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Abstract
Multiple myeloma (MM) is a biologically heterogeneous malignancy, however, the mechanisms underlying this complexity
are incompletely understood. We report an analysis of the whole-genome sequencing of 765 MM patients from CoMMpass.
By employing promoter capture Hi-C in naïve B-cells, we identify cis-regulatory elements (CREs) that represent a highly
enriched subset of the non-coding genome in which to search for driver mutations. We identify regulatory regions whose
mutation significantly alters the expression of genes as candidate non-coding drivers, including copy number variation
(CNV) at CREs of MYC and single-nucleotide variants (SNVs) in a PAX5 enhancer. To better inform the interplay between
non-coding driver mutations with other driver mechanisms, and their respective roles in oncogenic pathways, we extended
our analysis identifying coding drivers in 40 genes, including 11 novel candidates. We demonstrate the same pathways can
be targeted by coding and non-coding mutations; exemplified by IRF4 and PRDM1, along with BCL6 and PAX5, genes that
are central to plasma cell differentiation. This study reveals new insights into the complex genetic alterations driving MM
development and an enhanced understanding of oncogenic pathways.

Introduction

Multiple myeloma (MM) is a clinically and biologically
heterogeneous malignancy characterized by the infiltration
of clonal plasma cells in the bone marrow [1–5]. Despite
recent advances in its treatment, MM essentially remains an
incurable malignancy with relapse characterized by pro-
gressively resistant mutational profiles. Myeloma cells are
typified by recurrent chromosomal aberrations, a number of
which are associated with poor prognosis, notably t(4;14), t
(14;16), t(14;20), 17p deletion, and gain of 1q [1]. How-
ever, so far the molecular mechanisms responsible for the
initiation and heterogeneous evolution of MM remain

largely unknown. The identification of driver mutations as
distinguished from passenger mutations is therefore funda-
mental to understanding MM oncogenesis and its response
to therapy.

The search for driver mutations in MM has so far been
focused on the protein-coding components of the genome
driven by the large-scale sequencing of MM exomes [2–4].
With affordable whole-genome sequencing (WGS), it is
now apposite to systematically examine non-coding regions
of cancer genomes for driver mutations.

Although mutation recurrence is an indicator of positive
selection in tumors, the sheer size of the non-coding gen-
ome imposes a high statistical burden on robustly estab-
lishing recurrent mutations. Cis-regulatory elements (CREs)
and promoters modulating gene expression represent a
highly enriched subset of the non-coding genome in which
to search for driver mutations. Therefore, to both reduce the
search space and segment the genome into functional
blocks, we have utilized information from promoter capture
Hi-C (CHi-C) in naïve B-cells [6] and transcription start site
(TSS) proximity in an analysis of WGS data on 765 MM
tumors. By linking these data to gene expression (Fig. 1),
we identified recurrently mutated non-coding regulatory
regions. Integrating these data with information on coding
drivers together with structural variants and mutational
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signatures, we have been able to provide a more compre-
hensive mutational landscape of MM, thereby enhancing
our understanding of the oncogenic pathways and
mechanisms relevant to MM biology.

Results

We analyzed whole-exome sequencing (WES) and WGS
data of 804 and 765 MM tumor-normal pairs, respectively,
generated by The Relating Clinical Outcomes in Multiple
Myeloma to Personal Assessment of Genetic Profile Study
(CoMMpass, IA9 release [7]). The median age of patients at
diagnosis was 64 years (range 31–93) and only baseline
newly diagnosed bone marrow samples were considered.
The frequency of MM translocation subgroups in the
CoMMpass series is similar to that reported in unselected
patients [1] (Supplementary Table 1). The median exonic
mutation rate across all tumor samples was 1.95 mutations/
Mb consistent with published literature [1, 8], with t(14;16)
MM displaying the highest mutation rate [9] (P= 2.2 × 10
−6, Wilcoxon rank-sum test; Supplementary Table 1).
Although the low-coverage WGS data (average 6–12×) was
not primarily produced for mutational analysis, we esti-
mated an average sensitivity of 20% to detect clonal single-
nucleotide variants (SNVs) based on comparisons between

paired WGS and WES (average 120–150×) data available
for 734 samples. A global whole-genome comparison with
previously published mutation rates in MM [1, 8] suggests
up to 35% sensitivity. Given this limitation, we therefore
expect our analysis to provide insights into mostly clonal
mutation associated with early events underlying tumor-
igenesis [10].

