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Abstract

Imaging has become an essential tool in modern radiotherapy (RT), being
used to plan dose delivery prior to treatment and verify target position before
and during treatment. Ultrasound (US) imaging is cost-effective in providing
excellent contrast at high resolution for depicting soft tissue targets apart from
those shielded by the lungs or cranium. As a result, it is increasingly used in
RT setup verification for the measurement of inter-fraction motion, the subject
of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114).
The combination of rapid imaging and zero ionising radiation dose makes
US highly suitable for estimating intra-fraction motion. The current paper
(Part II of the review) covers this topic. The basic technology for US motion
estimation, and its current clinical application to the prostate, is described here,
along with recent developments in robust motion-estimation algorithms, and
three dimensional (3D) imaging. Together, these are likely to drive an increase
in the number of future clinical studies and the range of cancer sites in which
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US motion management is applied. Also reviewed are selections of existing
and proposed novel applications of US imaging to RT. These are driven by
exciting developments in structural, functional and molecular US imaging
and analytical techniques such as backscatter tissue analysis, elastography,
photoacoustography, contrast-specific imaging, dynamic contrast analysis,
microvascular and super-resolution imaging, and targeted microbubbles. Such
techniques show promise for predicting and measuring the outcome of RT,
quantifying normal tissue toxicity, improving tumour definition and defining
a biological target volume that describes radiation sensitive regions of the
tumour. US offers easy, low cost and efficient integration of these techniques
into the RT workflow. US contrast technology also has potential to be used
actively to assist RT by manipulating the tumour cell environment and by
improving the delivery of radiosensitising agents. Finally, US imaging offers
various ways to measure dose in 3D. If technical problems can be overcome,
these hold potential for wide-dissemination of cost-effective pre-treatment
dose verification and in vivo dose monitoring methods. It is concluded that US
imaging could eventually contribute to all aspects of the RT workflow.

Keywords: tracking, ultrasound, guidance, radiotherapy, elastography,
photoacoustics, dosimetry

(Some figures may appear in colour only in the online journal)
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ABC
AP
ARFI
BTV
CDUS
CEUS
CPD
CT
DCE-US
DIL
DSC
EM
FDG-PET
FOV
FPS
GV
IGRT
IMRT
kV
LED
linac
LR
MAGIC
MBF

Active breathing control
Anterior—posterior

Acoustic radiation force impulse (imaging)
Biological target volume

Colour Doppler ultrasound

Contrast enhanced ultrasound

Colour pixel density

Computed tomography

Dynamic contrast enhanced ultrasound
Dominant intra-prostatic lesion

Dice similarity coefficient
Electromagnetic

Fluorodeoxyglucose positron emission tomography
Field of view

Frames per second

Gas nanovesicle

Image guided radiotherapy

Intensity modulated radiotherapy

Kilovolt

Light emitting diode

Linear accelerator

Left right

Methacrylic and ascorbic acid in gelatine initiated by copper
Mid band fit
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MIP
MLC
mMRI
MR
MRI
MV
MVD
NCC
NIST
OCT
PAG
PDUS
PET
pO>
PTV
RF
ROC
ROI
RPV
RT
RTOG
SAD
SBRT
SE
SD

SI
SNR
SS
SSD
SWE
SOS
TE
THPC
TPUS
UBCs
US
USMI
UIB
VEGFR-2
VMAT
1D

2D

3D
4D

Maximum intensity projection
Multi-leaf collimator
Multi-parameter magnetic resonance imaging
Magnetic resonance

Magnetic resonance imaging
Megavoltage

Microvessel density

Normalised cross-correlation
National Institute of Standards and Technology
Optical computed tomography
Polyacrylamide gel

Power doppler ultrasound

Positron emission tomography
Oxygen partial pressure

Planning target volume

Radio frequency/radio-frequency
Receiver operating characteristic
Region of interest

Reference planning volume
Radiotherapy/radiation therapy
Radiation therapy oncology group
Sum of absolute differences
Stereotactic body radiation therapy
Strain elastography

Standard deviation

Spectral intercept/superior inferior
Signal to noise ratio

Spectral slope

Sum of squared differences

Shear wave elastography

Speed of sound

Transient elastography

Tetrakis (hydroxymethyl) phosphonium chloride
Transperineal ultrasound

Ultrasound backscatter characteristics
Ultrasound

Ultrasonic molecular imaging
Ultrasound integrated backscatter
Vascular endothelial growth factor receptor type 2
Volumetric modulated arc therapy
One dimensional

Two dimensional

Three dimensional

Four dimensional

1. Introduction

Within the topic of image guided radiotherapy (IGRT) research there is a growing inter-
est in ultrasound (US) imaging, which offers rapidly developing technology for real-time
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two-dimensional (2D) and three-dimensional (3D) anatomical and functional inter-fraction
and intra-fraction imaging at high frame and volume rates. Earlier review papers have dealt
with US-based anatomical localization (Kuban et al 2005) or 3D US technology (Fenster et
al 2001). The current review and its companion paper (Fontanarosa et al 2015) are the first
to cover extensively the recent progress and growing applications of modern US imaging in
radiotherapy (RT). Part I (Fontanarosa et al 2015) focused on the use of US for inter-fraction
motion correction. Here, in Part II, we address the potential benefits of further integration
of US imaging into the RT workflow, including: intra-fraction motion correction, biological
target volume (BTV) identification, prediction and monitoring of tumour response, normal
tissue toxicity assessment, therapeutic effect enhancement, and dosimetry. Figure 1 provides
a guide to the potential applications of US to specific stages of the RT workflow, and where in
this review these topics are discussed. This review does not consider the use of US to detect
tumour recurrence post-RT, as this is covered in reviews on the use of US for cancer diagnosis.

2. US based intra-fraction motion management

2.1. Intra-fraction motion

Intra-fraction translation, rotation or deformation of the target (tumour) during radiation beam
delivery has a negative impact on RT which is well understood (Yorke et al 2008). A study
by Langen and Jones (2001) reviewed organ motion relevance to RT. Motion statistics, for
US-accessible treatment sites are given in table 1. For treatment sites influenced most by
respiratory motion, such as the liver, this motion can significantly reduce accuracy of deliv-
ery (Von Siebenthal et al 2007). Simulated gating and dynamic multi-leaf collimator (MLC)
tracking have been shown to improve dose distributions for prostate (Colvill et al 2014),
which can experience significant (non-respiratory based) motion in some treatment fractions
(Noel et al 2009, Ng et al 2012).

The various methods that can measure intra-fraction motion, whilst a patient is treated on a
standard C-arm linac, can be divided into techniques that use (1) external surface motion, (2)
implanted markers (electromagnetic or metallic), (3) US or (4) x-ray imaging (see figure 2).
For an overview of the different IGRT techniques the reader is referred to Jaffray (2012) and
De Los Santos et al (2013). Table 2 summarises the key features of current and emerging intra-
fraction motion estimation technologies for controlling RT beams by tracking or gating, and
the potential advantages and disadvantages of each. Advantages that US holds over other tech-
niques include the combination of high accuracy, high spatial resolution, high temporal reso-
lution, ability to account for tissue deformation by direct monitoring of internal tissue motion,
and no ionising radiation dose or invasion. Disadvantages include inaccessibility of US to
tissues shielded by air or bone, potential for the US transducer to interfere with the RT dose
distribution, and, for some 3D US technologies, restriction on imaging volume rate. These lat-
ter two practical issues will be discussed below in section 3.3. The emergence of megavoltage
(MV) treatment machines which combine magnetic resonance (MR) image-guidance share
many of the advantages of US but their use (like US) has yet to be fully explored (Kirkby
et al 2008, Raaijmakers et al 2008).

2.2. Implementation of US intra-fraction motion management

Relative to x-ray based techniques, the use of US for intra-fraction motion management is at
an early stage (see table 2). The following section is intended to familiarise the reader with the
methods used to estimate tissue motion using US.
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Radiotherapy US in radiotherapy discussed in this review
workflow

US-based molecular, functional and
structural characterisation imaging
and measurement

Section 3.2 Improved target localization for RT planning

3D US-based dosimetry

Section 4 The use of US in 3D dosimetry

US-based motion estimation

and dosimetry
Section 2 Intrafraction motion: management and estimation
Section 4 The use of US in 3D dosimetry
US-based molecular, functional and
structural characterisation imaging
and measurement

Section 3.4 Assessment of normal tissue toxicity
Section 3.3 Tumour response to treatment

Figure 1. The potential applications of US in the radiation treatment chain and the
sections of this review where these applications are discussed. The use of US imaging
for patient set-up and verification was discussed in Part I of this review (Fontanarosa
et al 2015).

2.2.1. US motion estimation techniques. There are two types of US motion estimation tech-
niques: direct and indirect. Direct methods detect echo motion, whether it corresponds to
homogeneous speckle or resolved tissue structure, such as anatomical features. Indirect meth-
ods estimate the motion of segmented boundaries (see figure 3).

Direct (echo-based) methods: Motion can be estimated without region or boundary seg-
mentation, using (i) US echo fluctuation or (ii) tracking methods, either of which may use
the phase or the magnitude of the US echo signal (Eckersley and Bamber 2004). Fluctuation
(e.g. Doppler) methods have not been applied to motion estimation in RT and will not be
discussed further. Tracking methods, also known as time-domain methods (Hein and O’brien
1993, Eckersley and Bamber 2004), measure displacement as the shift in location needed to
re-establish echo correlation (Eckersley and Bamber 2004) and have been used to estimate
tissue and phantom motion in RT.

US images possess a grainy structure called speckle (Burckhardt 1978). Speckle is an image
pattern that is unique to a region of tissue, and is created by the interference between echoes
from US scatterers that are too close to each other to be separately resolved (Bamber 1993, Chen
et al 1995). It provides image structure that accurately follows tissue motion, even when no
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Table 1. Motion statistics for various organs accessible by US. These motion data
were acquired with a variety of imaging modalities including x-ray imaging, magnetic
resonance imaging (MRI), 4DCT and US.

