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Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by

ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy

imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung

tumor tracking for real-time adaptive radiotherapy.

Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired

and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings:

low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and

clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic

subtraction of high- and low-energy images and filter-free dual-energy images were generated from

clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was

determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time

tracking with an automated template matching algorithm was investigated.

Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of

the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy

remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was

only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed

and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a

tracking template due to poor soft-tissue contrast regardless of input images. The mean localization

errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and

5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam

angle, and patient size.

Conclusions: This study has highlighted the influence of patient anatomy on the success rate of

real-time markerless tumor tracking using dual-energy imaging. Additionally, the importance of the

spectral separation of the imaging beams used to generate the dual-energy images has been shown.
C 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative

Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1118/1.4935431]
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1. INTRODUCTION

Radiotherapy aims at depositing a lethal dose of ionizing

radiation in tumors while minimizing radiation damage to

surrounding healthy tissue, especially critical organs. Accurate

dose delivery may be compromised by changes in the patient

anatomy between the acquisition of the planning CT scan and

the treatment or in between treatment fractions (interfractional

motion) or during the irradiation itself (intrafractional motion).

This effect is especially pronounced in the treatment of lung

tumors as respiratory motion has been reported to cause tumor

movement of up to a few centimeters.1

Real-time adaptive radiotherapy aims at modifying the

dose delivery to dynamically account for the tumor motion.

This may be achieved by moving the entire linear accel-

erator2 or treatment head,3 repositioning the patient with a

robotic treatment couch4,5 or by changing the treatment beam’s

aperture and position by moving the leaves of the multileaf

collimator.6–8 All aforementioned adaptation methods require

information about the tumor position. One method of localiz-

ing the tumor is the surgical insertion of radioopaque markers

near the tumor and their detection on kV or MV images.9,10

Another method relies on the localization of several small reso-

nant circuits by an electromagnetic array.11,12 Either method

is challenged by tumor deformation. Furthermore, surgical

implantation of markers poses an additional burden for the

patient and is not always possible due to comorbidities. Marker

migration and cases of pneumonia have been reported as

well.3 On-board kV imaging devices feature on most modern

linear accelerators and can be deployed to acquire radio-

graphs frequently and quickly while the patient is undergoing

treatment. In theory this allows markerless detection of the

tumor position and deformation at the cost of an increased

radiation dose to the patient. In reality automated localization

of lung tumors in chest radiographs is often inhibited by

ribs or soft-tissue anatomy obscuring the tumor and poor
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soft-tissue contrast. Template matching algorithms (TMA) or

other automated localization methods may inadvertently track

prominent bone structures instead of the tumor.

Dual-energy (DE) imaging is able to generate radiographs

with reduced bone visibility by exploiting the dependence of

material contrast on the imaging energy.13–15 Although this

technology has been researched for clinical diagnostics for

about 30 years, investigation of its use for real-time adaptive

radiotherapy has only started recently with the wide-spread

availability of digital flat-panel detectors (FPD) and the advent

of fast kVp-switching x-ray tubes allowing acquisition of DE

images at frequencies of up to 30 Hz.16–19

This work investigates the feasibility of using DE imaging

to enhance automated localization of lung tumors for real-

time adaptive radiotherapy. A modified Elekta x-ray volume

imaging (XVI) system (Elekta AB, Stockholm, Sweden) was

used to experimentally acquire DE images of an anthropomor-

phic breathing chest phantom. Additionally, a Monte Carlo

(MC) simulation of the XVI system was created allowing

generation of DE radiographs of actual lung cancer patients. It

focusses on patient cases, in which the target might potentially

be difficult to track on projection images due to small tumor

volume, overlap of the tumor with other soft-tissue structures

or large patient size. The usefulness of DE imaging for real-

time tracking was evaluated with an automated TMA.

