (Cell Signaling
177Technology #3465, 1 hour). Cells were then washed twice and
178stained with propidium iodide (PI). To assess apoptosis, FITC–
179AnnexinVantibody (ThermoFisher Scientific #A13201)was used.
180Cells were resuspended in Annexin-binding buffer and stained
181with 5 mL of FITC–Annexin V antibody and PI for 30 minutes.
182Fluorescence from both assays was measured using a FACS Canto
183II flow cytometer (BD Technologies).

184Immunostaining, confocal, and time-lapse video microscopy
185Growing cells on coverslips were fixed with ice-cold methanol
186(5 minutes/4�C) or 4% paraformaldehyde/PBS (15minutes/RT).
187Alternatively, SKBR3 cells containing doxycycline-inducible pRe-
188troX-TRE3G-GFP-TAOK plasmids were seeded on poly-L-lysine–
189coated coverslips and incubated with 10 ng/mL doxycycline
190(Sigma-Aldrich, #D9891) for 24 hours before fixation. Samples
191were costainedwith the indicated antibodies andDAPI (3mmol/L)
192and processed as described previously (12), and cells imaged
193using a CSU-X1–inverted spinning-disk confocal microscope
194(Nikon) equipped with a EM-CCD camera (Andor iXon3) and
195a 100x/1.40 NA oil objective (Nikon). Z-stacks were taken using a
1960.3 mm step size. For time-lapse video imaging and mitotic cell
197analysis, MCF-10A or SKBR3 cells expressing GFP-a-tubulin con-
198stitutively were seeded onto a 24-well plate (Ibidi) and incubated
199overnight. Cultures were treated with compound 43 or DMSO as
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202 indicated and imaged at 15-minute intervals over a 48-hour
203 period. Time-lapse imaging was carried out using an Eclipse Ti-
204 E Invertedmicroscope (Nikon), equipped with a 20x air objective
205 (Nikon), a cooled CCD camera (CoolSNAPHQ2, Photometrics),
206 and a climate-controlled chamber (37�C/5% CO2). The time of
207 mitotic duration (nuclear envelope breakdown to cytokinesis)
208 and mitotic catastrophe or exit from mitosis was determined by
209 visual inspection and scoring of >120 individual cells per condi-
210 tion and for each experiment (n ¼ 3).

211 TAOK inhibitor compounds
212 Compounds 43 and 63 were synthesized by Evotec Limited
213 (UK) and characterized using KinaseProfiler services provided by
214 Eurofins (Supplementary Methods).

215 Statistical analysis
216 Graphs and statistical analysis one-way or two-way ANOVA
217 followed by a Bonferroni correctionwere performed usingGraph-
218 Pad, and results are presented as mean � SD.

219 Results
220 Identification and synthesis of small-molecule
221 inhibitors for TAO kinases
222 Our previous studies have used siRNA to demonstrate that
223 TAOK1 and TAOK2 expression in HeLa cells is required for
224 mitotic cell rounding and spindle positioning, and these results
225 suggest that small-molecule TAOK inhibitors are likely to
226 perturb malignant cell division (12). Currently, no effective
227 TAOK inhibitors have been reported in the literature; however,
228 Exelixis Inc. have patented several compounds that may inhibit
229 TAOKs with IC50 values � 50 nmol/L (WO2005/040355A2;
230 ref. 26). Two of these compounds were synthesized for this
231 study by Evotec and include N-[2-oxo-2-(1,2,3,4-tetrahydro-
232 naphthalen-1-ylamino)ethyl]biphenyl-4-carboxamide (referred
233 to hereafter as compound 43 using Exelixis Inc. nomenclature)
234 and N-{3-[(2-{[6-methoxy-1,3-benzothiazol-2-yl]amino}-2-
235 oxoethyl)amino]-3-oxo-1-phenylpropyl}benzamide (referred
236 to hereafter as compound 63; Fig. 1A).

237 Compounds 43 and 63 inhibit TAOK activity in vitro
238 Initial experiments were set out to confirm that both com-
239 pounds could inhibit TAOK catalytic activity in in vitro kinase
240 assays. Purified TAOKs were incubated with concentrations of
241 compound 43 or 63 between 0 and 30 mmol/L; both com-
242 pounds inhibit MBP phosphorylation by TAOK1 or TAOK2
243 potently (Fig. 1B). Calculated IC50 values for TAOK inhibition
244 by compound 43 were 11 nmol/L for TAOK1 and 15 nmol/L for
245 TAOK2 (Fig. 1B). Compound 63 also inhibited TAOK activity
246 with IC50 values of 19 nmol/L for TAOK1 and 39 nmol/L for
247 TAOK2 (Fig. 1B).