Displacement (mm) or

Tissue Motion statistic percentage (%) Observer
Breast (cavity) Range (3D) 0.8-3.8 Glide-Hurst et al (2015)
Breast (ipsilateral) Range (3D) 0.7-3.0 Glide-Hurst et al (2015)
Liver Mean (range) 17.6 (5.6-39.5) Worm et al (2013)
Mean + S.D. 244+ 16.4 Bussels et al (2003)
Mean + S.D. 13.0 +5.0 Weiss et al (1972)
Mean 14 Harauz and Bronskill (1979)
Mean (range) 25 (10-40) Suramo et al (1983)
Mean (range) 10 (5-17) Davies et al (1994)
Kidney Mean (range) 19 (10-40) Suramo et al (1983)
Mean (range) 11 (5-16) Davies et al (1994)
Mean + S.D. 169 £7.9 Bussels et al (2003)
Mean <10 Pham et al (2014)*
Pancreas Mean (range) 20 (10-30) Suramo et al (1983)
Mean (range) 20 (0-35) Bryan et al (1984)
Mean + S.D. 23.7+ 159 Bussels et al (2003)
Prostate (supine)  Range (AP) —4.6-6.8 Huang et al (2002)
Mean + S.D. 0.6 +04 Butler et al (2013)
Margins (LR, AP, IS)> 1.8,5.8,7.1 Litzenberg et al (2006)
Mean time > 3, 5mm 14%, 3% Langen et al (2008)
Time > 3,5,7, 10 mm 5.6%,2.2%, 0.7%,0.4%  Ng et al (2012)
Prostate (prone) Mean =+ S.D. 124+06 Butler et al (2013)
Cervix Margins (fundus, os)* 10, 4.5 Chan et al (2008)
Maximum 10.6 Kerkhof et al (2009)
Mean + S.D. (AP) 29+27 Haripotepornkul ef al (2011)
Uterus Mean + S.D. (AP) 7.0 £9.0 Taylor and Powell (2008)
Bladder Maximum 58 McBain et al (2009b)
Volume increase 101% McBain et al (2009a)
S.D. 5 Meijer et al (2003)
Maximum 15 Foroudi et al (2013)
Rectum Maximum 30 Muren et al (2004)
Margin (systematic, 6, 16 Muren et al (2004)

random)?

* Review paper—mean of 15 publications (free breathing).
Y Planning target volume (PTV) margin.

¢ Internal target volume margin.
4 Planning organ at risk volume (PRV) margin.

resolved tissue structure is present, so long as the tissue stays in view without excessive deforma-
tion or rotation and no changes occur to the US imaging parameters (e.g. US beam direction, fre-
quency, pulse shape or beam shape). Violation of these conditions results in a speckle pattern that
changes, or decorrelates, as it moves. When resolved tissue structure is present, its motion may
be followed directly, although similar conditions apply as for speckle tracking. Direct methods
tend to be based on the application of similarity measures to estimating the motion of regions of
US speckle or localised resolved tissue structure (Harris ef al 2010); commonly it is a combina-
tion of both (figure 3). We therefore refer to all such methods as echo pattern matching.
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surface
imaging

optical
markers

X-ray / EM
fiducials

target

wired EM

X-ray imager

Figure 2. Methods of intra-fraction motion estimation: optical surface imaging, kV
x-ray, wired and wireless (induction-based) EM fiducials and US imaging.

Echo pattern matching is illustrated in figure 4 for a sector scan. A region of interest (ROI),
containing a unique echo pattern, is defined in an US image (acquisition 1). In a subsequent US
image (acquisition 2), a pattern matching algorithm searches for the region that best matches
the echo pattern in the ROI, identified using a similarity measure such as the normalised cross
correlation coefficient (NCC) (e.g. Bonnefous and Pesque 1986), sum of absolute differences
(SAD) (e.g. Bohs et al 1993), or sum of squared differences (SSD) (Langeland et al 2003).

Indirect (image segmentation-based) methods: Indirect motion estimation methods involve
image analysis methods to segment an element of anatomy, e.g. the prostate boundary. Once
segmentation has been achieved in each acquisition, a positional measure such as centre-of-
mass of the object (or objects) detected may be extracted to provide, over many acquisitions,
a time-varying displacement. Such segmentation may, however, not always be possible using
US data alone due to a lack of reliable landmarks (Yang and Fei 2012).

Segmentation of a clearly defined object displayed with high echo image contrast (e.g. a
fluid filled cavity) can be relatively straightforward (Sarty et al 1998). However, US images
of a target such as the prostate are difficult to segment because of relatively low contrast and
artefacts such as those due to shadowing, meaning that image processing operators such as
edge detectors are inadequate by themselves. More complex methods such as the active con-
touring (Kass et al 1988) have been developed but require initialisation by user defined curves
(Pathak et al 1998). Fully automated 3D segmentation based on atlas registration and texture
priors has shown promise when compared with manual segmentation in prostate transrectal
US (Yang and Fei 2012). For intra-fraction motion, segmentation would have to be both rapid
and fully automated. Fast segmentation has been investigated for image guidance of surgery
of the kidney (Ahmad et al 2006) and liver (Angelini et al 2005, Foroughi et al 2006), radio-
surgery of the liver (Lee et al 2011) and for ventricular volume estimation in echo-cardiogra-
phy (Angelini ef al 2005, Hansegard et al 2007).

The choice of whether to employ a direct or indirect algorithm (or a combination of both)
may depend on the availability and quality of features for reliable segmentation. Direct
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Figure 3. Motion in US image sequences can be estimated by (1) measuring echo
motion directly, e.g. echo pattern matching which does not distinguish between
homogeneous (speckle) regions and anatomical features (green box) or (2) indirect
methods which estimate the motion of segmented boundaries (light blue dotted-line).

methods are the most commonly studied and the only ones used to date in a commercial US
guided RT system (Lachaine and Falco 2013). A number of interesting direct approaches to
motion estimation in long 2D B-mode in vivo US liver sequences were recently presented (De
Luca ef al 2015).

2.2.2. Factors influencing the accuracy of direct echo-based motion estimation. When
implementing a direct echo-based technique it is important to consider a number of factors
which can influence the accuracy of the motion estimation (some of these factors are also
relevant to indirect (segmentation-based) approaches). Motion estimation accuracy can be
affected by factors specific to the tissue (target) of interest, such as depth, speed and type
of motion. Others factors are specific to the imaging, data type and algorithmic parameter
choices. A full discussion was considered too detailed for this review and the main points have
therefore been summarised in table 3.

2.3. Application to intra-fraction motion estimation

2.3.1. Studies using US intra-fraction motion estimation. The first commercially available US
based intra-fraction motion monitoring system, the Clarity Autoscan™ (figure 5) integrates a
mechanically-swept 3D US transducer into the treatment planning (computed tomography
(CT) suite) and delivery (treatment room) process. A 5 MHz transducer is positioned for
transperineal prostate imaging. During treatment, 3D US images are acquired at 2.5s inter-
vals and registered to a reference US volume using a correlation-based search with reference
ROIs centred on pixels within 2cm of the prostate boundary. Phantom studies demonstrate
that <1.2mm accuracy and precision of motion estimation can be achieved using Clarity
Autoscan™ (Abramowitz ef al 2012, Lachaine and Falco 2013). Intra-fraction motion estima-
tion of the prostate in vivo has yet to be compared to other techniques such as those based on
x-ray imaging of fiducial markers (Ng et al 2012).

Other US intra-fraction motion estimation techniques being researched are listed
in tables 4 and 5, many of which have been confined to phantom investigation (table 4).
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US transducer

I 7

axial E_:: ,
-: : 1l
ROI : /—%E.:;‘:’//ROI
acquisition 1 acquisition 2

Figure 4. Example of 2D US echo pattern matching. A kernel or reference ROI is
selected in an US image (acquisition 1) and the pattern that best matches this is located
in a subsequent image (acquisition 2) by computing a similarity metric, such as the
normalised cross-correlation coefficient, at many test locations within a larger search
region. The top image illustrates a sector scan and the bottom two image acquisitions
are assumed to be in polar coordinates, where the direction labelled lateral is measured
in terms of the angle at which each A-line is acquired. The method can be extended to
3D if elevational data is available.

Some have evaluated the accuracy of intra-fraction motion estimation using ROIs contain-
ing resolved features (Abramowitz er al 2012, Schwaab ef al 2014) and some with ROIs
containing US speckle only (Sawada et al 2004, Hsu et al 2005, Harris et al 2007, O’Shea
et al 2014).

Tissues investigated: A handful of in vivo studies (table 5) have shown the feasibility of
2D US-based motion tracking of the diaphragm (Xu and Hamilton 2006), liver (Jacso et al
2009, Rubin et al 2012), prostate (Schlosser et al 2010, Schlosser et al 2011) and lung surface
(Rubin et al 2012). Liver motion estimation in 3D was demonstrated by Harris ef al (2010).
The pancreas can be difficult to visualise with an abdominal US transducer. Omari et al (2015)
have assessed the feasibility of using portal vein motion, visualised using Elekta Clarity ", as
a surrogate for pancreatic motion. US has not been used for intra-fraction motion estimation
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Table 3. Factors influencing the accuracy of direct echo pattern matching motion

estimation.
Factor Effect Potential solution(s)
Target ~ Rotation and Large inter-frame deformations (>5%) and e Optimise trade-off between
specific ~ deformation  rotations (>>2°) limit accuracy of echo pattern temporal resolution, spatial
matching (Kallel er al 1994, Meunier and sampling and field-of-view.
Bertrand 1995, Bamber and Bush 1996, (Doyley et al 2001)
Fan et al 1997, Varghese and Ophir 1997, o Including anatomical features
Meunier 1998, Brusseau ef al 2000) in the ROI may increase
maximum inter-image
rotation/deformation.
(Harris et al 2010)
e Regularisation techniques
using a priori data could
improve results. (Cespedes
et al 1997, Huang et al 2008,
Gastounioti ef al 2011, Bell
et al 2012, O’Shea et al 2016)
Direction of ~ The axial sampling interval is typically e Knowledge of specific
motion smaller than the lateral and elevational organ motion and transducer
sampling intervals. Motion estimation was  spatial and temporal
found to be most accurate in the axial characteristics should be
direction (Harris er al 2007) used to guide alignment of
the transducer with respect to
the patient axes (O’Shea
et al 2014)
e Use of matrix array
transducer (Bell et al 2012)
Object depth  For curvilinear transducers, spatial sampling e Use sub-sample estimation
interval increases with depth in the lateral ~ (see below)
and elevational directions. Motion
estimation accuracy was observed to be
poorer at greater depths (Harris er al 2007)
Object speed For mechanically swept transducers, the
spatial sampling interval of objects moving
retrograde to the sweep direction increases
with increasing speed, resulting in a decrease
in motion estimation accuracy. Speeds of up
to 35 mm s~ ! were observed to have no
influence on the motion estimation accuracy
in lateral direction (Harrington
et al 2011, Harris et al 2011)
Imaging Image data  Radio frequency (RF) data can be used to e Combined algorithms that
data type measure much smaller displacements (tens  use the envelope signal for

of micrometres) than B-mode data (Bohs
and Trahey 1991, Hein and O’brien 1993,
Shi and Varghese 2007, Tavakoli et al 2010,

Bamber ef al 2013)

estimating large motion and
the RF signal to refine the es-
timate could be investigated.
(Doyley et al 1996, Varghese
and Ophir 1997)
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Table 3.