2. MATERIALS AND METHODS

2.A. Experimental acquisition of radiographs
of an anthropomorphic breathing chest phantom

The Lucy anthropomorphic breathing chest phantom used

in the experiments was developed for Paul-Scherrer-Institut

(Villingen, Switzerland) by CSEM (Neuchâtel, Switzerland).

It emulates a human torso including the lungs, skeleton,

skin, heart, and a lung tumor (see Fig. 1). The air-tight lung

compartment consists of a rubber balloon, which is filled with

foam material as lung tissue. It is surrounded by the rib cage.

When being inflated by a clinical respirator (bellavista 1000,

imtmedical AG, Buchs, Switzerland), the lung compartment

expands and a spherical tumor of 5 cm diameter inside,

which is attached to the diaphragm, moves differentially to

the rib motion. Once the inhalation phase is completed, foam

pressing against the diaphragm from the outside deflates the

lung compartment and returns the phantom to its original

state.

The phantom was imaged with a modified Elekta XVI

system featuring an XRD 1642 AP3 (PerkinElmer, Waltham,

MA, USA) FPD. The system allows acquisition of radiographs

with a resolution of 512× 512 pixels and a pixel size of 0.8

× 0.8 mm2 at detector level at a frequency of 30 Hz. Im-

ages were acquired at three different imaging settings. Clin-

ical images were acquired at a tube voltage of 120 kVp

(0.25 mAs) as has been suggested for the acquisition of chest

radiographs.20 Low-energy (LE) radiographs were acquired at

70 kVp (1.5 mAs). It was decided not to decrease the tube

voltage further in order to maintain a low skin dose. High-

energy (HE) images were acquired at 140 kVp (2.5 mAs). A

1.06 mm tin filter was inserted into the collimator cassette

during acquisition of the HE images in order to increase the

spectral separation between the HE and LE imaging spectra

(see Sec. 2.C). Tin as filter material was selected for its

sufficient attenuation, lack of spectrally distorting K-edges

and nontoxicity.21 All acquired images were gain-, offset-,

and dead-pixel-corrected at each energy individually. The

standard, empty F0 filter cassette without a bow-tie filter and

the S20 collimator were used in the experiments.

The Lucy phantom was periodically inflated with a period

length of 3 s, so that the lung tumor moved by 11 mm in

superior–inferior (SI) and 9 mm in anterior–posterior (AP)

direction. Dynamic imaging series of a breathing cycle were

acquired at the three aforementioned imaging settings in AP as

F. 1. Photograph of the Lucy phantom used in the experiments. The soft-tissue layer, which surrounds the ribs, is not attached to the phantom in the photograph.
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well as left–right (LR) direction at a frequency of 30 Hz. As

fast kVp-switching of the x-ray tube was not yet supported by

the manufacturer, radiographs at alternating imaging settings

could not be acquired in quick succession. Instead, each com-

plete series was acquired sequentially and afterward manually

aligned with each other according to the tumor position. Minor

alignment errors of sub-pixel magnitude might remain due to

the finite imaging frequency.

2.B. Generation of radiographs of lung cancer
patients using Monte Carlo simulation

A MC simulation of the Elekta XVI system was devel-

oped using 4, version 10.0, patch 1.22 Simulation of the

physical processes was based on the 4 implementation

of the  models.23 In order to speed up the simulation

of the x-ray tube, uniform bremsstrahlung splitting with a

splitting factor of 30 was implemented using the built-in run-

time commands provided by 4.

The MC simulation was split into two separate programs.

The first program simulates the initial electron beam and the

generation of the photon imaging beam. The active side of

the anode, consisting of 95% tungsten and 5% rhenium, is

tilted by 14◦ and the focal spot, 100 cm away from the isocen-

ter, has a nominal focal spot size of 0.8 × 0.4 mm2. Other

components of the x-ray tube included in the simulation are the

primary filter consisting of a 3.5 mm aluminum and a 0.1 mm

copper layer and several supporting structures made out of

thin polyethylene terephthalate glycol copolyester. The entire

tube head is tilted by an additional 3.5◦. These specifications

were taken from the official Elekta XVI manual.24 The LE,

HE, and clinical imaging spectra used in the experimental

setup were simulated with 2× 1010 primary electrons each.