248 Compounds 43 and 63 inhibit TAOK activity selectively
249 The specificity of compound inhibition for TAOKs was
250 examined by repeating in vitro kinase assays using 70 different
251 kinases. TAOK1 or TAOK2 retained 8% and 11% of their
252 activity, respectively, when incubated in the presence of com-
253 pound 43 (0.3 mmol/L) and compared with control samples
254 (Fig. 1C). Of the other kinases examined here, TAOK3 was
255 inhibited and retained 13% activity. Three structurally related
256 STE20 family members, LOK (48% activity retained), TAK1
257 (53% activity retained), and PAK2 (79% activity retained), were

259also inhibited by compound 43, albeit to a lesser extent than the
260TAOKs. In addition, EphB4 (61% activity retained) and Aurora-
261B (82% activity retained) are inhibited partially by this small
262molecule; however, the remaining 62 kinases tested here
263retained � 80% of their activity in the presence of compound
26443 (Fig. 1C and Supplementary Table S1). TAOK1 or TAOK2
265also retained 11% of their activity, when incubated with com-
266pound 63 (0.3 mmol/L) and compared with control samples
267(Fig. 1C). Of the other kinases analyzed, TAOK3 was inhibited
268and retained 13% of activity, whereas ALK retained 64% activ-
269ity, CDK9 retained 67% activity, SAPK2a and RSK1 retained
27077% activity, and DRAK1 retained 70% activity, in the presence
271of compound 63 (Fig. 1C). Sixty-two other kinases retained �
27280% of their activity when incubated with compound 63 (Fig.
2731C and Supplementary Table S1). Notably, the mitotic kinases
274Aurora A and B, Plk1 and 3, as well as CDK1 and 2 retain�80%
275of their catalytic activity with either compound (Fig. 1C). These
276results demonstrate that compounds 43 and 63 inhibit the
277catalytic activity of TAOKs selectively, when compared with
278their effects on alternative kinases.

279Compounds 43 and 63 are ATP-competitive inhibitors
280of TAOK activity
281ATP-competitive binding assays were carried out to investi-
282gate the mechanism of action for both TAOK inhibitors. In vitro
283kinase assays were repeated using nine concentrations of either
284compound 43 or 63 (between 0 and 1 mmol/L), ATP (1, 10, or
285155 mmol/L), and purified TAOK1 or TAOK2. For compound
28643, increasing [ATP] from 10 to 155 mmol/L raised the calcu-
287lated IC50 values from 5 to 139 nmol/L for TAOK1, and from
2887 to 137 nmol/L for TAOK2 (Supplementary Fig. S1A). For
289compound 63, increasing [ATP] from 10 to 155 mmol/L raised
290the calculated IC50 values from 20 to 170 nmol/L for TAOK1,
291and from 28 to 221 nmol/L for TAOK2 (Supplementary Fig.
292S1B). Both compounds are therefore ATP-competitive inhibi-
293tors of TAOK1 or TAOK2 activity.

294Compound 43 inhibits TAOK stimulation of JNK in cells
295Exogenous TAOK1 or TAOK2 can stimulate the phosphory-
296lation and activation of JNK MAPK in cells, and this down-
297stream response to these kinases was used here to test whether
298the compounds could inhibit TAOK activity in cells (1, 5).
299COS1 cells were cotransfected with FLAG-tagged JNK and MYC-
300tagged TAOK1 or TAOK2 and cultures incubated with com-
301pound. FLAG-tagged JNK was immunoprecipitated from cell
302lysates and changes in the phosphorylation and activation of
303FLAG-JNK determined by immunoblotting samples with the
304antiactive phospho-JNK-pT183/Y185 antibody. Exogenous
305TAOK1 or TAOK2 stimulation of JNK phosphorylation was
306inhibited by compound 43 at �10 mmol/L and the levels of
307JNK-pT183/Y185 reduced to those present in control cells
308transfected with empty vector or kinase-defective TAOK1
309(K57A) or TAOK2 (K57A; Fig. 2A and B). These results dem-
310onstrate that compound 43 can inhibit TAOK stimulation of
311JNK phosphorylation in cells. In contrast, compound 63 was
312unable to prevent the stimulation of JNK phosphorylation by
313exogenous TAOK1 or TAOK2 in transfected cells, indicating
314that this small molecule may not be suitable for targeting and
315inhibiting TAOK activity in cells (Supplementary Fig. S1C).
316Consequently, all further experiments were carried out using
317compound 43.