(Continued)

Factor

Effect

Potential solution(s)

Motion
estimation
algorithm

Noise and
artefacts

Region of
interest size

Fixed or
incremental
motion
estimation

Sub-sample
interpolation

The envelope signal contains the echo
signal features required to track large
displacements (i.e. as in RT tumour
motion), and may decorrelate less rapidly
than the phase in the corresponding RF

data. (Doyley et al 1996, O’Shea et al 2015)

Direct motion estimation algorithms can
suffer from decorrelation (between the
reference and current image) when the
image quality becomes poor due to e.g.
random electronic or thermal noise (Bohs

et al 1995, Yeung et al 1998), acoustic noise

(Bohs et al 1995) or shadowing

A large ROI contains a more unique echo
pattern and will thus track motion with
greater accuracy than would a small ROI
(Ramamurthy and Trahey 1991, Morsy and
von Ramm 1999)

A small ROI, however, provides the best
spatial localisation (resolution) of the
motion and smallest computational load

A fixed ROI may lose correlation and
therefore accuracy for large displacements,
the accumulation of small tracking errors
(including interpolation bias errors) when
incremental tracking is used may result in
less reliable tracking (Matthews et al 2004,
Harris et al 2010)

Displacement sensitivity is limited by the
sampling interval, which in the lateral and
elevational (in 3D) directions is equal to
the A-line and elevational frame density,
respectively

e Automatic methods of
shadow detection. (Noll
et al 2014)

e Updating the ROI size may
provide a compromise
between spatial resolution
and accuracy (De Luca

et al 2013)

e Regularisation techniques
using a priori data could
improve results. (O’Shea

et al 2016)

e Adaptive and regularised
updating of the ROI ap-

pears to greatly improve
incremental tracking perfor-
mance (O’Shea et al 2016).
Other techniques attempt

to compensate for ROI drift
(De Luca et al 2013)

e Interpolation of the
similarity measure is a more
computationally efficient
method of improving
displacement sensitivity
compared to interpolating the
echo imaging data. The grid
slopes algorithm (Geiman

et al 2000) was said to provide
unbiased displacement
estimates compared with cubic
spline (Geiman et al 2000) and
parabolic interpolation (Foster
et al 1990). Others have used a
Gaussian-shaped interpolator
(Housden et al 2006)
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Figure 5. The Clarity Autoscan'" system with the monitoring interface showing a
phantom used to simulate intra-fraction motion imaging. The dotted red contour is
the reference target (reference planning volume, RPV). The solid red line indicates
the current target contour. The dotted white line indicates the location of the VRV
(VOICE reference volume). The % VOICE (volume of interest coverage estimate) is
the percentage of target volume covered by the VRV contour (93% in this example).
Courtesy of Martin Lachaine (Elekta Ltd).

for lung tumours, probably due to the high attenuation of US in lung and the success of optical
monitoring of surface tumours. US monitoring of diaphragm motion could however be com-
bined with surface motion to obtain a better estimate of lung tumour motion. Other abdominal
tissues, such as bladder and kidney have yet to be studied clinically. The bladder is easily visu-
alised on US and there is evidence to suggest that significant motion of the bladder wall may
occur during therapy (McBain ef al 2009a). Similarly, the kidneys are easily accessible by
US and US-based motion estimation of the kidney may have application to SBRT of adrenal
gland metastases (Chawla et al 2009) or in paediatric RT of the upper abdomen (Panandiker et
al 2012). Tt is unlikely that US-based methods for estimating breast tissue motion hold great
advantage over surface techniques.

Of the US intra-fraction motion estimation studies that employed in vivo data, comparison
with the true motion (and therefore motion estimation accuracy) has either not been fully con-
sidered or has been based on manual annotations of features in B-mode images (e.g. De Luca
etal 2013). There remains a need for full in vivo investigation of the accuracy and limitations of
US-based methods, and therefore a need for improved methods for measuring the true motion.
Comparison with other technologies such as kilo-voltage (x-ray) intra-fraction monitoring,
which has shown acquisition rates (5—-10 Hz) comparable with US and systematic accuracy
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Table 4. Phantom-based studies of US-based intra-fraction motion estimation in RT.
The transducer type, motion estimation method and main findings are included.

Motion
estimation
Site Transducer method 3D  Investigation/finding Publication
Phantom Not specified Echo pattern Yes  Respiratory gating using 3D US Sawada
(3D) matching et al (2004)
Results show synchronisation of phase
of echo pattern matching (NCC) and
periodic motion of organs such as the
liver and pancreas
Phantom 5 MHz, Echo pattern No  Feasibility of US tracking with linear Hsu et al
linear array — matching accelerator (linac) operating (2005)
Minimal effect of transducer of dose
distribution
Negligible effect of linac on 2D echo
pattern matching
Phantom 4-7 MHz, Echopattern Yes Dependence of echo pattern matching  Harris et al
curvilinear ~ matching on depth, spatial sampllng, motion (2007)
magnitude for known displacements
of 1,2 and 8 mm
Phantom Not specified CT to US No  Novel US-CT fusion system developed Molloy and
image and tested Oldham
registration (2008)
CT image data superimposed on live US
image
System found to have sufficient accuracy
for assessment of respiratory-induced
tissue motion
Phantom 4-7 MHz, Echo pattern Yes  Investigated the effect off object speed and Harris et al
curvilinear ~ matching direction on motion estimation accuracy ~ (2011)
Motion estimation errors in the
elevational direction highlighted the
limitations of 3D sweep transducers for
respiratory motion
Phantom 5 MHz, Echo pattern  Yes 3D motion phantom tracked with Abramowitz
microconvex matching Clarity Autoscan system and Calypso et al (2012)
4D and optical system (abstract
only)
Calypso & optical: 95% of distance
variation <0.6 mm, clarity auto-
scan <1.3 mm
Phantom 5 MHz, Echo pattern Yes  Accuracy of phantom displacements: Lachaine
microconvex matching 0.2, 0.0, 0.2mm (AP, RL, SI) and Falco
4D (2013)
Phantom Not specified, Indirect Quasi Biplane ultrasound probe used with Schwaab
biplane method active contouring to track 1D sinusoidal et al (2014)
(contour) motion of rubber ball target
Prediction used to account for imaging
and motion estimation latency
(Continued)
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Table 4. (Continued)
Motion
estimation
Site Transducer  method 3D  Investigation/finding Publication
Phantom 7.5 MHz, Echo pattern  Yes  Phantom displaced in 3D using prostate O’Shea et al
linear array  matching motion data from Calypso (2014)
Tracked with US and kV x-ray system
on CyberKnife

Accuracy of 3D-US motion estimation
comparable with kV xray for major axes
of motion

Table 5. Application of US to in vivo intra-fraction motion estimation in RT. The site
investigated, transducer type, motion estimation method and main findings are included.

Site Transducer

Motion
estimation
method 3D

Investigation/finding Publication

Diaphragm Not specified Echo pattern No

matching

Liver Not specified Echo pattern No

Liver 4-7 MHz,
curvilinear

Prostate 2.5 MHz,
abdominal

Prostate 1-5 MHz,
curved array
Prostate, 2.5 MHz,

Liver, phased array

Lung 6.0 MHz,
Linear array

Liver 2.8 MHz, 2D

matrix array

matching

Echo pattern ~ Yes
matching

Echo pattern No
matching

Echo pattern No
matching
Echo pattern  No
matching

Echo pattern ~ Yes
matching

Liver 1.8-2.2 MHZ, Echo pattern No

not specified

Pancreas 5 MHz
convex 4D

matching

Echo pattern  No
matching

Novel respiratory detection method ~ Xu and

based on diaphragm motion using Hamilton
four volunteers (2006)
US-gated liver radiation therapy Jacso et al
feasibility study (2009)

Temporal accuracy (lag) comparable

with x-ray imaging system

Estimated motion compared with Harris et al
known sinusoidal motions. Four (2010)
healthy volunteers

Mean absolute devaition and SD of

tracked vessels <1.7 mm

Fixed reference tracking gave best

results
Could detect motion before prostate ~ Schlosser
displaced by 3 mm or rotated by et al (2010)

Sdegrees at 95% confidence level
Telerobotic system for real-time US ~ Schlosser

imaging during radiation therapy etal (2011)
Motion estimate versus human Rubin et al
observer <2.0mm difference (2012)

Liver ultrasound (three volunteers) Lediju Bell
to study scan rates with matrix array et al (2012)

12 Hz volume rate is needed to track
respiratory motion with 1 mm

RMS error

Scale adaptive block matching with ~ De Luca
temporal realignment to reduce et al (2013)
accumulation of tracking errors

Elekta Clarity used to track portal Omari et al
vein motion as surrogate for (2015)

pancreatic motion
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of <0.5mm (Ng et al 2012), or with electromagnetic intra-fraction monitoring devices, e.g.
Calypso (Willoughby et al 2006) (temporal resolution of 10 Hz, accuracy <0.5mm), with
appropriate EM shielding, may be astute.

2.83.2. Transducer type and imaging dimensions. While intra-fraction motion is inherently
3D, tissues generally exhibit greater motion in the superior-inferior and anterior—posterior
motion directions. Left or right motion is often significantly smaller, making it less clinically
relevant to RT. This supports the possible use of 2D images, as does low cost real-time imag-
ing and the currently available high frame rate imaging. For example, 2D imaging could be
performed with an appropriate left-right (RL) PTV margin to cover the expected magnitude
of motion in the RL direction. This does, however, require the transducer to be aligned with
the plane of dominant motion, and the development of methods for doing this rapidly and
automatically. Direct comparisons of high frame-rate 2D US and slower volume rate 3D US
for motion estimation of tissues have yet to be made. As an alternative to direct 3D US motion
estimation, Preiswerk et al (2014) have combined 2D motion estimation and MRI-derived
population-based motion models to estimate 3D displacement at high rates. The following
considers the choice of transducer type, which may be 2D, 3D or biplanar.

