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Abstract

We investigated PD-L1 changes in response to MEK and AKT inhibitors in KRAS mutant

lung adenocarcinoma (adeno-NSCLC). PD-L1 expression was quantified using immunoflu-

orescence and co-culture with a jurkat cell-line transfected with NFAT-luciferase was used

to study if changes in PD-L1 expression in cancer cell lines were functionally relevant. Five

KRAS mutant cell lines with high PD-L1 expression (H441, H2291, H23, H2030 and A549)

were exposed to GI50 inhibitor concentrations of a MEK inhibitor (trametinib) and an AKT

inhibitor (AZD5363) for 3 weeks. Only 3/5 (H23, H2030 and A549) and 2/5 cell lines (H441

and H23) showed functionally significant increases in PD-L1 expression when exposed to

trametinib or AZD5363 respectively. PD-L1 overexpression is not consistent and is unlikely

to be an early mechanism of resistance to KRAS mutant adeno-NSCLC treated with MEK or

AKT inhibitors.

Introduction

Lung cancer is the leading cause of cancer death in developed countries with 1.8 million new

lung cancer diagnoses occurring globally per annum [1]. Standard of care options for meta-

static NSCLC have evolved from chemotherapy doublets to targeted treatments such as EGFR

and ALK inhibitors in defined subsets of patients [2] [3] [4] [5] and, most recently, immune

checkpoint modulating drugs [6] [7].

Programmed-death 1 and 2 (PD-1 and PD-2) are cell-surface receptors found on T-cells

and their interaction with programmed-death ligand 1 and 2 (PD-L1 and PD-L2) on cancer

cells provide an important inhibitory role in the immune response [8]. PD-1 inhibitors have

shown benefit in the first and second-line setting in both squamous and adenocarcinoma of

the lung (adeno-NSCLC) [7] [9] [10].

KRAS mutations are found in 33% of advanced adeno-NSCLC [11]. There are currently no

drugs in clinical evaluation that directly inhibit KRAS. Attempts to use MEK inhibition or
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PI3K pathway inhibition alone have failed [12] [13]. Despite promising activity in combination

with chemotherapy, in randomized phase 2 studies the efficacy of MEK inhibitors in combina-

tion with chemotherapy has not been proven [14] [15]. Drug combinations targeting dual

aspects of the MEK and PI3K pathways are under evaluation and show promising results [16].

Studies have demonstrated PD-L1 up regulation with KRAS mutations [17] [18]. The path-

way responsible for this is not fully elucidated. Lastwika et al, in a study of cell lines and mouse

models including KRAS mutant models, demonstrated PD-L1expression to be via AKT–

mTOR signalling [17]. Others have demonstrated up regulation of PD-L1 in the context of

KRAS mutation through ERK but not AKT [18]. Given PD-L1 expression is up regulated in

KRAS mutation, with targeted inhibition decreasing PD-L1 expression [17, 18], PD-L1

increase could be proposed as an escape mechanism (and this potentially have a role is second-

ary resistance) following exposure to targeted agents. This study uses prolonged targeted drug

exposure and assessment of PD-L1 expression to assess the potential for PD-L1 in the context

of MEK and AKT inhibition in KRAS mutant cell lines.

Materials and methods

Cell culture and drugs

Cell lines were obtained from ATCC (LGC, Teddington, UK). Cell lines were cultured in

RPMI supplemented with 20% fetal bovine serum and incubated in humidified atmosphere

with 5% CO2. Sensitivity of KRAS mutant cell lines to Trametinib (MEK inhibitor) or

AZD5363 (AKT inhibitor) (Selleckchem, UK) including determination of GI50 was done using

72 hour sulforhodamine B assays. Cells were exposed to GI50 concentrations of trametinib and

AZD5363 for 6hrs, 24hrs and 3 weeks.