Recurrently mutated non-coding regulatory regions

After quality control and filtering of WGS data, we identi-
fied 71,573 SNVs across all tumors. Recurrently mutated
regions were identified as those containing highly clustered
mutations and a greater number of mutations than that
expected given the background mutation rate (see Materials
and methods section). To identify somatic mutations in the
non-coding regulatory regions, we defined 28,629 regions
associated with 23,635 genes as promoters [11]. We iden-
tified promoters associated with 34 target genes as recur-
rently mutated (Q < 0.05, Supplementary Table 2). Using
promoter CHi-C in naïve B-cells [6], we then defined
79,894 fragments containing putative CREs identifying
221,380 unique significant interactions with promoters.
These CRE fragments (median size 2 kb with median linear
distance to respective interacting promoter of 300 kb) con-
stituted 15% of the genome and were enriched for ATAC-

Fig. 1 Schematic analysis of the workflow. WES whole-exome sequencing, WGS whole-genome sequencing, SNV single-nucleotide variant, TSS
transcription start site, CNV copy number variant, CRE cis-regulatory element
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seq accessibility and regulatory histone marks [6]. We
identified 114 recurrently mutated CRE regions, interacting
with the promoters of 271 genes (Q < 0.05, Supplementary
Table 3). These genes were over-represented for pathways
associated with cell adhesion (P= 4.4 × 10−4), inflamma-
tory response (P= 5.6 × 10−4), nuclear factor κB-inducing
kinase/nuclear factor κB (NIK/NF-κB) signaling (P= 1.7 ×
10−2), regulation of B-cell activation (P= 3.6 × 10−2), and
B-cell differentiation (P= 4.7 × 10−2), including PAX5 and
BCL6. (Supplementary Table 4).

Effect of regulatory SNVs on gene expression

To identify non-coding driver mutations in regulatory
regions, we compared the expression levels of respective
target genes in mutated and non-mutated tumors. Tumors
having copy number changes overlapping either the

regulatory region or target gene were excluded from the
analysis.

We identified recurrent mutation of the NBPF1 promoter
(20 tumors, Q= 1.3 × 10−15); these mutations were asso-
ciated with increased NBPF1 expression (Q= 7.9 × 10−4,
1.7-fold; Supplementary Fig. 1). NBPF1 belongs to the
neuroblastoma breakpoint family, members of which have
been observed to be overexpressed in sarcomas [12] and
non-small-cell lung cancer [13]. NBPF1 is directly regu-
lated by NF-κB [14], whose signaling pathway is recur-
rently affected in MM, suggesting the relevance of this
novel candidate in MM development.

Six recurrently mutated CREs associated with differ-
ential expression of their respective target genes were
identified (PAX5, ST6GAL1, CALCB, COBLL1, HOXB3,
and ATP13A2), four annotated by epigenetic marks indi-
cative of active enhancers (Q < 0.1, Figs. 2a, b,

Fig. 2 SNVs at cis-regulatory elements affect gene expression in
multiple myeloma. Mutations in the CRE significantly alter a PAX5 (n
= 197 versus n= 13) and b ST6GAL1 (n= 315 versus n= 15)
expression. Difference in expression was assessed pairwise by nega-
tive binomial test. *Q < 0.1, **Q < 0.05. The hinges of the boxplot

indicate the first and third quartile range. c Chromatin looping inter-
actions between PAX5 promoter and differentially expressed
CRE. Also shown are the ChIP-seq signals and relative positions of
SNVs
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Supplementary Fig. 2, Supplementary Table 5). The PAX5
CRE (71 clustered mutations across 55 tumors, 7% of all
tumors) maps 3-kb downstream of the PAX5 chronic lym-
phocytic leukemia (CLL) enhancer [15] (Fig. 2c). The 4.6-
fold reduced expression associated with CRE mutation is
consistent with PAX5 functioning as a tumor suppressor in
MM, as in other B-cell malignancies [15–17]. This CRE
forms part of a cluster of 12 recurrently mutated CRE
fragments interacting with the PAX5 promoter (Supple-
mentary Table 3). Although 28% (212/765) of tumors
harbored mutations in at least one of these PAX5 CREs, the
mutations were not always associated with a significant
change in PAX5 expression. Five CREs, interacting with the
ST6GAL1 promoter, were recurrently mutated in a total
of 8% (64/765) of samples. Although the mutated CREs
showed an overall consistent trend of association between
mutation and upregulation of ST6GAL1, only one CRE was
significantly associated with increased gene expression (3%
of samples, Q= 0.036, 1.4-fold upregulation, Fig. 2b,
Supplementary Table 5). ST6GAL1, which primarily gen-
erates α2,6 linked sialic acids on N-glycans, is over-
expressed in multiple cancers [18] and the increased
expression may contribute to aberrant immunoglobulin-G
glycosylation seen in MM development [19, 20].