2D transducers: A number of studies have investigated the use of 2D transducers for
motion tracking in RT (e.g. Schlosser et al 2010, Schlosser et al 2011, Rubin et al 2012, see
tables 4 and 5). Compared with 3D US, 2D monitoring decreases the (inter-image) compu-
tational load and, with smaller inter-frame displacement (due to higher frame rate), allows a
smaller search window, further decreasing computation time. The high frame rate also helps to
improve motion estimation by reducing inter-frame decorrelation in direct echo-based meth-
ods. At sufficiently high imaging rates (inter-frame elevation displacement <1 mm), and with
a pre-calibration curve to convert decorrelation to distance (Bamber and Bush 1996, Chen
et al 1997, Bush et al 2005, Housden et al 2007, Chen et al 2010), decorrelation can estimate
out-of-plane motion enabling fast 3D motion estimation with a 2D transducer, albeit with
potential elevation direction ambiguity. This method was adopted by Schlosser et al (2010),
whereby a drop in the peak NCC value was used to indicate out-of-plane motion and rotation
of the prostate during RT.

Biplanar transducers: Biplane imaging offers a high frame rate alternative to full 3D imag-
ing whereby orthogonal imaging planes intersect. (e.g. Hossack er al 2001). Schwaab et al
(2014) have investigated its use for RT intra-fraction motion compensation.

3D transducers: The advantages of direct motion estimation with 3D imaging over 2D, if
the volume rate is high enough to avoid decorrelation due to rotation and deformation, are
(1) the elimination of decorrelation (and consequent loss of tracking accuracy) due to out-of-
plane motion, (ii) the unambiguous measurement of all 3 components of the displacement
vector, (iii) the possibility to estimate rotations about three axes of rotation and deformation
(e.g. Meunier 1998, Saito er al 2009) and (iv) a higher motion estimation precision due to
the more unique speckle pattern (Morsy and von Ramm 1998). Unfortunately, mechanically
swept 3D US transducers have low volume rate which limits their value for tracking relatively
high velocity respiratory-induced motion (Harris et al 2011). Fully real-time (>20 Hz) 3D US
imaging (Gunarathne 2013) is still at an early stage of development. Future methods may be
based on 2D matrix array transducers, where the 3D volume rate is not limited by mechani-
cally sweeping hardware (e.g. Harris et al 2011, Lachaine and Falco 2013, O’Shea et al 2014)
and may reach several thousand Hertz (Byram et a/ 2010) with improved spatial resolution
compared to that provided by equivalent 1D arrays. Bell er al (2012) used a 2D matrix array
(operating at 48 Hz) for 3D liver motion estimation in RT, showing that volume rates of 12 Hz
are need to accurately estimate cardiac and respiratory-induced liver motion.
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2.3.3. Transducer placement. Intra-fraction estimation requires the US transducer to remain
in contact with the patient throughout treatment. This presents a challenge: finding the trans-
ducer placement which allows adequate imaging quality without impacting negatively on the
RT workflow.

Dosimetric impact: To date, the potential for a transducer positioned for minimum impact
on the dose distribution to degrade target motion tracking has been studied only for skin con-
tact scanning, where changes in the dose delivered to the target may be due to (i) RT beam
attenuation when irradiating through the transducer (Bazalova-Carter et al 2015) and radiation
scattering by the transducer when it is positioned at the radiation field edge, and (ii) modifica-
tion of the RT beam angles to avoid the transducer (Wu et al 2006, Zhong et al 2013).

Using a RANDO® phantom and thermoluminescent detectors Hsu et al (2005) found that
a transducer positioned for transabdominal prostate imaging resulted in only a 2.6% change
(predominantly in surface dose) to the dose over the volume of the phantom from a single
10MV 10 x 10cm? photon beam. Transperineal imaging of the prostate (with the transducer
in a stationary holder e.g. Clarity Autoscan) has yet to be studied in this way, but for coplanar
treatments should have limited impact along the radiation beam directions. Zhong et al (2013)
used planning simulations and a virtual transducer to show that, with the exception of super-
ficial targets, liver stereotactic body RT is feasible with the transducer parallel to the patient
axis.

Irradiation through the US transducer, which strongly attenuates the RT beam, is not rec-
ommended (Bazalova-Carter ef al 2015). To avoid this with a suitable margin, e.g. in VMAT
treatment, a simple planning structure could be defined and a strict dose constraint applied
to the block during trajectory optimization (similar to metal hip avoidance (Prabhakar er al
2013). For transabdominal prostate imaging, the dose-volume histogram (DVH) for a plan
that avoided the transducer was in good agreement with the DVH of a clinically deployed
plan (Schlosser et al 2010). The smaller the transducer, the less likely it will interfere with the
treatment. As 3D and biplanar transducers are larger than 2D transducers this may be another
reason to consider the latter. An alternative approach which uses a radiolucent mechanical
scanning assembly containing a single element US transducer eliminates the majority of dense
materials typically present in an electronically scanned US transducer array (Schlosser and
Solek 2015).

Whilst wireless transducers (e.g. Siemens Acuson Freestyle™) hold potential for eas-
ier implementation, i.e. no US scanner next to the treatment couch, it is unlikely they will
decrease the impact on the treatment plan. For certain treatment sites internal transducers (e.g.
endorectal or endovaginal) would give the best spatial resolution and target tracking accuracy,
due to short transducer to target distance. The dosimetric consequences of such transducer
placement, and opportunities to include them in the planning process, need to be studied.

Robotic transducer positioning: Schlosser et al (2010) developed a telerobotic system to
control the transducer position. The system was able to maintain the acquisition of high qual-
ity images over time periods relevant to treatment delivery in volunteers. It was also able
maintain high quality transabdominal imaging during radiation delivery, robot performance
and US target motion estimation of a phantom while a 15 MV beam was delivered.

In another robotic system (Sen et al 2015) the operator and robot share control of the US
transducer, which helps to create a consistent body deformation from the force needed to
make good contact between the transducer and the body. The system tracks the robot position
and contact force used by the operator to obtain a reference US image during simulation, and
uses virtual constraints to guide the operator to correctly place the transducer at treatment
time. Studies of transducer placement are in progress for various abdominal sites, for both
setup (inter-fraction) and delivery (intra-fraction motion) (e.g. Bell e al 2014).
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2.5. Future developments

A number of developments and areas of research have the potential to make US a reliable
option for intra-fraction tumour motion estimation:

(1) Provision of real-time motion estimates: Real-time in vivo US echo motion estimation
was demonstrated for tissue strain imaging many years ago (e.g. Shiina et al 1996, Pesavento
et al 2000, Hall et al 2003). Integration of real-time US and RT accelerator beam control
systems via gating or tracking interfaces are in early stages of development (Schlosser
et al 2010, Schwaab et al 2014, Gong et al 2015).

(2) Automatic selection of tracking parameters and regularisation: Pre-treatment
imaging could train the motion estimator, which could also adapt to the target appear-
ance (De Luca et al 2013). Substantial scope exists for improving echo pattern matching
accuracy by further development of regularisation methods and their associated DQMs,
particularly in 4D (Harris et al 2007, Bell et al 2012, O’Shea et al 2015), and by
extending the methods to measure and account for rotation and deformation, for which
optical flow (Duan et al 2009) could be studied as an alternative to similarity-based tem-
plate matching. Other methods have used cost functions incorporating similarity of echo
amplitudes and displacement continuity to regularise displacement estimation (Rivaz
et al 2008, Jiang and Hall 2009). A novel 3D prostate US segmentation algorithm using
patch-based anatomical features and support vector machines has recently been presented
and has potential for extension to intra-fraction motion estimation (Yang et al 2015).

(3) Clinical validation: The need for in vivo validation was discussed above. The effect of
transducer placement on the trade-off between motion estimation (dependent on image
quality) and impact on the dose distribution should be fully explored using conventional
and novel transducer designs.

(4) Application to other treatment sites: While currently only applied to intra-fraction
motion estimation of the prostate, US could be highly beneficial for other abdominal sites
such as the pancreas, kidney, uterus and cervix (table 1). A combination of inter- and intra-
fraction motion estimation using US could compensate for bladder and rectal motion,
and enable reduced PTV margins in the lower pelvic region. Stereotactic body radiation
therapy (SBRT) with compensation for respiratory motion is becoming a standard for
treatment of primary and metastatic liver tumours (Schefter et al 2005, Mancosu et al
2012). Likewise, the kidney, which limits RT dose to abdominal sites such as adrenal
tumours (Dawson et al 2010, Scorsetti et al 2011), can undergo relatively large respi-
ration induced intra-fraction displacement (Langen and Jones 2001). The non-ionising
nature of US guidance might be particularly beneficial to paediatric patients (Panandiker
et al 2013) by reducing secondary cancer risks.

3. US techniques for target definition, monitoring tumour response and
assessing normal tissue toxicity

The tumour visualised using anatomical imaging may not always represent the desired biologi-
cal target volume (BTV) (Ling et al 2000), the definition of which requires additional knowl-
edge about the cells, such as their state of proliferation and oxygenation (Nestle et al 2009).
For example, regions of hypoxia, associated with radio-resistance (Zahra et al 2007) have been
shown to influence response to RT (Vergis et al 2008). The tumour microvasculature, therefore,
plays an important role in RT (Kim er al 2006). Research is underway to develop and employ
functional and molecular imaging to define the BTV and measure its changes during treatment.
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Such techniques have been reviewed (Nestle et al 2009, Bussink ef al 2011) and have poten-
tial for integration into the RT workflow (Munley ef a/ 2013) for monitoring tumour response
(Brindle 2008, Horsman et al 2012) or normal tissue (toxic) reactions (Jeraj et al 2010) to RT.
MR is increasingly used for these purposes (Postema et al 2015b) for example, in the delin-
eation of the dominant intraprostatic lesion prior to prostate boost RT (Riches et al 2014).
The introduction of US into the RT suite brings potential to use US functional and molecular
imaging for these purposes. Not only is US easily affordable, it could provide images at many
time points during RT. Currently functional MR, CT and PET imaging requires the patient to
be removed from the RT couch to an imaging suite, which loses the real-time capability, adds
significantly to treatment time, which may not be tolerated by a large fraction of patients, and
degrades geometrical registration between imaging and treatment.