During generation of the HE imaging spectrum, a 1.0 mm

thick additional tin filter was simulated in the beam line. The

position, energy, and momentum direction of each photon

were stored into a phase space file as they pass the outer

housing of the x-ray tube at 31.5 cm distance from the focal

spot.

The second program simulates the previously generated

imaging beam passing through the patient geometry, the treat-

ment table, and the beam’s interaction with the FPD. The

voxelized patient geometry is created by transforming CT data

into densities and material compositions using an algorithm

adapted from Schneider et al.25 Information about the composi-

tion of the iBEAM evo (Medical Intelligence Medizintechnik

GmbH, Schwabmünchen, Germany) treatment table was ob-

tained via personal communications with the manufacturer and

from Smith et al.26 Information regarding the geometry of the

XRD 1642 AP3 FPD was obtained via personal communica-

tions with the manufacturer and the literature.27–29 The source-

to-detector distance measures 153.6 cm. For performance rea-

sons, the simulation does not model the creation and trans-

portation of optical photons in the scintillation layer and their

detection in the amorphous silicon layer. Instead, the absorbed

energy in the FPD’s scintillation layer is determined. This

0.7 mm cesium iodide layer has a density of 3.85 g/cm3 and is

located behind a front plate consisting of 0.75 mm of aluminum

and an additional layer of 0.5 mm graphite. The developed MC

simulation was validated by comparing some common imaging

quantities to a series of experimentally obtained results and

values reported in the literature30–32 (see Appendix A of the

supplementary material33 for a detailed description of the con-

ducted validation simulations and experiments).

In order to generate patient radiographs, 4DCT data from

stereotactic radiosurgery patients treated at our institution for

lung cancer were used (written consent obtained). The CT

scans were acquired with a Brilliance CT Big Bore (Philips

Medical Systems, Cleveland, OH, USA) scanner. Six patients,

who exhibited the largest tumor motion, were selected from

a cohort of 19 (see Table I). Some of the chosen patient

anatomies have features, which might potentially make tumor

localization more difficult. Patient 2 has a very small tumor,

which is attached to the posterior end of the diaphragm, the

tumor of patient 3 deforms in SI direction and patient 4 is

very large. In patient 6, a relatively small tumor is located

near the aorta and upper branches of the bronchial tree. For

each patient, chest radiographs of the peak-exhale as well as

peak-inhale phase were simulated at the three aforementioned

imaging settings, each at four imaging angles: 0◦ (AP), 45◦,

90◦ (LR), and 135◦ (coordinate system according to IEC-

61217). The ratio of primary photons was normalized to reflect

the exposure settings of the experimental setup. Consequently,

9.45×109 photons were used to create a LE radiograph, while

7.50×109 and 7.88×109 photons were simulated to generate

a HE and clinical image, respectively.

T I. Information on the CT data of the lung cancer patients, that was used to simulate chest radiographs.

Patient size is listed as a surrogate for radiological depth.

Tumor motion

(mm)

Patient

size (cm)

Patient No. Tumor position GTV (cm3) AP LR SI AP LR CT resolution (mm3)

1 Upper right lobe 22 7 2 10 24 39 0.98×0.98×2.0

2 Lower right lobe 4 11 2 11 25 31 1.05×1.05×2.0

3 Lower right lobe 26 2 3 13 23 30 0.96×0.96×2.0

4 Upper left lobe 12 4 1 9 31 48 1.37×1.37×2.0

5 Lower right lobe 12 2 1 7 24 29 0.98×0.98×2.0

6 Upper left lobe 9 3 1 5 24 37 1.04×1.04×2.0
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F. 2. Schematic describing the study workflow.