Mutations of the COBLL1 CRE were associated with
increased gene expression. COBLL1 plays a role in NF-κB
pathway activation, is important for normal hematopoiesis
[21] and is upregulated in MM [22]. Conversely, mutations
in the HOXB3 CRE were associated with reduced expres-
sion, consistent with HOXB3 acting as a tumor suppressor
in MM, as in acute myeloid leukemia [23].

By restricting analysis to subgroups of MM, we identi-
fied a CRE interacting with the TPRG1 promoter as recur-
rently mutated, resulting in significant differential gene
expression in HD and MYC-translocation MM (Supple-
mentary Table 6a). Although mutated in only 2% of HD (9/
423) and 3% (3/109) of MYC-translocation samples, these
were associated with 6.3-fold and 3.6-fold upregulation in
gene expression respectively (based on 4/118 and 3/34
tumors, respectively; Supplementary Fig. 3). We also
identified a relative paucity of mutations in regulatory
regions of PAX5 in t(11:14) MM (P= 2.7 × 10−3, Supple-
mentary Table 6b). Intriguingly, as this subgroup is enri-
ched for coding mutations in IRF4, it suggests
complementary genomic alteration impacting on the plasma
cell differentiation pathway in MM (Supplementary
Table 7).

Copy number variations at CREs regulate gene
expression

We examined the relationship between copy number var-
iation (CNV) at CREs and expression of interacting genes,

excluding CNVs that contained both the CRE and its
respective target gene from the analysis. The MYC promoter
showed both upstream and downstream interactions with 69
CREs; 24 were amplified across 51 tumors and these had
significantly higher MYC expression (Q < 0.05, Supple-
mentary Table 8a). These 24 CRE regions clustered within a
110-kb region forming 10 non-contiguous regions 500-kb
downstream of MYC annotated by epigenetic marks indi-
cative of active enhancers (i.e., overlapping with strong
signals of H3K4me1, H3K27ac, and weak signals of
repressive H3K27me3) (Fig. 3a). Five CRE regions
upstream of MYC interacting with MYC promoter were
deleted in 10 tumors (distinct from the 51 tumors with
CREs amplified), which were associated with higher MYC
expression (Q < 0.1, Supplementary Table 8b). These
CREs, clustered within a 13-kb region, 850-kb upstream of
MYC, form two non-contiguous regions with weaker signals
for H3K4me1, H3K4me3, and H3K27ac, and stronger
signals for repressive mark H3K27me3, consistent with
putative silencers of MYC (Fig. 3a).

As MYC is translocated in 15–20% of newly diagnosed
MM [1] (14% of CoMMpass samples, Supplementary
Table 1), we examined the possibility that upregulation of
MYC expression associated with CRE CNVs might be the
consequence of translocation of MYC to proximal super-
enhancers. We defined a broader set of 209 samples with
putative MYC translocations (24% of total tumors) and
identified that the 51 samples with amplified CREs are
indeed highly enriched for translocations (34/51, P= 1.2 ×
10-11, Fisher’s exact test), with the breakpoints mapping to
the region of amplification. The deletions at CREs were not,
however, enriched for translocations (1/10, P= 0.9) and in
MYC translocation negative cases the CNVs at MYC CREs
were still associated with significantly increased MYC
expression (Fig. 3b, P= 8.6 × 10-3, 2.3-fold).

We identified six other novel candidate genes whose
expression was significantly altered by CNVs at respective
interacting CREs: PACS2, TEX22, KDM3B, RAB36, PLD4,
and SP110 (Supplementary Fig. 4, Supplementary Table 8).
Although each of the respective CREs were annotated by
epigenetic marks indicative of functional regulatory regions,
these genes reside close to regions of common structural
variation, making interpretation of their specific relevance
problematic.