3.1 US imaging and measurement of tissue characteristics

Here we briefly review selected US imaging techniques which have potential for improving
BTV definition, monitoring tumour response to RT and quantifying normal tissue toxicity.
Table 6 gives a list of the US characteristics that may be measured using these techniques.

3.1.1. US backscatter characterisation of tissue. US backscatter characteristics (UBCs), as
with other forms of ultrasonic tissue characterisation (TC) (Lerski er al 1981, Linzer and
Norton 1982, Waag 1984, Greenleaf 1986, Insana ef al 1988, Shung and Thieme 1992), are
related to properties of US scatterers, e.g. scatterer size, density, spatial organization and rela-
tive acoustic impedance (Lizzi ef al 2003). They may be used to detect morphological changes
in tissue at the cellular level, and to identify disease (Feleppa er al 2004) for target volume
delineation and tissue damage, such as cell death caused by RT (Lee et al 2012), for monitor-
ing treatment response. UBCs can be derived using:

(1) first-order statistical analyses of the echo amplitudes. For examples see rows 1 to 4 in
table 6 (Mountford er al 1973, Lerski et al 1981, Nicholas et al 1986, Bamber 1992,
Bamber 1997, Bamber 1998, Hill et al 2004).

(2) higher-order statistical analyses of the echo amplitudes. See row 5, table 6 (Lizzi et al
1983, Wagner et al 1983, Bamber and Nassiri 1985, Nicholas er al 1986, Valckx and
Thijssen 1997).

(3) spectral analysis of RF echoes (backscatter spectroscopy). Features of averaged spectra
may be derived from a regression analysis of the normalized Fourier transform of the
RF echo signal, and include the mid-band fit (MBF), US integrated backscatter (UIB),
spectral slope (SS) and spectral intercept (SI) (O’Donnell and Miller 1981, Lizzi et al
1983, Feleppa et al 1986), as shown in figure 6.

3.1.2. Doppler and contrast enhanced US. Colour Doppler US (CDUS) imaging, power
Doppler US (PDUS) imaging and spectral Doppler US measurement (reviewed by, for exam-
ple, Evans et al 2000, Eckersley and Bamber 2004) are not truly quantitative techniques, being
limited by factors such as Doppler signal angle and depth dependence (Bamber et al 2013).
Nevertheless, a large body of work has demonstrated the value of relative characteristics such
as those listed in table 5 as non-invasive measures of tumour blood flow and vascularisation
(Minasian and Bamber 1982, Wells ef al 1997).

Changes in the microvasculature at the capillary level (<100 pm) may occur early in
response to treatment (Brown 2002). Intravenously injected gas-filled microbubbles (e.g.
Goldberg et al 2001, Stride 2008) of ~1-8 pm diameter can be detected with excellent
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Table 6. Selected US tissue properties and their RT applications (The table omits many
US tissue properties; only those used in RT research have been listed).

Measured characteristics

discussed in this review Applications discussed

(alternative names) Description Units in this review Publications®
Ultrasound backscatter characterization:
Relative US backscatter Mean echo dB Imaging apoptosis (PC) Czarnota
amplitude (echogenicity) amplitude et al (1999)
Assessment of RT Ying et al
toxicity (C) (2007)
Skewness Pixel histogram Prostate cancer imaging Houston ef al
skewness (1995)
Kurtosis Pixel histogram Prostate cancer imaging Houston ef al
kurtosis (1995)
Relative peak intensity =~ Peak value of echo ~ dB Assessment of RT Yang et al
value amplitude histogram toxicity (C) (2012)
Lateral autocorrelation ~ Mean correlation Assessment of RT Lui et al
between pairs of toxicity (C) (2010)
adjacent A-lines
Mid band fit (MBF) See figure 6 dB Tumour response Vlad et al
(ultrasound integrated to RT (C) (2009)
backscatter (UIB)) Assessment of RT Zhou et al
toxicity (C) (2009)
Imaging apoptosis (PC) Czarnota
et al (1999)
Spectral slope (SS) See figure 6 dB MHz ! Assessment of RT Vlad et al
toxicity (C) (2009)
Spectral intercept (SI) See figure 6 dB Assessment of RT Vlad et al
toxicity (C) (2009)
Colour and power Doppler ultrasound:
Colour or power area Total area of m-! Measurement of tumour Donnelly
coloured pixels vascularity (PC) et al (2001)
Kim et al
(2006)
Colour pixel density Area of colour pix- Measurement of tumour Niizawa et al
(CPD) (power and els/total ROI area vascularity (PC) (2005), Kim
colour) et al (2006)
Measurement of tumour Hwang et al
vascularity (C) (2010)
Measurement of tumour
hypoxia (PC)
Vascularity Index (VI) Integrated powerin ~ dBm 2 Measurement of tumour Huang et al
ROI / total ROI area vascularity (PC) (2013)
Assessment of RT
toxicity (C)
Mean Power Total power (or dBm2  Measurement of tumour Fleischer
(or velocity) velocity) in ROI/ (m~'s7!)  vascularity (PC) et al (1999)
Area of colour pixels
(power is related to
blood volume)
(Continued)
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Table 6. (Continued)

Measured characteristics
discussed in this review

Applications discussed in

(alternative names) Description Units  this review Publications®
Spectral Doppler ultrasound:
Peak systolic velocity Maximum blood ms™! Assessment of RT Bakhshandeh
(PSV)® velocity in the toxicity (C) et al (2012)
systole phase
End diastolic velocity Blood velocity at end m s~! Measurement of tumour Ahuja et al
(EDV)P of the diastolic phase vascularity (C) (1999)
Resistance index (RI) (PSV — EDV)/mean Measurement of tumour  Ahuja et al
velocity vascularity (C) (1999)
Assessment of RT
toxicity (C)
Pulsatility index (PSV — EDV)/EDV Measurement of tumour Huang
vascularity (C) et al (1996),
Ahuja et al
(1999)
Assessment of RT Bakhshandeh
toxicity (C) et al (2012)
Dynamic contrast enhanced (DCE) ultrasound:
Area under the curve Area under the time  dBs Measurement of tumour Scholbach
(AUC) intensity curve (TIC) hypoxia (C) et al (2005)
related to total vascu-
lar volume of the ROI
Peak intensity (1) Maximum intensity ~ dB Measurement of tumour Hwang et al
in the wash in curve vascularity (PC) (2010)
Measurement of tumour Krix ef al
vascularity (C) (2005)
Time to peak (#,) Time from zero S Measurement of tumour Elie ef al
intensity (before vascularity (PC) (2007)
contrast arrives) to
peak intensity
Mean transit time (MTT) Mean time taken by s Measurement of tumour Elie et al
the contrast to pass vascularity (PC) (2007)
through the ROI
Elastography:
Strain Axial strain, a meas- % RT target localization Rivaz et al
ure of tissue deforma- (©) (2009)
tion showing contrast Assessment of RT Adriaenssens
for relative shear toxicity (C) et al (2012)
modulus and other
biomechanical prop-
erties
Shear wave speed Speed of shear waves ms~! Tumour response to Rafaelsen
(may be converted to  (kPa) chemo-RT (C) et al (2013)
elastic shear modu- Assessment of RT Badea et al
lus) toxicity (C) (2013)

* References provide examples where these characteristics have been applied directly to RT. If no RT related work
exists, the references given are discussed in this review.
Y Velocity cannot be measured in distributed tumour vasculature due to lack of knowledge of the Doppler angle, but
it may provide useful measures of blood flow. See text for further discussion.
Key: PC—Preclinical study. C—Clinical study.
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Figure 6. US backscatter characterisation by spectral analysis of the RF echo
signal (Lizzi et al 1983). (a) Hypothetical attenuation-corrected tissue spectrum and
calibration spectrum. A normalised amplitude spectrum (b) is obtained by dividing
the tissue spectrum by the calibration spectrum. The dashed line shows a logarithmic
fit, the slope and zero frequency intercept of which are the SS and SI, respectively.
The MBF is the value of the logarithmic regression line at the center frequency, f.,
of the spectral band. Another feature used is the area under the curve in (b), or UIB.
Decreasing scatterer size, d, results in an increase in SS, and (depending on the ratio
of scatterer size to wavelength within the spectral band) a decrease in SI, MBF and
UIB. Decreasing scatterer density C, or the fractional difference between the scatterers’
acoustic impedance and that of the background Q, results in a decrease in SI, MBF
and UIB.

background tissue echo suppression by using nonlinear microbubble-specific US imaging
modes, such as pulse-pulse phase and/or amplitude modulation (e.g. Stride and Saffari 2003,
Qin et al 2009). In combination with temporal maximum intensity projection (MIP) imaging,
such methods produce US ‘angiograms’ of tumour vasculature (figure 7) and microvascula-
ture (Shelton er al 2015).

Tumour perfusion characteristics can be measured by analysing the kinematics of micro-
bubbles in vessels as small as ~40 pm, using dynamic contrast-enhanced US (DCE-US) (e.g.
Piscaglia ef al 2012, Saini and Hoyt 2014). Clinical microvascular flow imaging with Doppler
is becoming possible without a contrast agent. For example, ‘Superb microvascular imag-
ing’ (SMI), offered by Toshiba on the Aplio500, is said to use advanced clutter reduction
to enhance Doppler SNR. Using ultrafast frame rates (tens of kHz) Tanter and Fink (2014)
employed massive averaging to enhance Doppler SNR, which has been used, for example, to
visualise microvascular ‘activity waves’ propagating within the brain (Osmanski et al 2014).
Ultrafast imaging also provides more time for US beam steering, to estimate the 2D (and
eventually 3D) blood velocity vector, allowing complex flow patterns to be imaged (Hansen
et al 2009), a technique with potential for more accurate characterisation of tortuous tumour
vasculature. A new method of analysing DCE-US data, to assess spatial dispersion of time-
intensity curves, has potential to improve prostate cancer detection (Schalk ez al 2015), which
may eventually be applicable to improving target delineation in RT. Finally, at appropriate
microbubble concentrations, signals can be localised from spatially isolated microbubbles,
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Figure 7. An example temporal maximum intensity projection (MIP) contrast image
(b) shows a slice through the vascular architecture of a large liver metastasis. DCE-
US is illustrated in (a), where the bolus time-intensity curves are from two example
locations, a region of diffuse vasculature (upper) and a large vessel (lower, showing
greater respiratory motion artefact), as indicated by the green arrows. DCE-US time-
intensity curves for three destruction-replenishment sequences within a bolus contrast
period from the diffuse vascular location are provided in (c). Definitions of DCE-US
characteristics shown in table 6, and methods for measuring them from time-intensity
curves, may be found in Dietrich et al (2012). The distance from the transducer to the
maximum depth in the MIP image is 15 cm. (Image and graphs shown with thanks to N
Tunariu and J Fromageau for assistance with data acquisition.)

which facilitates the potential for super-resolution (<10 p/m) microvascular imaging (Desailly
et al 2013, Viessmann et al 2013, Christensen-Jeffries et al 2014).