2.C. Calculation of dual-energy images

The experimentally acquired and the MC-simulated LE,

HE, and clinical radiographs were used to calculate two di-

fferent types of DE images (see Fig. 2). Regular dual-energy

(rDE) images were calculated according to

ln(IDE(x,y))= ln(IHE(x,y))−w ln(ILE(x,y)), (1)

where each pixel of the rDE image IDE(x,y) is calculated by

logarithmically subtracting the corresponding pixel value of

the HE and LE image IHE(x,y) and ILE(x,y) with a patient

specific weighting factor w. The weighting factor was opti-

mized between 0.0 and 1.0, so that maximum tumor visi-

bility, measured with an objective score (see Sec. 2.D), was

achieved. Filter-free dual-energy (ffDE) images were calcu-

lated by weighted logarithmic subtraction of the clinical and

LE images in order to investigate the influence of the spectral

separation of the imaging spectra on the detail of the calculated

DE images (see Fig. 3). The created rDE, ffDE, and clinical

images were then evaluated with regard to tumor visibility with

a novel objective score and their utility for real-time tracking

with an automated TMA.

2.D. Measurement of lung tumor visibility
with an objective score

Soft-tissue contrast as well as the presence of bones near the

tumor site both influence visibility of lung tumors. We devel-

oped an objective score that attempts to evaluate both factors

and combines them into one metric that allows quantification

of the tumor visibility. The contrast Ca,b between two tissue

types a and b, with intensities of Ia and Ib, is defined as

Ca,b =

������

Ia− Ib
1
2
(Ia+ Ib)

������
. (2)

The contrast improvement CIa,b in the DE image compared to

the clinical radiograph is thus

CIa,b =
Ca,b(DE image)

Ca,b(clinical image)
. (3)

The final objective score S comprises the contrast improve-

ment of the tumor-to-lung-tissue contrast, as well as the con-

trast improvement of the bone-to-lung-tissue and the bone-to-

tumor contrast,

S =
CItumor,lung tissue

1
2

�
CIbone,lung tissue+CIbone,tumor

� . (4)

F. 3. The MC-simulated spectral distributions of the three imaging beams.

The LE and HE beams feature increased spectral separation compared to the

LE and clinical beams. This is beneficial to the selectivity of the created DE

images.
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Higher tumor-to-lung-tissue contrast improvement is desirable

and consequently boosts the objective score, while increased

bone contrast improvement is detrimental to tumor visibility

and decreases the score. The score ranges from 0 to infinity

and a score of 1.0 means that the tumor visibility is as high as

in the clinical radiograph.

In order to calculate the objective score, the mean intensity

of four different image regions is needed: unobscured lung

tissue and tumor tissue as well as those two tissue types su-

perimposed with bone. 5× 5 pixels large regions of interest

were delineated three times by one observer and subsequently

the objective score was calculated 81 times for all possible

combinations of the input regions of interest. This was done

in order to obtain an average score, which was more robust

against user bias, tissue inhomogeneities, and image noise

during delineation, and also to gain an estimate for the error

of the score by calculating the standard deviation of all scores.

This objective score allows comparison of different imaging

settings as well as different weighting factors used during DE

image generation.

2.E. Evaluation of dual-energy images for real-time
tracking with a template matching algorithm

An automated TMA, based on work by Wisotzky et al.,34

was developed. This algorithm attempts to localize the tumor

using normalized cross correlation (NCC). A rectangular tem-

plate containing the tumor region plus an additional margin of

3 pixels is user-delineated on the peak-exhale radiographs for

each imaging setting being evaluated. The position and size

of the templates were kept similar in each specific patient-

imaging-angle-combination in order to ensure comparability.