TAOK Inhibitor Compound Targets Mitotic Breast Cancer Cells
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320 TAOKs localize to the cytoplasm and centrosomes
321 during mitosis
322 Supernumerary centrosomes are a common feature of high-
323 grade and invasive cancers, and a number of breast cancer
324 cell lines were screened to identify appropriate models to
325 represent this aberrant phenotype (27, 28). Cultures were fixed
326 and costained with antibodies to detect pericentrin (centro-
327 somes) and a-tubulin (MTs) plus DAPI (DNA), and significant
328 centrosome amplification (CA, >2) was observed in dividing
329 SKBR3 (38% � 2% of mitotic cells) and BT549 (31% � 1.6%)
330 breast cancer cells (Supplementary Fig. S2A). In contrast, non-
331 tumorigenic MCF-10A breast cells were predominantly bipolar,
332 and 6% � 2% of the cell population displayed CA (Supple-
333 mentary Fig. S2A). Each cell model was also immunostained for
334 phosphorylated and catalytically active TAOK-pS181 (12, 29),
335 which was detected in the cytoplasm and at the centrosomes
336 of mitotic cells but absent in interphase cells (Supplementary
337 Fig. S2B). Noticeably, TAOK-pS181 associated with additional
338 vesicular structures in MCF-10A cells, which are cell type specific
339 but remain to be identified (Supplementary Fig. S2B). TAOK1 and
340 TAOK2 localization in mitotic SKBR3 cells was investigated fur-
341 ther by inducing the expression of exogenous GFP-tagged TAOK
342 proteins. TAOK1 and TAOK-pS181 colocalize in the cytoplasm

344(Fig. 3A), whereas TAOK2 and TAOK-pS181 colocalize with
345pericentrin at centrosomes (Fig. 3B). TAOK1 and TAOK2 are
346therefore both catalytically active during mitosis but localize to
347different cellular sites.

348The TAOK inhibitor increases the mitotic population and
349enhances centrosome and spindle abnormalities in CA cells
350The requirement for TAOK activity during mitosis was inves-
351tigated by treating centrosome-amplified or bipolar cell models
352with compound 43 and determining changes in cell-cycle distri-
353bution using flow cytometry. The percentages of total CA SKBR3
354cells in mitosis increased from 1.28% � 0.22% to 13.54% �
3550.27% after 24 hours of incubation with the TAOK inhibitor
356and declined thereafter (Fig. 4A, bar chart). The percentages of CA
357BT549 cells in mitosis also increased from 3.01% � 0.67% to
3589.42% � 1.0% following treatment with compound 43 for 24
359hours (Fig. 4A). In contrast, the percentages of bipolar and
360nontumorigenic MCF-10A cells in mitosis were 3.82% �
3610.43% when cultures were incubated for 24 hours with com-
362pound 43 (Fig. 4A). Analysis of immunostained mitotic cells by
363confocal microscopy showed that the percentages of mitotic
364SKBR3 and BT549 cells displaying abnormal centrosomes (>2)
365or multipolar spindles also increased following treatment with

Figure 1.

Small-molecule inhibitors for TAOKs.
A, Chemical structure of compounds
43 and 63. B, Calculated IC50 values for
compounds 43 and 63 and their
inhibition of MBP phosphorylation by
TAOKs.C,Effects of compound43or 63
(0.3 mmol/L) on the catalytic activity of
different kinases and phosphorylation
of their substrate relative to control
samples (n ¼ 2Q6 ).

Koo et al.
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368 compound 43, whereas no significant change in either phenotype
369 was observed when the TAOK inhibitor was added to MCF-10A
370 cells (Fig. 4B andC). Furthermore, siRNAdepletionof TAOK1and
371 TAOK2 expression together but not separately increased the
372 percentages of mitotic SKBR3 or BT549 cells exhibiting abnormal
373 centrosomes (>2), whereas knockdown of either TAOK1 or
374 TAOK2 was sufficient to enhance the occurrence of multipolar

376spindles (Fig. 4D and E). None of these changes were apparent in
377mitoticMCF-10A cells with depleted expression of TAOK1 and/or
378TAOK2 (Fig. 4D and E). Knockdown of TAOK expression was
379confirmed in all experiments by immunoblotting cell lysates
380(Supplementary Fig. S3). CA SKBR3 and BT549 breast cancer
381cells therefore appear more dependent on TAOK activity during
382mitosis than nontumorigenic and bipolar MCF-10A cells.