3.1.3. US molecular imaging (USMI) using contrast agents. Microbubbles conjugated to tar-
geting molecules such as peptides or antibodies allow USMI (e.g. Wen et al 2014) of circu-
lating molecules or those associated with endothelium such as vascular endothelial growth
factor receptor type 2 (VEGFR-2) (Korpanty et al 2007, Rychak et al 2007) and «,-integrins
(Kiessling et al 2012). Liquid phase-change nanodroplets may allow extravascular molecular
targeting but they are at an early stage of development (Wilson e al 2013). Another future
option may be protein-shelled gas nanovesicles (GVs) extracted from microorganisms such as
bacteria which produce GVs to control their buoyancy. These GVs provide stable US contrast,
detectable in vivo with various useful properties as molecular reporters (Shapiro et al 2014).
Most USMI work at present is pre-clinical, e.g. for assessment of tumour angiogenisis and
response to anti-angiogenic therapies, although initial clinical studies are now underway in
prostate (NIH 2015a, NIH 2015b, Kaneko and Willmann 2012).

3.14. US Elastography. US elastography aims to display contrast for, or quantities related to,
the shear elastic moduli of tissue (Bamber ef al 2013). The available techniques (e.g. Parker et al
2011, Bamber et al 2013, Doyley and Parker 2014, Shiina et al 2015) use methods described in
section 2.2.1, such as similarity search or Doppler, to measure the temporal and spatial depend-
ence of tissue displacement associated with the shear deformation of tissue, which can be used
to infer, or quantify, tissue elasticity. Qualitative measures of elasticity strain and displacement
are provided by strain elastography (SE) and acoustic radiation force impulse (ARFI) imaging,
respectively. Methods giving quantitative elasticity measures (e.g. shear-wave speed, c;, related
to Young’s Modulus, E, by E =3 pcf, where p is the mass density) include transient, vibrational
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and shear-wave elastography (TE, VE and SWE, respectively). For a detailed explanation of
these techniques please refer to (Bamber ef al 2013, and Shiina ez al 2015).

For RT, elastography may improve the ability to visualise disease for target delineation (see
section 3.2). Furthermore, as elastography is sensitive to tumour cell necrosis (Li et al 2014),
oedema (Berry ef al 2008) and fibrosis (Bush et al 2005), and as tissue elasticity is affected
by RT (Yarnold and Brotons 2010), it is plausible that elastography may be used to monitor
tumour response and normal tissue toxicity. Finally, as tissue viscoelasticity has been shown
to be associated with both fibrosis (Cosgrove et al 2013, Ferraioli et al 2015) and microvessel
density (Jugé et al 2012, Jamin et al 2015), and fibrosis is linked with induction of angio-
genesis via hypoxia inducible factors (HIF) (Ruthenborg ef al 2014), it is conceivable that
elastography may help define the BTV. This hypothesis has yet to be tested.

3.1.5. Photoacoustography. Photoacoustic imaging (PAI) (Wang 2009) uses pulsed light to
induce a transient (<10 ns) temperature and pressure rise wherever the light is absorbed,
typically in haemoglobin, melanin and, to some extent, fat. This generates acoustic emis-
sions detectable by an US transducer, providing real-time imaging of the optical absorption
properties of tissue. Although imaging depths of up to 7cm have been reported (Zackrisson
et al 2014), the reliability of the image detail at such depths depends on whether image clut-
ter is generated by strong photoacoustic sources outside the imaged region, and methods of
distinguishing clutter from reliable detail are under development (Jaeger et al 2012, Jaeger
et al 2013, Alles et al 2014). In different forms, PAI spectroscopy (Wang 2009), allows (a)
molecular identification of endogenous chromophores or exogenous contrast in the form of
dyes or nanoparticles which may be molecularly directed to extravascular targets (Wilson
et al 2013, Zackrisson et al 2014); or (b) a PAI analogue of US backscatter spectroscopy (sec-
tion 3.1.1) which permits absorber (e.g. microvessel) size, spacing and spatial organisation to
be measured (Gertsch et al 2010, Preisser et al 2013, Xu et al 2014, Li et al 2015). Most PAI
studies have been preclinical or have used tomographic systems (e.g. for imaging the breast),
although translation to the clinic using hand held US transducers is underway (e.g. Wang et al
2011, Jaeger et al 2012, Alles et al 2013, Montilla et al 2013).

3.2. Improving target localisation for RT planning

It is clear that elastography can substantially increase US detection of prostate cancer (e.g.
Teng et al 2012, Boehm et al 2015, Correas et al 2015, Hwang and Lee 2014, van Hove
et al 2014), and the potential was highlighted in sections 3.1.2 and 3.1.3 in this respect, for
DCE-US and molecular targeted microbubbles. Two groups have considered using US for
improved dominant intra-prostatic lesion (DIL) detection for guiding external beam RT: Walz
et al (2011) and Zhang et al (2007). Walz et al (2011) reported sensitivity and specificity of
SE to be low at 59% and 43%, respectively. In the context of DIL detection for prostate biopsy
guidance, higher values have been reported for B-mode, Doppler and DCE-US (reviewed by
Postema et al 2015b). Zhang et al (2007) performed a theoretical risk-benefit analysis of 3D
image guided dose painting using imaging transrectal B-mode US and UBC.

There is a need for side-by-side comparisons of the different US techniques, to determine
which performs best, or whether an integrated approach would be worthwhile, as has been
suggested for prostate biopsy guidance (Brock et al 2013, Postema et al 2015a, 2015b). Multi-
parameter MRI (mMRI) is widely considered a gold standard for intra-prostatic lesion detec-
tion (Khoo and Joon 2014). Comparison of US techniques, or a multi-parameter US approach,
with multi-parametric MRI, in the prostate biopsy setting may provide strong evidence for the
application of US methods to prostate tumour delineation.
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Poor CT soft tissue contrast limits the accuracy of tumour bed delineation for patients receiv-
ing breast boost RT post-surgery (Coles et al 2007). In a proportion of patients, a pocket of fluid,
or seroma, is present, which may be accompanied by surgery related scar tissues (Mukesh et al
2012). Seroma can be visualised using B-mode US, as discussed in Fontanarosa et al (2015),
but other tissues, such as scar tissue surrounding the tumour bed, are not easily differentiated
from fibroglandular tissue. Rivaz et al (2009) showed using SE that elastographic contrast
between seroma (fluid) and fibroglandular tissue was significantly greater than radiographic
contrast obtained using CT. Juneja et al (2014) compared SE and SWE for TB delineation in
US breast phantoms, finding SE gave a more accurate representation of inclusions.

3.3. Tumour response to treatment

3.3.1. Measurement of cell death. US backscatter spectroscopy (section 3.1.1(3)) has been
investigated at high frequencies (>20 MHz) for monitoring radiation-induced apoptosis
in vitro and in small animal models (Czarnota et al 1999, Vlad et al 2009), with validation
against histopathology (Czarnota et al 2007). Its clinical feasibility to monitor response of
deep-seated tumours has yet to be proven, although reason to be optimistic is provided by the
ability of the method at low frequencies to characterise microscopic structure in phantoms
(e.g. Insana et al 1990) and, for example, to identify glomeruli as one of the dominant scatter-
ing structures in the renal cortex (Insana et al 1991).

3.3.2. Measurement of tumour vascularity. PDUS and DCE-US have been investigated pre-
clinically to quantify tumour response to RT, although some groups found high positive cor-
relation of Doppler characteristics with histologically assessed microvessel density pre- and
post-RT (Donnelly ez al 2001, Kim et al 2006), whereas others did not (Fleischer et al 1999,
Denis et al 2002, Hwang et al 2010). Hwang et al (2010) and Krix er al (2003), however, did
report a strong correlation of DCE-US I, with MVD. Finally, the PDUS vascularity index has
been noted to decrease in tumours treated with US and microbubbles (see section 3.3.3), alone
or with radiation (Czarnota et al 2012, Tran et al 2012).

Clinically, a significant reduction in pulsatility and resistance indices of the intran-
odal vessels of metastatic lymph nodes (see table 5) 8 weeks post-RT was demonstrated
(Ahuja et al 1999). Pirhonen et al (1995) found RT caused a significant decrease in cer-
vical tumour vascularity during treatment, which was associated with disease free sur-
vival. Huang et al (2013) demonstrated a 50% reduction in 3D PDUS vascularity index,
5 weeks from start of RT, dropping to 100% reduction at 3 months, in women receiving
RT or concurrent chemoradiotherapy for cervical carcinoma. Krix et al (2005) observed
a decrease (~20%, larger than measured using contrast-enhanced CT) in tumour arterial
phase DCE-US I, 2 months after single fraction stereotactic body RT to liver metastases.
Following proton therapy of hepatocellular carcinoma, contrast enhanced CDUS tumour
CPD initially increased in 50% of patients and then, 9 months post-RT, decreased across
all patients (Niizawa et al (2005).