The TMA then places this template on all possible positions

in a selected subsequent image in a search region of ±2 cm

in both directions. For each position, all pixels not covered by

the template are cropped from the image and the score NCC is

calculated via

NCC=
1

N



x, y

(

f (x,y)− f
) �

t(x,y)− t
�

σ fσt

, (5)

where f (x,y) and t(x,y) are the pixel values at position (x,y)

of the image and template, respectively. f̄ and t̄ denote the

mean pixel values of the image and template. The standard

deviations of the pixel values contained in the image and

template are σ f and σt, respectively, and N is the total amount

of evaluated pixels. This NCC score ranges from −1.0 to 1.0.

A higher score indicates a better concordance of the template

with the image at the matched position. A negative score

indicates inverse correlation between the pixel values in the

image and template. In order to speed up this calculation, the

 package was used to calculate the NCC score in Fourier

space.35,36 With this, the TMA takes about 25 ms to match a

125×125 pixels template onto a 512×512 pixels image on a

desktop PC with an i7-2600 (Intel Corporation, Santa Clara,

CA, USA) processor and 8 GB of RAM.

After calculating the NCC score for all possible tem-

plate positions, the position with the maximum NCC score

is deemed the tumor position. The calculated positions were

compared to the true tumor centroid positions, which were

manually determined by one observer, in order to obtain the

localization error.

3. RESULTS

3.A. Evaluation of dual-energy images
of an anthropomorphic breathing chest phantom

The AP and LR radiographs of the Lucy phantom are shown

in Fig. 4. The ribs were clearly visible in the images acquired at

clinical settings. In the LR radiographs, the heart and spherical

tumor appeared superimposed. The AP rDE image with the

maximum increase in lung tumor visibility was obtained at a

weighting factor of 0.39, at which the objective score reached

its maximum of 1.84 [see Fig. 5(a)]. However, the tumor-

to-lung-tissue contrast was also reduced. When calculating

the ffDE image, the objective score reached its maximum of

1.45 at a weighting factor of 0.71 [see Fig. 5(b)]. Similar

weighting factors were determined when using the LR images

of the Lucy phantom. When comparing the rDE images to

the clinical radiographs, the decreased visibility of the ribs

in the tumor region as well as in the lung tissue was clearly

recognizable. The ffDE images also featured lower bone visi-

bility compared to the clinical radiographs, but the tumor-to-

lung-tissue contrast in the ffDE image decreased even further

compared to the contrast in the rDE images. DE imaging was

not able to increase the contrast between the superimposed

heart and tumor as both structures consist of materials of

similar radiodensity.

In AP imaging direction, the TMA was able to localize

the tumor very well in the clinical and rDE imaging series

[see Fig. 6(a)]. With the ffDE imaging series, a lower tracking

accuracy was achieved. In LR direction, it was not possible

to register the clinical and LE imaging series due to phantom

hysteresis induced by the warming up of the lung compart-

ment. Consequently, only the rDE series was compared to the

clinical imaging series. Here, the templates included parts of

the heart superimposed with the tumor. The TMA struggled

to localize the tumor regardless of which dynamic imaging

series was used as input [see Fig. 6(b)]. The measurement was

repeated using smaller templates including only the part of

the tumor not superimposed by heart tissue. With the small

templates, the TMA was able to determine the tumor position

with a very high accuracy when using the rDE imaging series

as input, while it was inaccurate when using clinical input

radiographs [see Fig. 6(c)].

3.B. Evaluation of simulated dual-energy images
of lung cancer patients

rDE and ffDE images of actual lung cancer patients were

calculated using the MC-simulated LE, HE, and clinical

radiographs (see Figs. 7–10). When calculating rDE images,

the maximum objective score ranged from 2.03 to 3.53 at

a weighting factor varying between 0.15 and 0.26. During
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F. 4. Experimentally acquired radiographs of the Lucy phantom in [(a)–(c)] AP imaging direction and [(d)–(f)] LR imaging direction. The windowing settings

in all images were set based on the minimum and maximum intensity in the lung.

evaluation of the ffDE images, the objective score reached

a maximum ranging between 1.53 and 2.23. The weighting

factor varied between 0.42 and 0.53. An example is shown in

Fig. 11 for the AP images of patient 1, where the objective

score reached 2.23 at a weighting factor of 0.16 for the

rDE image and 1.74 at a weighting factor of 0.46 for the

ffDE image. A tendency for lower maximum objective scores

at lower ideal weighting factors was observed when the

imaging beam had to traverse more tissue due to patient

size or imaging angle. At some patient-imaging-angle-

combinations, it was not possible to generate a template

for the TMA or to robustly delineate regions of interest to

calculate the objective score. These cases were deemed as

“failed”.