Immunofluorescence

Fixation was achieved using methanol and 4% formalin followed by antigen retrieval (ventana

antigen retrieval solution (Roche, Basel)). A blocking step using bovine serum albumin (BSA),

glycine and 0.02% triton for membrane permeabilisation, one hour, was performed. Anti-

PD-L1 antibody (rabbit anti-PD-L1 ab58810 [abcam, Cambridge]), anti-rabbit (goat alexa

fluor 555 A21429 [Cell Signaling Technology, Danvers, MA]) and anti-pan-cytokeratin

(mouse alexa fluor 488, 4523S [Cell Signaling Technology, Danvers, MA]) at 1:200 for 1 hour

provided PD-L1 and cytokeratin labelling. Slides were mounted with Molecular Prolong, pro-

longed diamond antifade with DAPI (Fisher Scientific, Waltham, MA) for nuclear identifica-

tion. Analysis was using Bioview analysis-linked immunofluorescence microscope system

(Bioview, Rehovot, Israel). IN cell software (GE Healthcare Life Sciences, Little Chalfont, UK)

quantified fluorescent intensity of control and drugged samples.

PD-1/NFAT reporter- jurkat cell assay

A jurkat cell line assay system (stably transfected with NFAT-luciferase reporter and human

PD-1) was obtained from BPS Biosciences (San Diego, CA). Co-culture of the PD-1/NFAT

reporter- jurkat cell line and a PD-L1 expressing cell line results in activation of NFAT-lucifer-

ase via TCR and MHC interaction. PD-L1 to PD-1 interaction downregulates the NFAT-lucif-

erase. Thus the degree of decrease in luminescence is proportional to expression of PD-L1.

Cell lines (at a cell count of 35,000) were co-cultured with the jurkat cell line assay system

(at a cell count of 20,000) for 16 hours and the one-step luciferase assay system (Biosciences;

San Diego, CA) added. Luminescence was measured on a luminescence plate reader (Top-

Count NXT TM, Packard Parkin Elmer; Meriden, CT). Results were produced in triplicate.

PD-L1 in KRAS mutant cell lines with targeted treatments

PLOS ONE | https://doi.org/10.1371/journal.pone.0186106 October 5, 2017 2 / 8

Pharmaceuticals. He is an employee of The

Institute of Cancer Research, which has an interest

in the development of HDAC, AKT, ROCK, RAF and

CHK1 inhibitors. AZD5363 was discovered at the

ICR in collaboration with Astex and AstraZeneca. M

O’Brien has declared advisory roles for Pfizer,

MSD, Abbvie, Pierre Fabre and Bristol-Myer Squibb

and expenses received from Bristol-Myer Squibb.

S Popat has declared consultancy to Ariad, Astra

Zeneca, Boehringer Ingelheim, BMS, Clovis

Oncology, Pfizer, Novartis, MSD, Eli Lilly, Roche. J

Bhosle has declared honoraria from BMS and

expenses from MSD. T Yap has declared grants

from Astrazeneca, Vertex, Clearbridge and

Biomedics. He has declared he has received

honoraria from Pfizer and has appeared on

speakers bureaus for MSD, Janssen-Cilag, Vertex

and BMS. J de Bono has declared he is a

consultant on advisory boards of Astrazeneca,

Astellas, Genentech, Roche, GSK, Merck, Genmab,

Sanofi-Aventis and Pfizer. All others authors have

declared no conflicts of interest. The competing

interests declared do not alter our adherence to

PLOS ONE policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0186106


Validation of the co-culture system was performed using a PD-L1 neutralising antibody

(#71213; BPS Biosciences, San Diego, CA) (see supplementary material). Western blotting was

performed to quantify MHC class I expression on cell lines (see supplementary material).

Results

Baseline expression of PD-L1 in KRAS mutant cell lines

PD-L1 expression was quantified in a panel of 10 KRAS mutant cell lines (Fig 1). H441, H2291,

H2030, H23 and A549 cell lines were chosen for further experiments of AKT and MEK inhibi-

tor exposure as they showed the highest expression of PD-L1 and baseline expression was

reproducibly detectable.

PD-L1 change on exposure to MEK and AKT inhibitors in KRAS mutant

cell lines

The GI50 concentrations of the cell lines are documented in supporting information Table 1.