Figure 2.

Compound 43 inhibits phosphorylation and activation of JNK by TAOKs in cells. COS1 cells were cotransfected with FLAG-JNK and either (A) pRK5-MYC
(MYC-Empty Vector), pRK5-MYC-TAOK1, or pRK5-MYC-TAOK1 (K57A) or (B) pRK5-MYC, MYC-TAOK2, or MYC-TAOK2 (K57A), and treated with compound
43 (0–60 mmol/L) as indicated. After 24 hours, FLAG-JNKwas immunoprecipitated from cell lysates and bead pellets immunoblotted for FLAG-JNK-pT183/Y185 or
total FLAG-JNK. Cell lysates were also immunoblotted for expression of transfected FLAG-JNK, MYC-TAOK1, or MYC-TAOK2. A and B, Changes in
immunoprecipitated FLAG-JNK-pT183/Y185 band intensity relative to total FLAG-JNK (100%) are shown. �� , P < 0.01; n ¼ 3.

TAOK Inhibitor Compound Targets Mitotic Breast Cancer Cells
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385 The TAOK inhibitor prolongs mitosis and promotes cell death
386 in dividing SKBR3 cells
387 To investigate the effects of the TAOK inhibitor during mitosis,
388 we prepared MCF-10A and SKBR3 cell lines expressing GFP-
389 a-tubulin constitutively and used time-lapse video microscopy.

391Detailed image analysis showed that SKBR3 cells displayed
392a mixed mitotic phenotype where 38% � 1.2% of dividing
393cells exhibited supernumerary centrosomes and the remaining
39462% � 2% of cells contained two centrosomes and were bipolar.
395Consequently, bipolar or multipolar SKBR3 cells were scored

Figure 3.

TAOK1 and TAOK2 localize to the cytoplasm and
centrosomes respectively duringmitosis. SKBR3 cells
expressing (A) GFP-TAOK1 or (B) GFP-TAOK2
were fixed and costained with antibodies to detect
TAOK1, TAOK2, TAOK-pS181, a-tubulin, pericentrin
plus DAPI. Representative confocal images are
shown. Scale bar, 10 mm.

Koo et al.
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Figure 4.

TAOK inhibition increases the mitotic population and the frequency of CA and multipolarity in dividing SKBR3 and BT549 cells. MCF-10A, SKBR3, and BT549
cells were treated with or without compound 43 (10 mmol/L, 24 or 48 hours, A–C) or transfected with siRNA (48 hours, D and E) as indicated. A, Cultures
were stained with Alexa-Fluor488-histoneH3-pS10 antibody (mitosis) and PI (DNA). Flow cytometric profiles of cell-cycle distribution are presented in a
representative figure and mitotic cells boxed (M). Quantitative analysis of FACS data and changes in % of cells in mitosis are shown. B and C, Cells were fixed
and stained with pericentrin and a-tubulin antibodies plus DAPI and % mitotic cells with >2 centrosomes (B) or with multipolar spindles (C) determined.
D and E, Cultures were transfected with nontargeting siRNA (siControl) or individual oligonucleotides targeting TAOK1 (siT1-1, siT1-4) or TAOK2 (siT2-1, siT2-4).
After 48 hours, cultures were fixed and stained with pericentrin and a-tubulin antibodies plus DAPI and % mitotic cells with >2 centrosomes (D) or multipolar
spindles (E) determined. Note that >150 mitotic cells were analyzed in each experiment. � , P < 0.05; �� , P < 0.01; and ��� , P < 0.001; n ¼ 3.