Pathways targeted by both coding and non-coding
mutation

To better inform the interplay between non-coding driver
mutations with other driver mechanisms, and their respec-
tive roles in oncogenic pathways, we extended our analysis
of the CoMMpass dataset. We systematically cataloged
coding SNVs, copy number and structural variants
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(Supplementary Note, Supplementary Fig. 5-6, Supple-
mentary Table 9-14). Frequencies of chromosomal copy
number alterations and structural variants were comparable
to that previously reported (Supplementary Note, Supple-
mentary Fig. 5-6, Supplementary Table 9-10). Applying
MutSigCV [24] to variants identified in WES data on 804
patients, we identified 33 genes significantly mutated (Q <
0.05, Supplementary Table 11); 16 documented to be
recurrently mutated (KRAS, NRAS, HIST1H1E, MAX,
SP140, RASA2, FCF1, DIS3, BRAF, TP53, SAMHD1,
TRAF3, PRKD2, TGDS, CYLD, and RB1; Supplementary
Table 13) [1–4, 7] 12 previously reported, albeit not sig-
nificantly (PTPN11, DNAH5, MYH2, BMP2K, ZNF208,
RPL10, FBXO4, OR5M1, PTH2, CELA1, OR9G1, and
TNFSF12) [2–4, 25–27] and five novel (TBC1D29, RPS3A,
BAX, C8orf86, and FTL; Supplementary Table 11).

We identified pathways targeted by coding and non-
coding mutations using the Reactome pathway tool [28].
These included mitogen-activated protein kinase (MAPK)
signaling, NF-κB signaling, cytokine signaling, G protein-
coupled receptors signaling, transcriptional and post-
translational expression regulation, hematopoietic develop-
ment, DNA damage, and apoptosis (Q < 0.05, Supplemen-
tary Table 15). Many of the genes in these pathways are
targeted by both coding and non-coding drivers (Table 1,
Fig. 4), exemplified by IRF4 and PRDM1, along with BCL6
and PAX5, genes central to plasma cell differentiation [1].

Mutational signatures

To gain insight into the etiological basis of MM mutations,
we analyzed mutational signatures [8]. Mutational signature
2 (C > T/G in TC dinucleotide motif), a consequence of the
activity of the APOBEC family of cytidine deaminases [8],

Table 1 Summary of novel findings

Novel genes disrupted in
coding regions

Novel genes disrupted by mutations in
non-coding regions

Genes
disrupted by
structural
variants

Genes
disrupted by
SNVs and
indels

Promoters
disrupted by
SNVs

CREs
disrupted
by SNVs

CREs
disrupted
by CNVs

CD96 BAX NBPF1 CALCB MYC

PRDM1 C8orf86 COBLL1 PLD4a

FBXW7 FAM154B HOXB3 KDM3Ba

MAP3K14 FTL ST6GAL1 SP110a

CCND2 HIST1H4H PAX5 RAB36a

LEMD2 ATP13A2 PACS2a

PABPC1 TPRG1 TEX22a

RPN1

RPS3A

SGPP1

TBC1D29

aThese genes reside close to regions of common structural variation,
making interpretation of their specific relevance problematic

Fig. 3 Copy number variations at cis-regulatory elements affect MYC
gene expression in multiple myeloma. a Upper panel shows MYC gene
expression may be regulated by CREs; CNVs at either the upstream
putative silencers or downstream putative enhancers causing upregu-
lation of MYC. Middle panel shows chromatin looping interactions
between MYC promoter and CREs. Lower panel details ChIP-seq
signals and relative positions of CNVs at these CREs in naïve B-cells.

b CNV status at CREs and MYC expression. Difference in expression
was assessed pairwise between samples with different CNVs status
and the same translocation status by negative binomial test. ***P <
0.01. Trans translocation, Del deletion. From left to right, n= 345, n
= 9, respectively. The hinges of the boxplot indicate the first and third
quartile range
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associated with poor prognosis [8, 9], was seen in 30%
(230/765) of tumors (Supplementary Table 16) and asso-
ciated with coding mutations in DNAH5 (P= 8.8 × 10−7),
SAMHD1 (P= 7.2 × 10−4), TP53 (P= 9.3 × 10−3), and
BRAF (P= 3.7 × 10−2). This signature was primarily enri-
ched in MAF translocations t(14;16) (30/31, P= 1.2 × 10
−15, mean mutational contribution 0.37) and t(14;20) (7/9,
P= 4.1 × 10−3, mean mutational contribution 0.28) and to a
lesser extent with t(4;14) (46/93, P= 1.1 × 10−5, mean
mutational contribution 0.07).