The localization accuracy of the TMA depending on the

input radiograph type is shown in Fig. 12 for all patients and

beam angles. When using rDE images in place of clinical

radiographs, tracking accuracy increased in 7 out of 24 cases,

remained comparable (less than 0.5 mm change in tracking

accuracy) in 3 out of 24 cases, and worsened in 5 out of 24

cases.ffDE imaging performed better in only 2 out of 24 cases,

comparable in 4 out of 24 cases, and worse in 9 out of 24 cases.

In 9 out of 24 cases, it was not possible to define a template

for the TMA regardless of the type of radiograph used due to

F. 5. Contrast improvement and objective score depending on the weighting factor in the rDE and ffDE images of the Lucy phantom.

Medical Physics, Vol. 42, No. 12, December 2015
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F. 6. The NCC score and localization error of the TMA for different input imaging series of the Lucy phantom.

insufficient soft-tissue contrast. The mean localization errors

using clinical, rDE, and ffDE radiographs were 3.85, 3.32, and

5.24 mm, respectively.

A case in which both rDE and ffDE imaging improved

tracking accuracy in patient 3 is shown in Fig. 7. At the

135◦ imaging angle, vision of the tumor was impaired by ribs

as well as the spine. Dual-energy imaging was able to reduce

the visibility of these bony structures. The geometry of patient

5 was comparable. However, in that patient the reduction of

the visibility of the spine through DE imaging did not lead to

a further increase in tracking accuracy, which was already very

high using clinical images. If the tumor was superimposed with

other large soft-tissue structures, like the hilum, mediastinum

or heart, as in patient 1 at an imaging angle of 45◦, dual-energy

imaging was usually not able to increase tracking accuracy,

even though it reduced the visibility of bones (see Fig. 8).

In patient 4, the largest of the six patients, low signal-to-

noise-ratio inhibited the tracking accuracy. For this patient, it

was impossible to localize the tumor and define a template in

any imaging direction except AP. Dual-energy imaging could

not resolve this problem. Definition of the template was also

hindered in the AP and 45◦ images of patient 2. The small

tumor was located on the posterior side of the diaphragm,

which obscured the view of the tumor at these imaging angles

(see Fig. 9). An example of a failed patient-imaging-angle-

combination is shown in Fig. 10 for the radiographs acquired

at 45◦ for patient 6.

4. DISCUSSION

4.A. Findings of this study

For both phantom and simulated patient radiographs, DE

imaging was able to increase tracking accuracy in several cases

in which the tumor was primarily covered by bony anatomy.

However, it has also been shown that DE imaging is governed

by some of the same shortcomings as single-energy projec-

tion x-ray imaging. Superposition of the tumor with other

soft-tissue anatomy, such as the mediastinum, diaphragm, or

heart cannot be resolved in the DE radiographs. Additionally,

imaging through a large amount of tissue increases scatter

and thereby decreases image contrast. Due to these effects the

success of automated tumor localization is very dependent on

tumor position, tumor size, imaging beam angle, and patient

size.

Recently, Sherertz et al.18 have investigated DE imaging

for image-guided radiotherapy. They acquired DE images of

ten different patients with 11 lung tumors. They found that

DE imaging was able to increase both contrast and contrast-

to-noise ratio compared to single-energy imaging. Higher

contrast improvement was achieved for larger tumors and they

reported that the two smallest tumors could not be reliably

visualized. This study found a similar dependency of tracking

success on the tumor size as smaller tumors were less visible,

especially when being obscured by other soft-tissue structures.