Further work and greater standardisation of techniques are required to understand how
Doppler US and DCE-US characteristics relate to tumour vasculature and perfusion. An inher-
ent difficulty in histological evaluation of tumour response both clinically and pre-clinically
is establishing accurate spatial registration between histological sections, dose distribution
and the US imaging plane. Three-dimensional US, provides more accurate image registra-
tion compared to 2D (Hwang et al 2010, Huang et al 2013). Pre-clinically, integration of
functional 3DUS into small animal dedicated irradiation devices may bring about increased
accuracy in correlative studies of this kind (Verhaegen et al 2011).
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3.3.3. Manipulation of tumour vasculature. Although US has long been studied as a tech-
nique for inducing hyperthermia (Hand and Haar 1981), and hyperthermia and RT are known
to act synergistically (e.g. Miller et al 1977, Holt 1980), the potential for synergism between
therapeutic US methods for example high intensity focused ultrasound (HIFU) (Baker et al
2001, Tachibana 2004, Koonce et al 2015, Wood and Sehgal 2015) and RT has only just begun
to be investigated, and only in a preclinical context. The induction of endothelial cell apopto-
sis by exposure to US in the presence of microbubbles is proposed as a possible mechanism
for observed radioenhancement (Al-Mahrouki er al 2012), and a ten-fold increase in tumour
cell-kill was observed using a combined treatment relative to microbubbles or radiation alone
(Czarnota et al 2012, Tran et al 2012). Furthermore, US contrast-mediated vascular perme-
ation and drug delivery (Rapoport et al 2007) holds potential for the localised delivery of
radiosensitisers such as Paclitaxel (Liebmann et al 1994) or epidermal growth factor receptor
inhibitors (Sartor 2004).

3.3.4. Measurements of tumour oxygenation. Tumour hypoxia has been shown to be associ-
ated with a decrease in vascularity (West et al 2001) motivating research into Doppler and
DCE-US characteristics as markers of hypoxia, validated against measures of oxygen partial
pressure (pO,) using polarography. Clinically, Scholbach et al (2005) and Gagel et al (2007)
reported moderate correlation with a tissue perfusion index (see table 6) and polarographic
measurements in metastatic lymph nodes, respectively. Pre-clinically, weak (Ohlerth e al
2010) or no correlation (Elie et al 2007) with Doppler US characteristics was found. Poor
results may have been a manifestation of problems with various factors in these types of
experiment, viz., reliability of polarography in vivo and spatial sampling error of both polar-
ography and US.

Using photoacoustography, Sun et al (2012), measured increases in tumour volume, and
decreases in blood concentration and oxygen saturation, in tumour models irradiated with
30 Gy, comparing measurements taken before and 10 d post-irradiation. Similar findings,
in response to US and microbubble enhanced RT, are reported by Briggs et al (2014).

3.3.5. Measurements of tumour stiffness. Limited clinical evidence to support the use of
elastography to measure response to RT exists. Mabuchi er al (2015) using real-time SE,
found that in patients with complete response, tumour stiffness decreased to levels similar to
normal cervix. Rafaelsen et al (2013) detected a significant decrease in shear wave speed in
rectal tumours and mesorectal fat, between baseline measurements prior to the start of chemo-
radiation therapy (3.13ms™') and two (2.17ms™!) and six (2.11ms~') weeks after treatment
began. A softening of metastatic cervical lymph nodes post-chemoradiation therapy was dem-
onstrated using SE (Furukawa and Furukawa 2010).

3.3.6. Measurements of molecular biomarkers for RT response. The potential for USMI
to measure response to RT has been demonstrated pre-clinically: microbubbles targeted to
ICAM-1 (a marker of inflammation) and «,(s-integrin (a marker of angiogenesis) allowed
30 MHz US to image early vascular response of xenograft prostate tumours irradiated with
carbon ions, suggesting an increased expression of ICAM-1 and «,33-integrin in response to
RT (Palmowski et al 2009). Gold nanorods with resonance peaks at 700 nm and 900 nm were
functionalised with antibodies targeted to HER-2 and EGFR transmembrane receptors (Shah
et al 2014) demonstrating potential for contrast photoacoustic stratification of tumours prior
to therapy.
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3.4. Assessment of normal tissue toxicity

Research investigating US quantification of normal tissue toxicity of RT is described below
according to the normal tissue structures at risk from RT.

3.4.1. Salivary glands (head and neck RT). Xerostomia is a common complication of dose
to the salivary glands during head and neck RT (Eisbruch ez al 2001). On B-mode US, parotid
glands become more heterogeneous and hypoechoic post-RT (Ying et al 2007, Cheng et al
2011). Significant differences in UBC (Yang et al 2012, Imanimoghaddam et al 2012), spec-
tral Doppler characteristics (Ying ef al 2007, Wu et al 2011), and shear wave speed (Badea
et al 2013) between irradiated and non-irradiated tissue have been observed in parotid or
submandibular gland, although Imanimoghaddam et al (2012) saw no difference in spectral
Doppler characteristics between baseline and 6 to 7 week post-RT. No study has examined the
spatial distribution of US characteristics; this may be of particular interest for trials of parotid
sparing (Chao et al 2001) which aim to spare the region of the parotid containing stem cells.

3.4.2. Neck tissue (head and neck RT). In patients receiving head and neck RT, Leung
et al (2002) detected significant differences (~25%) in subjectively estimated relative Young’s
modulus between regions of the neck receiving boost irradiation and those that did not. Zheng
et al (2000) showed that skin thickness, MBF and SI of neck tissue significantly differed
between patients following head and neck RT and healthy volunteers.

3.4.3. Normal breast tissue (breast RT). Women undergoing adjuvant RT for breast cancer
may experience breast swelling (oedema), an acute effect, and breast hardening (thought to
be associated with fibrosis), a late effect (Yarnold et al 2005). Yoshida et al (2012) measured
skin thickness, subcutaneous tissue lateral correlation (see table 5) and MBF, in the irradiated
and un-irradiated breasts of breast cancer patients post-RT (Liu et al 2010). Patients with acute
(<6 months) radiation toxicity had significant differences between breasts in all three char-
acteristics. Those with late (>6 months) Radiation Therapy Oncology Group (RTOG) grade
1 or 2 skin toxicity (RTOG 2015) had greater skin or subcutaneous tissue US characteristics
compared to patients with RTOG grade 0 skin toxicity.

B-mode US has been used to measure an increase in skin thickness (p < 0.001) and relative
US backscatter amplitude of subcutaneous tissue (p < 0.05) post surgery and RT (Adriaenssens
et al 2012). SE was used to measure a decrease (p < 0.05) in subcutaneous tissue stiffness in
patients approximately 10 weeks post RT compared to pre-surgery (Adriaenssens et al 2012)
and an increase in stiffness in the irradiated breasts of women with late toxicity compared to
the unirradiated breast (Bush et al 2005).

3.4.4. Heart (breast RT). The risk of heart disease subsequent to RT increases with mean
heart dose (Darby et al 2013). Erven et al (2011) used strain rate imaging to show that
left-sided breast cancer patients had a significant decrease (p < 0.001) in myocardial
strain post RT (17.6 & 1.5%) and 2 months follow-up (17.4 + 2.3%) compared to pre-RT
(19.5 £ 2.1%). No decrease in strain rate could be observed in segments that received less
than 3 Gy but this may be due to the sensitivity of the technique rather than a lack of effect
(Darby et al 2013).

3.4.5. Other tissues. In patients receiving RT for head and neck cancer, spectral Doppler PI,
RI, and PSV of the inferior thyroid artery underwent significant changes by fraction 10 of RT,

and mean relative US backscatter amplitude and heterogeneity of the thyroid gland decreased
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(Bakhshandeh et al 2012). Krix et al (2005) showed that post-RT arterial phase DCE-US peak
intensity increased in liver metastases suggesting radiation-induced hypervascularisation and sup-
port for the hypothesis that radiation-induced liver disease is a result of liver venous obstruction.

4. The use of US in 3D dosimetry

Accurate, cost effective, patient-specific 3D dose verification and validation tools are needed
for verification of IMRT and arc RT. Available techniques include the reconstruction of 3D
dose from portal images (van Elmpt et al 2008), 3D electronic dosimeters (e.g. Bedford
et al 2009) and 3D plastic radiochromic dosimetry with optical CT read-out (e.g. Thomas et al
2011). Each has its disadvantages for routine use, and new approaches are required to verify future
developments such as real-time adaptive RT that compensates for translational motion, deforma-
tion and rotation of the target between fractions and during irradiation (Landry et al 2015).

In addition, a direct experimental determination of dose in vivo would represent a major
step forward, allowing real-time treatment adaptation of the dose distribution (Ziegenhein
et al 2012). Various methods have been explored, such as PET imaging of hadron beam gener-
ated positron activity (Chatterjee et al 1981, Parodi et al 2002) and prompt gamma emission
(Polf et al 2009), but none are, as yet, in wide clinical use.

US methods can be applied to 3D dose verification, and may provide advantages over the
current techniques both in the clinic and for use in measuring national standards of dose. US
methods for in vivo dosimetry, although more speculative, have received recent attention,
especially for hadron and heavy ion therapy.

4.1. Verification using gel dosimetry

Two types of gel-based dosimeter have been investigated (table 7): (i) Fricke gel dosimeters
(Schreiner 2004) and (ii) polymer gel dosimeters (Baldock er al 2010). Polymer gels that
change their US properties on exposure to ionising radiation may in principle take advantage
of the widespread availability of inexpensive US systems with high spatial resolution, which is
important for resolving dosimetric properties such as a narrow (~1 mm) Bragg peak in hadron
beams (Zeidan er al 2010). Alternative MRI (Maryanski ef al 1994) or optical CT (Hilts et
al 2005, Doran 2009) based systems may be expensive, time-consuming, or require new and
dedicated imaging systems with limited sample size or resolution.

Common US gel formulations include polyacrylamide gel (‘PAG’) and methacrylic and
ascorbic acid in gelatine initiated by copper (‘MAGIC’) gels (Mather et al 2002, Mather
and Baldock 2003). US methods investigated for dose read-out are summarised in table 7,
and include US CT imaging of sound speed and attenuation coefficient, backscatter attenua-
tion estimation, backscatter B-mode, elastography (figure 8) and photoacoustics. Further work
is required on batch variation and stability. This is, however, common to all gels and read-out
methods (Baldock et al 2010). Recent work on the US read out of PAG and THPC antioxidant
(PAGAT) gels shows promise (Khoei et al 2014), and deals with some limitations imposed
by the frequency dependence of the relationship between US attenuation coefficient and dose
(Crescenti et al 2007).

4.2. Direct US sensing of dose

Rapid and highly localised energy deposition causes a local temperature rise, and a corresp-
onding transient increase in pressure, which propagates away from the site of absorption as
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Table 7. US methods investigated for gel dosimetry. Further work is needed to reduce
noise and artefact to turn each of these methods into practical dose verification tools.