TAOK Inhibitor Compound Targets Mitotic Breast Cancer Cells
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398 separately. Each cell culture well was imaged for 48 hours, and
399 the length of time taken between nuclear envelope breakdown
400 and cytokinesis measured for individual cells. Both cell models
401 divide and proliferate under control conditions, although the
402 time taken to complete mitosis was longer in SKBR3 than MCF-
403 10A cells (Fig. 5A). Live cell imaging also showed that MCF-10A
404 cells divide and progress through mitosis in a normal time frame
405 when incubated with or without compound 43 in the culture
406 medium (Fig. 5B and Supplementary Movies S1 and S2 showing
407 representative videos). In contrast, additionof the TAOK inhibitor
408 to SKBR3 cells caused significant increases in the average duration
409 of mitosis in bipolar SKBR3 cells from 89.7 to 465.8 minutes and
410 from 168.3 to 634.3 minutes in multipolar SKBR3 cells (Fig. 5B
411 and Supplementary Movies S3 and S4 showing representative
412 videos). Further analysis of these videos recording the progression
413 of individual SKBR3 cells through mitosis showed that com-
414 pound 43 caused 19% � 12% of bipolar cells or 53% � 14%
415 of multipolar cells to undergo death inmitosis, while the remain-
416 ing cells exited mitosis and some of these cells are likely to
417 undergo cell death or senescence in the subsequent G1 phase
418 (Fig. 5C). Notably, the average length of time that MCF-10A cells

420spend in mitosis did not change significantly in the presence of
421compound43 (55�4.4minutes), and these cells remained viable
422and continued to proliferate (Fig. 5B and Supplementary Movies
423S1 and S2).

424The TAOK inhibitor induces cell death and inhibits
425growth of SKBR3 cells
426The live imaging results suggest that CA SKBR3 cells are more
427dependent on TAOK activity for their survival and division
428than MCF-10A cells. Consequently, the effects of the TAOK
429inhibitor on MCF-10A and SKBR3 cell viability were investigated
430next using Annexin V staining andflow cytometry. Treatmentwith
431compound 43 caused a significant increase in the percentages
432of total SKBR3 cells undergoing cell death from 14.8% � 1.9%
433(control) to 30.5% � 5.4% (24 hours) and 42.4% � 4.9% (48
434hours; Fig. 6A, bar chart). In contrast, the percentages of total
435MCF-10A cells undergoing apoptosis were 13.0% � 3.4% (con-
436trol) and increased to 15.1% � 2.9% (24 hours) and 22.6% �
4373.8% (48 hours) after treatment with the TAOK inhibitor
438(Fig. 6A). The effect of the TAOK inhibitor on the growth of
439MCF-10A, SKBR3, and BT549 cells was also investigated. Each cell

Figure 5.

Compound 43 prolongs mitosis and causes death in dividing SKBR3 cells. MCF-10A or SKBR3 cells expressing fluorescent GFP-a-tubulin were monitored using
time-lapse video microscopy and individual mitotic cells analyzed. A and B, Results showing the time taken for MCF-10A or SKBR3 (bipolar or multipolar)
cells to complete mitosis in the absence or presence of compound 43 (5 mmol/L). Scale bar, 10 mm. ��� , P < 0.001. C, The percentages of dividing SKBR3 cells
undergoing death in mitosis or exiting mitosis in the presence of compound 43 (48 hours). Note that >120 mitotic cells were analyzed for each condition
and per experiment (n ¼ 3). Representative time-lapse images are shown in Supplementary Movies S1–S4.
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Figure 6.