The five chosen cell lines were exposed to trametinib or AZD5363 at GI50 dose for 3 weeks and

the PD-L1 expression quantified by immunofluorescence and expressed in comparison to con-

trol (Fig 2 and Table 1). In the cell line panel studied, at 3 weeks when exposed to trametinib,

3/5 cell lines (H23, H2030 and A549) showed a modest but significant increase in PD-L1

expression, 1/5 cells (H441) showed a significant decrease in PD-L1 and 1/5 cell line (H2291)

showed no significant change. When exposed to AZD5363, 3/5 cell lines (H441, H23 and

Fig 1. Baseline expression of KRAS mutant cell lines. Box and whisker plot. Whiskers representing 10-90th percentile.

https://doi.org/10.1371/journal.pone.0186106.g001
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H2030) showed a modest but significant increase in PD-L1 and 2/5 (H2291 and A549) showed

a small but significant reduction of PD-L1 expression.

PD-L1 change on PD-1/NFAT reporter- jurkat cell line co-culture on

exposure to MEK and AKT inhibitors in KRAS mutant cell lines

All cell lines expressed MHC class I, though A549 expressed to a lesser degree than the other

cell lines (see supporting information). There were some temporal differences in the expres-

sion of PD-L1 at different time points, i.e. 6hrs, 24hrs and 3 weeks. However, we conducted

experiments to evaluated functional aspects of PD-L1 expression only at 3 weeks as 3 weeks

was considered to be a more relevant time point while exploring mechanisms of resistance to

targeted small molecule drugs. All cell lines demonstrate PD-1/NFAT reporter- jurkat cell co-

culture results in concordance with the immunofluorescence results with a decrease in lumi-

nescence corresponding to an increase in PD-L1 levels on immunofluorescence apart from

Table 1. Ratio of median fluorescent intensity of Trametinib and AZD 5363 drugged:control sample and ratio of PD-1/NFAT reporter- jurkat assay

luminescence drugged:control sample at each time point with comparison by Mann-Whitney test, p-values<0.05 are highlighted.

Time point Immunofluorescence PD-1/NFAT reporter- jurkat assay

Trametinib

H441 6 hours 0.85 (p<0.0001)

1 day 0.93 (p = 0.0003)

3 weeks 0.55 (p<0.0001) 1.02 (p = 0.8884)

H2291 6 hours 1.02 (p = 0.9630)

1 day 0.96 (p = 0.2205)

3 weeks 0.64 (p = 0.8246) 1.22 (p = 0.0142)

H23 6 hours 1.03 (p = 0.2138)

1 day 1.01 (p = 0.2702)

3 weeks 1.10 (p = 0.0042) 0.93 (p = 0.0188)

H2030 6 hours 1.53 (p<0.0001)

1 day 1.28 (p<0.0001)

3 weeks 1.23 (p<0.0001) 0.75 (p = 0.0111)

A549 6 hours 1.20 (p<0.0001)

1 day 0.92 (p<0.0001)

3 weeks 2.42 (p<0.0001) 0.98 (p = 0.6991)

AZD5363

H441 6 hours 1.11 (p<0.0001)

1 day 0.94 (p<0.0001)

3 weeks 1.38 (p<0.0001) 0.86 (p = 0.0260)

H2291 6 hours 1.73 (p<0.0001)

1 day 1.46 (p<0.0001)

3 weeks 0.52 (p<0.0001) 0.61 (p = 0.0002)

H23 6 hours 1.11 (p<0.0001)

1 day 0.89 (p<0.0001)

3 weeks 1.35 (p<0.0001) 0.76 (p = 0.0360)

H2030 6 hours 1.03 (p = 0.9027)

1 day 1.07 (p = 0.3133)

3 weeks 1.90 (p<0.0001) 0.94 (p = 0.1996)

A549 6 hours 0.73 (p<0.0001)

1 day 0.90 (p<0.0001)

3 weeks 0.86 (p = 0.0006) 1.12 (p = 0.0012)

https://doi.org/10.1371/journal.pone.0186106.t001
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H2291 on dosing with AZD5363 (Table 1). Thus at 3 weeks when exposed to a MEK and a

AKT inhibitor, 3/5 and 2/5 cell lines showed increased expression of PD-L1 which was func-

tionally significant.

