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Genome-wide association studies (GWAS) have identified associations between common genetic 

variants, single nucleotide polymorphisms (SNPs), and the risk of developing different cancers1-3.  

Proponents argue that polygenic risk score (PRS) testing, based on panels of risk SNPs, will 

revolutionize the prevention and early detection of cancer through individualised risk 

management strategies and streamlining of the current ‘one-size-fits all’ population screening 

programs4. Such a model is highly seductive for the rationalisation of healthcare provision.  UK 

government enthusiasm for PRSs is well demonstrated within the recent Genome UK report and 

2020 update to the Life Sciences Strategy5. Indeed, reflecting governmental endorsement of 

predictive genomics, the UK government’s Secretary of State for Health and Social Care, Matthew 

Hancock, rather questionably enthused that his recent PRS-derived lifetime prostate cancer risk 

estimate of 15% (compared to a prior of 13%) “might have saved his life”6,7.  To establish the 

requisite governance and data infrastructure for population-level genomic profiling, national 

projects such as the 100,000 Genomes Project (>70,000 NHS patients) and the Accelerating 

Detection of Disease programme (up to five million volunteers) were initiated8,9. Following initial 

discontinuation by the U.S. Food and Drug Administration of the 23andMe PRS service10,11, there 

has also been a resurgence within the direct-to-consumer genomics market of PRS predictions for 

many diseases. While the value of additional biomarkers to improve the targeting of measures for 

cancer prevention and early detection is indisputable, for PRS to be clinically useful, two assertions 

must be proven correct. The first assertion is that PRSs provides sufficient risk discrimination.  The 

second is that this risk discrimination is meaningful in the context of absolute risk of that cancer 

and applicable in the context of respective tools available for prevention and early detection. 

 

The risk discrimination for a given cancer afforded by PRS can be visualised most simply via PRS 

frequency distributions of those with the disease compared to those without the disease. (Figure 

1)12,13. Two commonly-presented measures of discrimination derived from these distributions are: 
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(i) comparison of the RR for those at the top and bottom tails of the PRS distribution (ii) 

comparison for specified PRS cut-offs of the proportion of affected individuals with ‘positive’ PRS 

(‘detection rate’) versus the proportion of unaffected individuals falling within the same PRS score 

range (the ‘false-positive rate’ (1–specificity)) (Supplementary Figure 1). For the common cancers, 

PRS for prostate currently leads on discriminatory performance, with RR of 14.54 between the top 

5% and bottom 5% of men (Figure 1)14. This translates to a false positive rate of 5% for a detection 

rate of 16%.  Or, to achieve a detection rate of 50%, tolerance of a false positive rate of 25%.   

 

Quantitation of PRS performance tends to focus on the tails of the distribution, distracting from 

the fact that for 90% of individuals their PRS lies relatively close (<2SD) to the mean.  Up- or down- 

modification by these PRSs against baseline cancer risk results in minimal absolute difference in 

risk.  Acknowledgement that the PRS for a chosen disease provides useful information for only a 

few percent of people is often countered by the argument that PRSs can be generated for dozens 

of cancer types, such that each individual is likely to be in an ‘extreme’ tail of PRS for at least one 

cancer type.  However, in practice, clinical decision-making is driven by absolute risk, rather than 

relative risk per se. Hence, for all but the most common cancers, PRS reveals absolute increase in 

cancer risk against baseline that is miniscule even at the extreme upper tail of PRS. For example, 

for those in the respective top 5% of PRS, lifetime risk for breast cancer is elevated from 11.8% to 

19.0% (1.6-fold), lifetime risk of prostate cancer is elevated from 12.7% to 22.2% (1.75-fold), and 

lifetime risk of colorectal cancer is elevated from 4.6% to 6.9% (1.5-fold).  For less common 

cancers, the absolute risk increase is much lower: for women in the respective top 5% of ovarian 

cancer PRS lifetime risk is elevated 1.3-fold (from 1.6% to 2.1%)14,15.  

 

A presentation popular for capturing the discriminatory attributes of PRS is the Receiver Operating 

Characteristic (ROC) curve, with the probability that a randomly selected case having a higher PRS 



4 
 

than a randomly selected control being quantified by the area under the ROC curve (AUC).  An 

AUC of 0.5 reflects a testing tool with no discrimination. Whilst the threshold for clinical 

discrimination clearly depends on the benefit-risk profile of the proposed intervention, broadly-

speaking AUC values of 0.7-0.8 are considered as acceptable and >0.8 as affording good 

discrimination 16 17. As an example, digital mammography for breast cancer screening has an AUC 

of 0.78.  PRSs constructed from cancer SNP sets derived from GWAS yield only AUCs ranging from 

0.53 (renal cancer) to 0.67 (prostate cancer) (Figure 2). 