TAOK inhibition reduces SKBR3 cell viability and growth. A,MCF-10A or SKBR3 cells were incubated without (control) or with compound 43, fixed and stained with
Alexa-Fluor488–Annexin V (apoptosis) and PI (DNA), and analyzed by FACS to identify live cells (V), early (E), or late (L) apoptotic cells or necrotic (N) cells. A
representative figure and quantitative analysis of FACS data are shown. B, MCF-10A, SKBR3, or BT549 cells were incubated with compound 43 (10 mmol/L)
where indicated and cells detached after 72 hours and counted.C,MCF-10A, SKBR3, or BT549 cellswere transfectedwith nontargeting siRNA (siControl) or individual
oligonucleotides targeting TAOK1 (siT1-1, siT1-4) or TAOK2 (siT2-1, siT2-4) as indicated and cells detached (72 hours) and counted. D, MCF-10A or SKBR3 cells
were incubated with or without compound 43 (10 mmol/L) as indicated. After 21 days, colony numbers per plate were determined relative to control cultures (100%).
� , P < 0.05; �� , P < 0.01; and ��� , P < 0.001; n ¼ 3.
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442 line was incubated with or without compound 43, and cell
443 numbers determined after 72 hours. Compound 43 reduced
444 SKBR3 and BT549 cell numbers per dish by 94% � 3% or 82%
445 � 1.9%, respectively, when compared with untreated control
446 cultures (Fig. 6B). In comparison, MCF-10A cell numbers were
447 reduced by 46% � 10.3%, when compared with untreated cells
448 (Fig. 6B). SiRNA depletion of either TAOK1 or TAOK2 expression
449 also caused significant reductions in SKBR3 and BT549 cell
450 numbers when compared with control cultures (Fig. 6C), whereas
451 MCF-10A cell numbers were not significantly reduced following
452 depletion of TAOK1 and/or TAOK2, and these cells continued to
453 grow (Fig. 6C and Supplementary Fig. S3). SiRNAs targeting
454 TAOK1 and TAOK2 did not completely abolish protein expres-
455 sion, and this approach was less effective than compound 43 in
456 inhibiting CA cell growth (Supplementary Fig. S3). The effect of
457 compound 43 on soft-agar growth of MCF-10A and SKBR3 cells
458 was also compared over 21 days; the TAOK inhibitor decreased
459 colony numbers by 28% or 94%, respectively (Fig. 6D). Taken
460 together, these results show that CA SKBR3 or BT549 breast cancer
461 cells are more dependent on TAOK activity for their viability and
462 growth when compared with nontumorigenic and bipolar MCF-
463 10A breast cells.

464 Discussion
465 Previous reports describing small-molecule inhibitors for
466 TAOKs are limited but have indicated that the protein kinase C
467 inhibitor staurosporine inhibits TAOK2 with an IC50 value of
468 3 mmol/L and the mammalian STE20-like kinase 1 inhibitor 9E1
469 reduces TAOK2 activity with an IC50 value of 0.3 mmol/L (30, 31).
470 However, staurosporine and 9E1 were shown to inhibit many
471 other kinases more potently. A recent high-throughput screen
472 has also identified two compounds, SW034538 and SW083688,
473 that inhibit TAOK2 activity with IC50 values of 300 nmol/L and
474 1.3 mmol/L, respectively; however, further biological characteri-
475 zation of both small molecules is required (32). In this study,
476 we have shown that compounds 43 and 63 act potently to inhibit
477 the activity of TAOK1 and TAOK2 with IC50 values of 11 to
478 15 nmol/L and 19 to 39 nmol/L, respectively, and are ATP-
479 competitive and inhibit the catalytic activity of these kinases
480 preferentially in an assay of 70 kinases. Moreover, activation of
481 JNKMAPKby exogenous cellular TAOK1 or TAOK2was inhibited
482 by compound 43, demonstrating that this small molecule is an
483 effective inhibitor for TAOKs.
484 Supernumerary-amplified centrosomes typify high-grade or
485 invasive breast cancer tissues, and appropriate cell models were
486 selected here to represent the aberrant or normal phenotypes
487 (27, 28, 33, 34). Immunostaining experiments showed that
488 TAOKs are phosphorylated and activated specifically duringmito-
489 sis and that TAOK1 and TAOK2 localized to the cytoplasm or
490 centrosomes, respectively (12). Inhibition or depletion of TAOKs
491 increased the mitotic population and enhanced the occurrence of
492 supernumerary centrosomes and multipolar spindles in dividing
493 CA SKBR3 and BT549 cells. In contrast, bipolar and nontumori-
494 genic MCF-10A cells remained bipolar and continued to prolif-
495 erate. Live cell imaging of SKBR3 cells treated with compound 43
496 showed that the duration of mitosis increased and that these cells
497 either failed to exit mitosis and underwent cell death inmitosis or
498 exitedmitosis after a significant delay. A subpopulation of SKBR3
499 cells that undergo bipolar mitosis was also susceptible to the
500 TAOK inhibitor, and a significant proportion of these cells also