Other mutational signatures previously reported in MM
[3, 8, 9, 29] were also identified, including signature 1, 5, 9,
and 13 in 18% (135/765), 73% (557/765), 96% (737/765),
and 5% (36/765) of tumors, respectively (Supplementary
Table 16). Almost all samples (35/36) with signature 13
also exhibited signature 2, consistent with the published
literature [8]. Mutational signatures not previously reported
in MM included signature 3, 8, 16, and 30 seen in >30% of
tumors (Supplementary Table 16). No additional signatures
were identified when analyzing the high-coverage WES
data. Signature 9 (T > G in WT motif with W=A or T), a
consequence of activation-induced cytidine deaminase
(AID) activity [8], is also a feature of CLL and B-cell

lymphomas. The fact that, despite its prevalence, this sig-
nature had not previously been identified in earlier large-
scale analyses, agrees with the assertion that AID-related
mutations are enriched in non-coding regions and early
mutation events [29]. As signature 9 suggests AID off-
target activity, we examined the mutational patterns of
somatic variants affecting the PAX5 CREs, known off-
targets of AID in B-cell malignancies [30]. Somatic muta-
tions in CREs interacting with PAX5 promoters showed
both canonical AID (C > T/G in WRCY motifs with R=
purine, Y= pyrimidine) and non-canonical AID (A > C/G
in WA motifs) [31] mutational signatures (Fig. 5), in
agreement with PAX5 enhancers mutated by AID in mouse
B-cells and diffuse large B-cell lymphoma [30].

Discussion

This analysis has identified new coding and non-coding
drivers, as well as highlighting that pathways, key to the
development of MM, can be targeted somatically through a
range of mechanisms (Fig. 4). Strikingly, although upre-
gulation of MYC through gene amplification or

Fig. 4 Several key pathways in multiple myeloma are disrupted by a range of mechanisms. Adapted from Manier et al. [1] and Kumar et al. [60]
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translocation is well established in MM [1], we demonstrate
that MYC can be dysregulated by alternative mechanisms.
These include CNVs altering MYC non-coding regulatory
regions and specifically, our data implicate a region synte-
nic to the murine Myc enhancer cluster that has recently
been reported to be essential for the maintenance of
MLL–AF9-driven leukemia in mice [32].

The downregulation of tumor suppressors PAX5 [15–17]
and HOXB3 [23] by CRE mutations in MM is entirely
consistent with their decreased expression contributing to
development and progression of MM as is the case with
other B-cell malignancies. It has previously been demon-
strated that disruption of the NF-κB pathway in MM can be
the consequence of coding mutations and loss of genes.
Here we add TWEAK, TRAF2, and PRKD2 to the list of
genes disrupted via coding mutations, demonstrate COBLL1
as dysregulated via mutations of a non-coding regulatory
region, and identify MAP3K14 as upregulated via translo-
cation to the IG loci [33].

Although utilizing WGS data facilitate the identification
of signatures enriched in the non-coding genome, it also, by
nature of the low-coverage data, focuses the analysis on
early mutational processes. Accepting this limitation, we
identified a number of mutational signatures previously
unreported in MM, and strikingly the AID-attributed sig-
nature 9 being detectable in a high proportion of MM, a
finding consistent with a contemporaneous report [29].
Although mutational patterns suggestive of AID activity
have been documented in certain genes in MM such as
EGR1 [4] and CCND1 [3], our findings suggest that off-
target AID activity could be more widespread than pre-
viously envisaged. Moreover, as off-target AID activity is
associated with genomic instability and chromosomal
translocation in B-cells [34], it may be a major etiological
factor driving mutation of MM.

We acknowledge that the present analysis has limita-
tions. First, we have used a cellular model of naïve B-cells
to map the CREs, which is unlikely to fully and specifically
recapitulate the spectrum of pathogenic SNVs and CNVs

seen in MM. Second, the low coverage of CoMMpass WGS
data means that we have likely underestimated the somatic
variants in the tumors, and increased noise to our gene
expression analysis. The sensitivity of our analysis is
dependent on the clonal architecture of the samples, and it is
likely that our analysis is limited to the identification of
clonal, early drivers of MM. Third, inevitably as CNVs are
highly recurrent in MM [1], this has restricted the study
power of our gene expression analysis as samples were
excluded. Finally, non-coding RNAs were not considered in
gene expression analysis although many have been identi-
fied as recurrently mutated in their regulatory regions
(Supplementary Table 2-3). Despite our restricted sensitiv-
ity, we have identified multiple targets of non-coding
mutations, highlighting the importance of broadening the
search for cancer drivers into the regulatory genome.
Validation of the candidates we have identified will be
contingent on functional studies including, for example,
CRISPR-mediated genome editing, in vitro reporter assays,
and proliferation assays coupled with transcriptional
profiling.