Property change upon irradiation,

Method Gel and read-out description References

USCT Polymer Polymerisation changes the US Mather er al (2002), Mather
speed and attenuation coefficient, et al (2003), Crescenti et al
which may be imaged using US (2007), Khoei et al (2014)

transmission computed
tomography methods

US backscatter ~ Polymer Polymerisation changes the US Bamber er al (2004)
attenuation attenuation coefficient. By adding
estimation acoustic scatterers to the gels, this
imaging may be imaged using backscatter
methods for estimating
attenuation
B-mode Polymer Polymerisation changes the US Finlay (2005)

speed and mass density, and
therefore acoustic impedance. By
constructing gels with distributed
radiosensitive and non-radiosensitive
components, acoustic impedance
changes are made visible in B-mode
(backscatter) images

Elastography Polymer Polymerisation changes the Bamber er al (2004),
(SE and SWE) Young’s modulus. By adding Crescenti et al (2009a,
acoustic scatterers to the gels, this 2009b, 2010)

may be imaged using SE and SWE.
Under such controlled conditions,
inverse reconstruction allows SE to
be quantitative (figure 8), as well

as SWE
Photoacoustics  Fricke Optical absorbance of radiochromic Caldeira et al (2007a, 2007b)
xylenol Fricke xylenol increases with a

corresponding increase in
photoacoustic signal. Measurements
to date have used a microphone to
detect photoacoustic signals

an acoustic wave. Although this is a weak effect, the attractive proposition exists that a form
of ‘photoacoustography’ (e.g. using x-ray photons) might be used to reconstruct the dose
distribution in vivo. A review by Baily (1992) gives more details of the underlying physics.
A desired dose sensitivity of 0.1 Gy in a single pulse of radiation requires (since the absorption
of 1 Gy in water gives a temperature rise of about 0.225 x 1073 K) a temperature sensitivity
of 22.5 uK.

The subject seems to have begun with the observation at Brookhaven National Laboratory
that acoustic signals consistent with thermal expansion are detectable from proton beams tra-
versing a fluid medium (Sulak et al 1979). Bavizhev et al (1992) proposed that acoustic emis-
sions from the absorption of heavy charged-particles could be used to determine their energy
within an error of less than 3%. Tada et al (1991) used a hydrophone to measure acoustic
signals generated in the Bragg peak of protons of therapeutic energy and intensity deposited

R119



Phys. Med. Biol. 61 (2016) R90 Topical Review

Axial strain (%) Young's modulus relative to background
0
18
5
0.22
10 1.7
=3
0.2 E 15 1.6
[] :
= 2p 1.5
F ot B
T 25 1.4
L :
c
0.16 é 30 13
7 35
3 mm 0.14 o 1.2
19 mm 40
e 11
« 27 mm 0.12 45
1
0 10 20 30
(a) (b) Depth x—direction [mm] (C) Depth in x—d\recilnn [mm]

Figure 8. (a) A diagram showing the cross section of a MAGIC gel phantom and the
geometry of three rod-shaped regions of square cross section each irradiated at a dose
of about 18.2 Gy in a background of 0 Gy. (b) An axial strain image (derived from US
measurements of displacements while axially compressing the phantom) of a central
35mm by 48 mm area containing the three irradiated regions. (c) A relative Young’s
modulus map (linearly related to dose) computed by solving the plane strain inverse
problem from the same displacements as used to calculate (b). Adapted with permission
from Crescenti (2009).

in water and whale muscle, and proposed acoustic time-of-flight determination of the dose
distribution, reporting ability to locate the distal edge of the Bragg peak to within 3 mm. This
group also measured an acoustic signal from proton therapy of the liver in vivo (Hayakawa
et al 1995). By combining measurements and simulation, Assmann et al (2015) demonstrated
that a 20 MeV proton beam with 10° protons per (473 ns) pulse would provide adequate SNR
for detection in a water phantom, corresponding to ~1.6 Gy. At higher energies within clinical
scenarios SNR is reduced by increased thermal noise and scatter, spatial and temporal dose
deposition broadening and increased acoustic attenuation in tissue. Simulations predict that the
Bragg peak can be determined with 1 mm accuracy (Jones et al 2014). Assmann et al (2015),
Hayakawa et al (1995) propose that higher pulse intensity and shorter (ns) pulse lengths, poten-
tially afforded by proposed laser-based particle accelerators, may provide the SNR required to
perform ionacoustical dosimetry in vivo. Protonacoustic tomography has also been explored for
mapping the 3D proton dose distribution (Stantz et al 2013, Alsanea et al 2015).

Mascarenhas et al (1984) measured the photoacoustic signal from 90 kVp x-rays absorbed
in a 0.2 mm lead sheet. The feasibility of US detection of the absorption of x-rays from a medi-
cal LINAC was demonstrated by Bowen et al (1991) and further investigated by Xiang et al
(2013) and Hickling ef al (2014). Substantial improvements in sensitivity appear to be needed
to turn these methods into practical tools for in vivo RT dosimetry. However, there remains
scope to explore the use of much shorter pulses of ionising radiation, which will increase the
strength of the acoustic signal generated.

4.3. Speed of sound (SOS) dosimetry

SOS, reviewed by Bamber et al (2004), is dependent on temperature. Johnson et al (1975) sug-
gested using SOS images reconstructed by time-of-flight US CT (Greenleaf et al 1975, Glover
and Sharp 1977) to map temperature changes in vivo to monitor hyperthermia. The slope of
SOS versus temperature is similar (and positive) for all tissues (Nasoni 1981) except fat, for
which it is negative (Bamber and Hill 1979). Eventual temperature sensitivity in non-fatty
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tissue of 0.2-0.5K was predicted. US CT requires US transmission through an entire organ,
and is thus applicable only to organs such as the breast. There are, however, US backscatter
methods for reconstructing SOS, and recently Jaeger et al (2015) claimed potential resolution
of about 3 (laterally) x 1 (axially) mm and SOS contrast discrimination of 0.6%. A form of
backscatter US thermometry has also been evaluated for planning high intensity focused US
treatments. Changes in SOS manifest in apparent tissue displacements measured using RF
speckle tracking (section 2.2.1), offering potential temperature sensitivities better than 1 K (Seip
et al 1996, Bamber 1997, Miller et al 2002). In practice the sensitivity of this technique is
limited by variability between tissues in their strain/temperature coefficients, tissue deforma-
tion and motion (Civale et al 2013).

Whilst it is unlikely that the changes in SOS which result from a temperature rise in the
region of tens of K will be detectable in vivo, the sensitivity of SOS to local temperature
changes in water after high energy deposition by ionising radiation is actively being exploited
by the National Institute of Standards and Technology (NIST) (Malyarenko et al 2006) with
the aim to replace water calorimetry as the national primary dosimetry standard; Malyarenko
et al (2008) presented a practical S MHz US CT system for near real-time imaging of SOS in
a water phantom which demonstrated sensitivity to sub-mK temperature changes generated
by the absorption of infrared radiation. This instrument has the potential to characterise the
dose profiles of therapeutic radiation beams. The authors propose improvements in sensitivity
to the uK level.

5. Concluding remarks

As was indicated in figure 1, the integration of US into the RT workflow provides exciting
opportunities beyond the management of inter-fraction motion, by introducing (without addi-
tional ionizing radiation exposure to normal tissues) relatively low cost, high spatial resolu-
tion, high temporal resolution imaging methods for improving: definition of the BTV for RT
planning, 3D dose verification for individual patients, intra-fraction motion estimation and
management, prediction and measurement of tumour response to treatment and assessment of
normal tissue reaction to RT.

The methodology for US intra-fraction motion estimation has been established, providing
advantages over alternative methods of high temporal sampling, non-invasiveness, ability to
measure deformation and provision of continuous monitoring without additional radiation
dose. Accuracy appears sufficient and, with further work, regularisation methods combined
with eventual high volume rate 3D US imaging using matrix arrays and plane wave techniques
look promising for providing the required reliability. System latencies seem unlikely to be a
problem when using the information for real-time control of RT delivery. More clinical stud-
ies, including a range of cancer sites and the guidance of particle therapies, are required if we
are to exploit the full potential of this powerful technique.

The introduction of US scanners into the treatment room and its burgeoning acceptance
into the IGRT toolkit should pave the way for exciting developments in US molecular and
functional imaging to be used to improve RT target definition and monitor treatment response.
Conjugation of microbubbles and nanoparticles with targeting agents has opened up the pos-
sibility of acoustic and photoacoustic molecular imaging. The technological development
required to translate these techniques into the clinic is underway. Work has to be done to
characterise the sensitivity of these techniques to established markers of cancer that may
help define a BTV and monitor treatment progression. Intrinsic US characteristics of cancer,
such as abnormal vasculature or altered stiffness, can be measured with Doppler US, contrast
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agents or elastography. They may not only provide the means to define and monitor the target
but also could be used for daily treatment verification of the BTV. The application of US to
radiation response assessment appears to be an exciting area in which new technologies such
as super-resolution contrast US imaging may enable deep visualisation of microvasculature
and, therefore, early measurement of response to RT in vivo.

Quantitative in vivo measures of normal tissue response to RT are needed to support (1)
clinical trials evaluating new RT techniques, including anti-fibrotic, anti-angiogenic and anti-
hypoxia therapies, and (2) the investigation of genetic and physiological susceptibility to radi-
ation toxicity (Alsner ef al 2008). Maps of the spatial distribution of toxicity severity could be
compared with dose distributions to provide greater statistical power to test the relationship
between dose and toxicity (Jeraj et al 2010). US backscatter characterisation and elastography
hold promise for this, potentially providing cost effective and non-invasive in vivo methods
to monitor the evolution of radiation toxicity in large patient populations. The introduction
of spatially registered 2D and 3D US into the simulation suite and treatment room provides
automated image fusion with CT and MR planning images for multi-modality target deline-
ation. This also provides the opportunity for longitudinal studies of treatment response using
functional US imaging spatially registered to the RT target volume, normal tissue and the dose
distribution.

Finally, with further development, US may offer a variety of techniques suitable for wide
dissemination of cost-effective 3D dosimetry. Although US dosimetry has been investigated
for many years without significant impact, substantial opportunity is present for further work.
It may also play a role in providing deformable 3D phantoms that can be used to develop and
validate complex and dynamic RT delivery.
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