Additionally, Sherertz et al.18 reported that a physician was

F. 7. Simulated radiographs of patient 3 at an imaging angle of 135◦. The red box indicates the tumor position. In this case DE imaging was able to reduce the

prominence of bones and increased the tracking accuracy.
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F. 8. Simulated radiographs of patient 1 at an imaging angle of 45◦. Tumor localization was only possible with a high error regardless of imaging settings due

to the superposition of the tumor and mediastinum.

able to localize the tumor in 95% of DE images and only

74% of single-energy images. However, in a real-time adaptive

radiotherapy workflow, manual tumor localization is not an

option.

Similar to this study, Patel et al.19 used a TMA based on

NCC to localize the tumor in DE images of a phantom and

two lung cancer patients. They define their template based on

a previously acquired CT scan, while this study outlines the

template in the corresponding projection kV images. Their

reported 95th percentile absolute tracking errors for the two

patients were 2.5 and 6.0 mm for single-energy radiographs

and 2.5 and 3.9 mm for dual-energy radiographs. The track-

ing accuracies determined in this study are comparable to

this, as the investigated matching of a peak-exhale template

onto the peak-inhale phase usually constitutes the most chal-

lenging task due to reduced mutual information between the

two phases. However, in their study the TMA was able to

localize the tumor in all patient images, both single-energy

images as well as DE radiographs, while this study has also

presented cases, where template definition was not possible.

They concluded that DE imaging can potentially enhance real-

time markerless tumor tracking while pointing out the impor-

tance of patient anatomy, which our study has followed up

on by specifically having investigated patient cases, in which

automated localization of the target is difficult. Future work

should aim at quantitatively describing the correlation between

anatomical characteristics and the feasibility of DE imaging to

improve tracking accuracy.

Furthermore, this study has investigated the effect of spec-

tral separation of the imaging beams on the success rate of

tumor tracking. It has been shown that higher spectral separa-

tion of the two imaging beams increases the selectivity of the

calculated DE radiographs. However, the maximum achiev-

able separation is limited due to the polychromatic nature of

the imaging beams and the fact that additional filters increase

photon scatter and require modifications of the x-ray tube.

In the future, photon counting detectors might allow acqui-

sition of images with high spectral separation and, conse-

quently, more detailed DE images.37 However, their appli-

cation is currently limited due to their low tolerable photon

fluence rates, small detector sizes, and high production costs.

4.B. Shortcomings of and possible improvements
to the used methodology

The Lucy phantom is one of the only anthropomorphic

chest phantoms featuring differential motion of the ribs and

lung tumor, which is one of the main obstacles to over-

come during automated lung tumor localization. Still, as with

any phantom, the acquired images of it were not completely

realistic. The low radiodensity of the foam material used as

lung tissue, the nonhollow ribs, and the simplistic phantom

F. 9. Simulated radiographs of patient 2 in LR imaging direction. The small tumor, which was located posterior of the diaphragm, made localization impossible

at the AP and 45◦ imaging angle.
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F. 10. Simulated radiographs of patient 6 at an imaging angle of 45◦. In this failed case, it was not possible to clearly identify the tumor and generate a

template for the TMA.

geometry led to a higher tumor-to-lung-tissue contrast and

lower image noise than one would expect in human chest

radiographs. Phantom deformation in between experiments or

over the course of long measurements caused image artifacts

due to registration errors.