In conclusion, our findings provide integrated analysis of
novel coding and non-coding drivers in MM, demonstrating
the genetic complexity contributing to this malignancy.
Thus by developing a more comprehensive picture of the
underlying genetic basis of MM, we extend the list of genes
and pathways for which novel therapeutic agents may be
identified through network-based drug search methodolo-
gies [35, 36], offering the prospect of future individualized
therapy in MM.

Materials and methods

Sequencing datasets

All data analyzed were generated as part of the Multiple
Myeloma Research Foundation (MMRF) CoMMpass Study
(release IA9). WGS data on 765 matched tumor-normal

Fig. 5 Mutational signatures in multiple myeloma. Mutational patterns
of somatic mutations in CREs interacting with PAX5 promoters dis-
play both canonical (C > T/G in WRCY motifs with R= purine, Y=

pyrimidine) and non-canonical (A > C/G in WA motifs) activation-
induced cytidine deaminase (AID) signatures
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baseline newly diagnosed bone marrow samples were
downloaded from the database of Genotype and Phenotype
(dbGaP). MM tumor specimens were enriched from bone
marrow aspirates by CD138 antibody conjugation yielding
on average 99% CD138+ plasma tumor cell purity [37].
Matched tumor RNAseq for 606 of the 765 samples, pro-
cessed by HTseq, were used for gene expression analysis.
CNV, WES variants, RNAseq, and sequencing based
fluorescent in situ hybridization FISH (Seq-FISH) data
(MMRF IA9 dataset) were downloaded from MMRF web
portal (https://research.themmrf.org/).

Significantly mutated coding genes

To identify significantly mutated genes, we annotated WES
data using Oncotator [38] and applied MutSigCV [24]
(v1.2) adopting default settings (http://www.broadinstitute.
org/cancer/cga/mutsig/). Genes with Q < 0.05 were con-
sidered significantly mutated.

Genome-wide somatic variant calling

Raw sequencing reads of WGS data were quality checked
using FastQC (v.0.11.4, http://www.bioinformatics.babraha
m.ac.uk/projects/fastqc/), and aligned by the Burrows-
Wheeler Alignment tool [39] (BWA v0.7.12) to the
human genome hg19/GRCh37 assembly. Mutations in
samples were called using MuTect [40] (v1.1.7) according
to best practices (https://software.broadinstitute.org/gatk/
best-practices/) making use of data from dbSNP v147 and
COSMIC non-coding variants v77 [41] to minimize false
positives attributable to germline variation. Variants were
then filtered for oxidation artifacts [42] and only retained if
they had a minimum of one alternative read in each strand
direction, a mean Phred base quality score > 26, a mean
mapping quality ≥ 50, and an alignability score of 1.0 based
on alignability of 75mers defined by the ENCODE/CRG
GEM mappability tool [9, 43].

Assessment of WGS variant calling

We estimated the sensitivity to detect clonal mutations in
the low-coverage WGS dataset by comparing called var-
iants with those identified in the high-coverage WES data in
IA9 dataset (alternate allele ratio > 0.2).

Analysis of CNVs

Deletions and amplifications were defined as abs(log2-
ratio) ≥ 0.1613 based on circular binary segmentation
defined copy number segments. A chromosome was con-
sidered amplified if at least 90% of the chromosome over-
lapped with an amplification. Cytoband definitions (hg19)

were downloaded from UCSC (http://hgdownload.cse.ucsc.
edu/goldenpath/hg19/database/). Gene exon boundaries
were downloaded from RefSeq (hg19). Affected genes and
cytobands were identified by overlaying CNVs using bed-
tools [44]. Plots were produced using the package kar-
yoploteR [45].

Analysis of structural variants

BAM files were analyzed and annotated using Illumina’s
MANTA [46] and NIRVANA [47] software with default
settings, allowing identification of structural variants (SVs)
falling within gene boundaries. To search for genes in the
vicinity of breakpoints whose expression may be affected
by SVs, we first assembled the composite chromosome (as
per SAMtools variant call format v4.1 specifications) and
then identified genes within 1Mb of the breakpoints using
the RefGene database. The immunoglobulin loci IGH, IGK,
and IGL were defined to occur at 14q32.33, 2p11.2, and
22q11.22, respectively. Plots were produced using Circos
[48].