502underwent prolonged mitosis and died. In contrast, MCF-10A
503cells appeared less dependent on TAOK activity and completed
504mitosis in the presence of compound 43 in a normal time frame
505and a bipolar manner, before dividing.
506A strong correlation exists between CA and genomic instability
507in breast cancer, indicating that this abnormal phenotype is likely
508to contribute to chromosome missegregation and tumorigenesis
509(28, 34, 35). Supernumerary centrosomes also cause multipolar
510mitosis and produce nonviable progeny cells owing to lethal gain
511or loss of chromosomes (17, 36). Malignant and CA cells can
512however enhance their survival by clustering extra centrosomes to
513form a pseudo-bipolar spindle, which reduces multipolarity and
514associated lethal chromosome segregation defects (17, 36, 37).
515Such cells frequently delay metaphase to allow sufficient MT-
516kinetochore capture and/or tensions to occur to satisfy the spindle
517assembly checkpoint, whereas supernumerary centrosomes are
518also clustered prior to the onset of anaphase (17, 36, 38). In this
519study and consistent with these previous observations, the dura-
520tion of mitosis is longer in SKBR3 cells than MCF-10A cells. The
521TAOK inhibitor prolonged the length of mitosis in SKBR3 cells
522associated with multipolar mitosis, probably due to centrosome
523declustering, and enhanced cell death in mitosis. In contrast,
524MCF-10A cells completed mitosis in a normal time frame and
525a bipolarmanner in the presence of compound 43, and these cells
526continued to divide and proliferate. SKBR3 cells required TAOK
527activity for mitotic progression to avoid enhanced multipolarity
528and associated cell death.
529CA can occur due to endoreduplication, cytokinesis failure,
530cell–cell fusion, PCM fragmentation, or dysregulation of the
531centrosome cycle (28). However, the mechanisms involved in
532clustering supernumerary centrosomes are poorly defined. SiRNA
533screens and live cell imaging studies have implicated functional
534roles for components of the spindle checkpoint (e.g.,Mad2, Bub1,
535and CENP-E), which are likely activated by incorrect kinetochore-
536MT attachments and/or tensions, and subsequently delay meta-
537phase to allow centrosome clustering to take place (17, 36, 38).
538Clustering of centrosomes also requires additional proteins
539involved in regulating the actin-MT cytoskeleton and spindle
540positioning (e.g.,Myo10A/Myo15 andCLIP190), as well asMAPs
541and motor proteins, which bundle MTs at the spindle poles (e.g.,
542HSET/KIFC1, Ncd; refs. 38, 39). An additional siRNA screen has
543identified centrosome clustering roles for E3ubiquitin ligaseAPC/
544C subunits and their cofactors Cdh1 and Cdc20 and their sub-
545strates (e.g., Eg5 motor protein), dynein/dynactin and SKA1-3
546complexes (40). The screen suggested potential roles for TAOKs,
547the TAOK binding protein testis-specific kinase (TESK) 1 and LIM
548domain kinase (LIMK) 2, in the regulation of centrosome clus-
549tering (40, 41). TESKs and the related LIMKs can downregulate
550activity of the actin-severing protein cofilin via phosphorylation,
551and a mechanism whereby centrosome clustering is inhibited
552via cofilin-mediated destabilization of cortical actin has been
553reported (42).
554TAOKs can regulate MT dynamics and organization, and
555their activity is required for mitotic cell rounding and spindle
556positioning in HeLa cells (7–9, 12). The evaluation of a first-
557generation TAOK inhibitor here has implicated additional
558roles for these proteins in regulating the clustering of supernu-
559merary centrosomes to produce a functional pseudo-bipolar
560spindle in CA breast cancer cells, and a requirement for TAOK
561activity for such cells to survive and grow. The exact role of
562TAOK inhibition in centrosome declustering requires further
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565 mechanistic dissection. MT poisons or inhibitors of mitotic
566 kinases such as Aurora and Polo-like kinases or motor proteins
567 (e.g., Eg5) can provide effective cancer therapy; however, such
568 inhibitors are also associated with extreme toxicity and adverse
569 side effects (14, 15, 23–25, 43). Inhibitors of monopolar spindle
570 kinase 1 and the spindle assembly checkpoint have also entered
571 clinical trials, although these compounds appear to exhibit only
572 moderate efficacy as single agents and are more effective when
573 used in combination with drugs such as paclitaxel (44–46).
574 Additional therapeutic strategies are now required to target can-
575 cer-specific events, and drugs that stimulate centrosome declus-
576 tering and multipolarity are likely to kill CA cancer cells selec-
577 tively, while sparing normal cells (47). The results reported here
578 provide the first indication that TAOKs may provide suitable
579 targets to inhibit and kill CA breast cancer cells selectively.
580 Additional studies are now required for further evaluation of
581 TAOKs as potential drug targets for cancer therapy.
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