Discussion and conclusions

Previous work has explored mechanisms of interaction between cellular pathways and

immune pathways in EGFR mutant and ALK rearranged NSCLC cancers exposed to EGFR

Fig 2. Median fluorescent intensity (MFI) of drugged sample minus the median fluorescent intensity of the

control sample for each timepoint with 95% confidence intervals (using Hodges-Lehmann estimated medians

for comparison).

https://doi.org/10.1371/journal.pone.0186106.g002
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and ALK inhibitors. Azuma and coworkers demonstrated downregulation of PD-L1 by erloti-

nib when assessed by flow cytometry [19]. A study using western blots, real-time polymerase

chain reaction, immunofluorescence, flow cytometry, cell apoptosis assays, cell viability assays,

and ELISAs found EGFR activation induced PD-L1 expression through p-ERK1/2/p-c-Jun but

not through p-AKT/p-S6 pathway. EGFR activation induced the apoptosis of T cells through

the PD-L1/PD-1 axis in tumor cells and peripheral blood mononuclear cells coculture system

[20]. Forced expression of EML4-ALK in Ba/F3 cells increased PD-L1 expression. PD-L1

expression in EML4-ALK-positive NSCLC cells was reduced by treatment with the ALK inhib-

itor alectinib and by RNA interference with ALK siRNAs. [21]. Data is less clear in the situa-

tion of KRAS mutations—studies demonstrate PD-L1 up regulation with KRAS mutations and

potential mechanisms to be via AKT–mTOR signalling or ERK [17] [18].

Signaling changes are known to occur acutely, often in the order of minutes. [22] [23]

PD-L1 expression is up regulated in KRAS mutation, with targeted inhibition decreasing

PD-L1 expression [17] [18]. Previous work has suggested that these changes occur within 2

hours in cell lines [17]. In this experiment we aim to explore the later interaction potentially

occurring with the immune pathways that could contribute to resistance to targeted agents

rather that signaling changes or acute phase interaction with the immune pathways. Thus the

choice of the three week timepoint. More prolonged drug exposures increase the potential for

multiple resistance mechanisms including genetic mutations and so were not used.

Our data revealed a small but functional increase and decrease in PD-L1 expression in 3/5

and 1/5 cell lines exposed to the MEK inhibitor trametinib respectively. Further when exposed

to the AKT inhibitor AZD5363, functional increase and decrease in PD-L1 expression

occurred in 2/5 and 2/5 cell lines respectively. Thus in the KRAS mutant cell line panel studied,

PD-L1 overexpression is not a consistently seen in response to MEK and AKT inhibitors.

Our approach of in-vitro exposure of cells to MEK and AKT inhibitors with functional read

out of T cell activation allowed us to test PDL-1 expression as a putative mechanism of resis-

tance in a significant number of KRAS mutant cell lines relatively rapidly and economically.

Functional validation of the jurkat co-culture system is provided by the high concordance seen

between the immunofluorescence results and jurkat co-culture results. The functional nature

of the jurkat co-culture system mitigate the inherent issues with immunofluorescence mea-

surement alone. Immunofluorescence provides only a comparative measure of the uptake of

antibodies by surface markers and makes no assessment of the functional interactions of

PD-L1, which are the more significant elements when we consider potential biological func-

tion and resistance mechanisms. Immunohistochemistry is the most common method of mea-

suring PD-L1 in the clinical context with well documented issues with standardization across

platforms [24] and we propose that the jurkat co-culture system be investigated in the clinical

context. This could involve the isolation of cancer cells from circulating tumour cell platform

or serous effusions [25] [26] and is worthy of further investigation. We recognize the experi-

ments in immunocompetent animal models will offer the most robust validation of the func-

tional relevance of PDL-1 expression as a mechanism of resistance.

In conclusion this work represent a novel interrogation of the late effects of signaling path-

way inhibitors and immune pathway interaction. This shows small statistical changes in

PD-L1 levels, which are not consistent across all cell lines studies.
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