The experimental setup would not have been able to reli-

ably acquire DE images of an actual patient. In the experi-

ments, the entire LE, HE, and clinical imaging series were

obtained sequentially instead of repeatedly acquiring LE–HE

or LE–clinical image pairs in quick succession. The latter

approach is necessary in order to obtain DE images in real-

time without registration artifacts due to changes in patient

anatomy and gantry angle. A DE imaging system for a real-

time adaptive radiotherapy application would require a fast

kVp-switching x-ray tube and a FPD allowing quick acquisi-

tion of kV images. If additional beam filtration is desired at

one imaging setting, a filter wheel could be used to change

filters in between acquisition modes.38 However, most current

radiotherapy systems do not feature such a filter wheel in their

x-ray tubes. All aforementioned components already exist and

medPhoton (Salzburg, Austria) has developed a prototype add-

on system, allowing real-time acquisition of DE images of

patients undergoing radiotherapy. However, to our knowledge,

DE imaging utilizing the components featured on an already

available clinical linear accelerator has not been realized yet.

Continuous x-ray imaging during radiotherapy results in an

additional dose to the patient. Because two images are required

for dual-energy imaging, an even higher imaging dose might

be induced, although Shkumat et al.39 have demonstrated that

it is possible to acquire DE images with enhanced soft-tissue

contrast without increasing patient dose. Either way, the imag-

ing dose delivered to healthy tissue is much lower than the

dose induced by the treatment beam. Decreasing the treatment

safety margins around the tumor to ensure target coverage or

preventing missing the tumor might outweigh the additional

dose. Discussion of the exact trade-off between added anatom-

ical information about the patient during treatment and higher

imaging dose is beyond the scope of this work.

It was shown that the developed MC simulation produces

results agreeing well with experimental measurements and

results published in the literature30–32 (see Appendix A of the

supplementary material33). With it we were able to investigate

the feasibility of markerless tumor tracking in DE radiographs

of lung cancer patients without some of the aforementioned

problems of experimental image acquisitions such as patient

dose constraints and registration errors. In a clinical scenario,

F. 11. Contrast improvement and objective score depending on the weighting factor in the rDE and ffDE images of patient 1 acquired in AP direction.
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F. 12. Localization error of the TMA for all investigated patient-imaging-angle-combinations. In the failed cases, it was not possible to create a tumor template

due to poor tumor visibility. The y-axis is cropped at 5 mm.

MC simulations could be used to generate the tumor tem-

plate, determine the ideal weighting factor for logarithmic

subtraction, and identify potentially difficult patient geome-

tries and imaging angles from the planning CT prior to treat-

ment. However, some limitations and inaccuracies remain.

Due to the limit in computational time, the simulated radio-

graphs featured higher noise than experimentally acquired

images. Instead of a full-scale MC framework, digitally recon-

structed radiographs with convoluted scatter and noise kernels

might be deployed for template generation as a less compu-

tationally intensive alternative.40 Other problems lay with the

4DCT data used as input for the MC simulation. Besides some

motion artifacts arising from changes in patient geometry dur-

ing 4DCT acquisition,41 the ribs were less pronounced in the

generated radiographs due to the partial volume effect (see

Appendix B of the supplementary material33 for more details).

The TMA used in this work is a very basic implementation

of NCC. More advanced methods include evaluation of the

slope of the NCC score around the derived target position.42

Others have investigated updating the template over the course

of the tracking.43 Although this requires high confidence

in the determined tumor position and safeguarding against

Medical Physics, Vol. 42, No. 12, December 2015
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so-called “template drifting,” it allows compensation for

gradual changes in the shape of the tumor or surrounding land-

marks. The accuracy of template matching depends on the size

of the template and, consequently, the amount of surrounding

landmarks included in the template. Potentially, the use of

irregularly shaped templates excluding such landmarks could

result in a higher localization accuracy, although this is not

possible if the tumor and landmark overlap.

5. CONCLUSIONS

This study has highlighted the influence of patient anatomy

on the success rate of real-time markerless tumor tracking

using DE imaging. Additionally, the importance of the spectral

separation of the imaging beams used to generate the DE im-

ages has been shown. While DE imaging can increase tracking

accuracy in some cases, clinical deployment of real-time DE

tumor tracking in its current state would rely on preselection

of suitable lung cancer patients.
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