Assignment of myeloma karyotype

Classifications of translocations in MM in MMRF IA9 was
based on Seq-FISH [49]. HD was defined as amplification
of 90% of the chromosome in at least two autosomal
chromosomes. Associations between the number of somatic
mutations and MM karyotype were performed using a
Wilcoxon rank-sum test comparing the distribution of
mutations for each karyotype with all other samples.

Defining regulatory regions

Promoter regions were defined as intervals spanning 400-bp
upstream and 250-bp downstream of the annotated TSS
from RefGene database [50] as per Rheinbay et al. [11].

CREs were defined using publicly accessible promoter
CHi-C data generated on naïve B-cells [6]. We only con-
sidered promoter–CRE interactions with linear distance ≤ 1
Mb [51] and as previously advocated, only interactions with
a CHiCAGO score ≥ 5 were considered statistically sig-
nificant [52].

To remove false positives in regions not identified as
duplicates in hg19/GRCh37, we performed an additional
filtering step, removing contacts between fragments map-
ping to regions that did not map to unique locations in hg38.
Briefly, hg19/GRCh37 was split into windows of 100 bp
prior to alignment to hg38 using BWA. A base was con-
sidered to be poorly mapped if the majority of reads con-
taining it could be mapped elsewhere in the genome with at
most one mismatch or gap, as described in http://bit.ly/snpa
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ble. A contact region was retained if 95% of its constituent
bases were well mapped.

Identification of recurrently mutated regulatory
regions

Promoter and CREs were tested independently for recur-
rence of non-coding mutations based on the approach of
Melton et al. [53]. Briefly, the statistical modeling of
recurrent mutations assumes a Poisson binomial model, in
which the mutation probability for each regulatory region in
each tumor is determined by fitting a logistic regression
model with glm R function to all data in CREs and pro-
moters separately, taking into account the following factors
at every nucleotide base [53]: tumor ID, mutational status,
reference base pair (A/T versus G/C), replication timing,
and coverage. As replication timing influences mutational
rate at each nucleotide base [54], replication timing at a base
position was estimated as the average of replication timing
data from Hela, K562, HEPG2, MCF7, and SKNSH cell
lines [54]. CRE regions that overlap with open reading
frames (extended by 5 bp to account for splice sites), and 5’-
UTR and 3’-UTR as defined by Ensembl v73 [55] were
excluded from the analysis. For promoters, mutations
overlapping with open reading frames as defined by
Ensembl v73 [55] were excluded.

The mutation probability of each defined regulatory
region is defined as:

P region is mutatedð Þ ¼
Ys

k¼1

ð1� pkÞ

where s is the size of the regulatory region tested, k is the
nucleotide position, pk is the mutational probability at base
k. The Poibin R package was used for approximation of
Poisson binomial to estimate the empirical P-value for each
CRE and promoter regions as per Melton et al. [53].

Mutations in each promoter and CRE region were tested
for clustering based on the number of mutations occurring
at the same nucleotide positions across all samples in the
defined region, as recurrence of exact somatic mutations
across different tumor samples implies particular SNVs
have an impact on tumorigenesis. For each regulatory
region containing at least three mutations [11], the mutation
positions were permuted 10,000 times within the same
length of the tested region under uniform distribution. The
empirical clustering P-value for each tested region was
calculated as the fraction of times that a set of permutated
mutations having at least the same number of mutations
occurring at the exact position as in the tested region.

The clustering P-value and background estimated P-
value were combined, implementing the Fisher method
within metap R package to derive combined P-values for

recurrent mutation as per Rheinbay et al. [11]. The
Benjamini–Hochberg false discovery rate (FDR) procedure
was used to adjust for multiple-hypothesis testing with
significance thresholded at Q < 0.05.

Effect of regulatory region SNVs on gene expression

Promoter and CRE regions, which were significantly
mutated, were examined for differential gene expression.
We tested for a difference in gene expression between
mutated and non-mutated tumors using a negative binomial
model [55], implemented in edgeR [56]. Samples with
CNVs (including aneuploidy) at either the gene or the
related regulatory regions were excluded [55]. Regulatory
regions were not tested if the CRE was mutated in fewer
than three samples, after the removal of samples with
overlapping CNVs. Where many mutated CREs were
identified as interacting with a promoter, tumors harboring
mutations in more than one CRE fragment were excluded
and only samples with no mutations in any of the recur-
rently mutated CREs were used for comparison. Regulatory
regions interacting with multiple genes were tested multiple
times. Only CREs interacting with protein-coding genes
were evaluated. P-values obtained were adjusted by
Benjamini–Hochberg FDR. Regions with fold change in
gene expression ≥ 1.2 or ≤ 0.8, and threshold Q < 0.1 are
reported.

Epigenetic annotation of CREs

Naive B-cell ChIP-seq data for H3K4me1, H3K4me3,
H3K27me3, and H3K27ac marks (sample
EGAN00001265744-S00XAQH1) were downloaded from
BLUEPRINT. UCSC LiftOver tool (http://genome.ucsc.
edu/cgi-bin/hgLiftOver) was used to derive genome
coordinates.

Gene-set enrichment analysis

Gene ontology (GO) term enrichment analysis was per-
formed to examine for the over-representation of sets of
genes for specific GO annotations. To ensure that the ana-
lysis was not biased toward GO term annotations enriched
among genes whose promoters interact with greater num-
bers of CREs, we annotated the individual CRE–promoter
interactions with the GO terms associated with the con-
tacted genes, and completed the enrichment analysis at the
level of the CRE–promoter interaction for CREs and all
TSS defined for a gene, rather than the gene level. Hence,
all promoters and CRE–promoter interactions were used as
the background set. Enrichment of GO term annotations
obtained from GO.db [57] were tested using a hypergeo-
metric test. The 37 GO terms spanning 10 previously
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defined cancer hallmarks [58] and in signaling pathways
involved MM, including NIK/NF-κB signaling, MAPK
signaling, B-cell proliferation, and B-cell activation and
differentiation were tested.

Analysis of gene expression and CNVs at CREs

Focal deletions and amplifications by CNVs were defined as
abs(log2ratio) ≥ 0.1613 and size < 3Mb. We identified
tumors with deleted or amplified CREs as those overlapping
CNVs and for each promoter-gene, we excluded CREs with
(i) amplification or deletion of the target gene (abs(log2-
ratio) ≥ 0.1613); (ii) <7 observations (representing 1% of
sample size). We compared gene expression between
mutated and unmutated samples using edgeR [56] using
default parameters as per SNV analysis.

Subgroup analysis

We restricted subgroup analysis to the main groups for
which we had reasonable power to detect a relationship.
Specifically, we included the most frequent myeloma sub-
types—HD, t(4:14), t(11:14), and t(14:16)—along with the
t(8:14) MYC translocation subgroup. For the analysis of
coding regions, we assessed the frequency of commonly
mutated genes (defined by our analysis and previously
published work [2–4]) assessing enrichment based on a
Fisher’s exact test. For those CREs we identified as recur-
rently mutated and differentially expressed, we also com-
pared the frequency of CRE mutation by subgroup
assessing enrichment using a Fisher’s exact test. Further-
more, to confirm our combined analysis had not missed any
subgroup specific effects, we performed coding and non-
coding SNV analyses separately for each subgroup.

Integrated pathway analysis

We used the Reactome tool [28] to evaluate pathways sig-
nificantly altered by coding and non-coding drivers identi-
fied, with Q-values < 0.05 being considered statistically
significant.

Analysis of mutational signatures

All somatic variants from WES and WGS passing filtering
were considered for mutational signature analysis. Assign-
ment to the 30 mutational signatures proposed by the
Wellcome Trust Sanger Institute (http://cancer.sanger.ac.uk/
cosmic/signatures) was performed using the R package
deconstructSigs with default parameters [59]. Non-coding
variants disrupting CREs corresponding to PAX5 were
analyzed. Associations between APOBEC mutations and
MM translocation subgroups, as well as recurrently mutated

genes and regulatory regions identified as statistically
altering gene expression, were performed using Fisher’s
exact test. A P < 0.05 (one-sided) was considered statisti-
cally significant.

Data availability

CHi-C data were obtained from Javierre et al. [6]. Histone
ChIP-seq sequencing data were downloaded from BLUE-
PRINT under accession number EGAD00001002466,
sample S00XAQH1.

WGS and WES raw fastq data were obtained from
dbGaP under the study accession code phs000748.v4.p3.

WES somatic variants, RNAseq, CNV, and Seq-FISH
data were obtained from MMRF IA9 (https://research.
themmrf.org/).

Replication timing data were downloaded from the
UCSC Genome Browser (http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/encodeDCC/wgEncodeUwRepliSeq/).
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