 

The GWAS so far performed have only identified SNPs contributing 10-30% of common variant 

heritability for their respective cancers. It is widely asserted that discriminatory value of PRS will 

improve dramatically ‘in the future’, once additional rafts of new disease-associated SNPs are 

delivered.  Imposing a threshold of 5 x 10-8 for declaring a SNP association guards against type 1 

error but inevitably has limited the number of SNPs included in PRS testing panels. Methodologies 

such as LDpred apply a Bayesian genome-wide genetic risk prediction to incorporate SNP-

correlations “tagged” by current arrays irrespective of association P-value18. However, to the 

extent that such methods have been explored, the discriminatory power for these ‘expanded’ 

PRSs is at best only very modestly improved19,20.  The (likely) final generation of GWASs for 

common cancers such as breast and colorectal cancers is currently underway. Despite aggregating 

the ’world-wide’ resource of available samples, power remains prohibitive and these experiments 

are unlikely to harvest more than 80% of the heritable risk for these cancers3. Even disregarding 

this and calculating PRS based on the full disease heritability, i.e. the hypothetical situation of 

identifying the full complement of risk SNPs, the AUCs for the common cancers remain 

disappointingly modest (0.64-0.73)3.   
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Another argument pertains to the boost in predictive value of PRS when applied in combination 

with non-genetic risk factors. Family history can be an important risk factor for cancer but is 

correlated with PRS21-23; some authors erroneously inflate their AUC by combining the two as if 

orthogonal24,25. For most cancer types, the AUC for non-genetic factors is modest26,27.  When 

modelled, the well-established modifiable risk factors have additive effects with SNP associations 

and therefore only modestly improve the AUC27,28. Breast cancer has the best characterised set of 

non-genetic risk factors: the AUC for these risk factors is 0.637 whilst the AUC of the current PRS is 

0.631; and in combination the AUC is 0.68329. Again, whilst aetiological epidemiological research 

continues to be a dynamic field, it would seem naïve to predict imminent discovery of robustly 

associated new non-genetic risk factors of sizeable effect.  

 

There are many who acknowledge PRS to be a weak predictor of individual cancer risk but who 

suggest that it could still be useful to individualise population screening programmes, for example 

by excluding ‘low risk’ individuals from screening30,31.  From modelled adaptation of the UK breast 

cancer screening programme such that screening of women age 35–79 would be offered on the 

basis of PRS rather than age alone, it has been predicted that screening could be reduced by 24% 

at the cost of reduction in screen-detectable cases of 14%32. Although this indicates potential for 

more efficient targeting of screening, there is concern that: (i) genomic profiling will do little to 

improve and could even reduce uptake of existing cancer screening programmes, which for breast 

cancer in the UK is currently only 71%33, and (ii) the incidence of breast cancers in those from 

whom breast screening has been ‘withheld’ (or in fact ‘withdrawn’) would be perceived by the 

public as too high. Another proposal is that PRSs could be combined as a Bayesian Prior to a 

population screening test, such that the more expensive and/or invasive confirmatory test is only 

triggered when a positive screening test (PSA, FIT) arises in individuals with high PRS.  In practice, 

where the screening test itself has good performance characteristics, for example Faecal 
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Immunochemical Test (FIT) for detection of colorectal cancer, the negative predictive value of 

PRSs will be insufficient to exclude disease in those with a positive screening test.  Conversely, 

where the performance of the screening test is poorer (e.g. prostate specific antigen (PSA) for 

prostate cancer), the limited positive predictive value of the PRS adds little, resulting in a large 

group of PRS-false-positives receiving an invasive, confirmatory investigation.  Hence, where 

screening is effective, inexpensive, and safe, the limited additional boost in detection added by 

PRS stratification is arguably likely to be outweighed by the cost, complexity of delivery of 

population risk-profiling with the potential for reduced participation.  Well-designed trials are 

therefore essential to avoid inadvertent disruption of existing screening programmes with 

documented evidence of benefit34.  Where screening is not effective, inexpensive, or safe, the 

addition of a PRS is unlikely to make it so. 

 

PRS testing has been suggested as a method of identifying individuals who may benefit from 

cancer chemopreventative agents35. Whilst an attractive proposition, few agents are currently 

licenced for this purpose and clinical studies of new agents for chemoprevention are challenging.  

The risk-benefit profile of an agent dictates the level of disease risk at which administration is 

justified; thus the value of PRS stratification in determining administration would be very much 

contingent on the performance of PRS in discriminating those at sufficiently elevated risk.  

Administration of chemopreventative agents based on PRS-stratified groups has not yet been 

trialled for any agents and would require careful consideration36,37. Whilst communicating DNA 

based disease risk assessments may have a role in promoting risk-reducing behaviour38, evidence 

for this is currently lacking and there is a potential to introduce harm, particularly in the absence 

of counselling and clinical utility39. Furthermore, if PRS is to be used, it has to be universally 

applicable to all in the population regardless of ancestry to ensure equity in provision of 

healthcare resource. Presently the majority of PRSs are based on studies of European ancestry40 
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and their performance is poor in non-European populations41.  This consideration is often offered 

as a minor technical ‘footnote’ to the value proposition of PRSs: given the limited predictive 

capabilities of existing PRS generated from decades of massive studies of available samples, it is 

unclear how this deficit will actually be addressed in the foreseeable future.   

 

The clinical utility of identification of high-impact mutations in genes such as BRCA1 and MLH1 is 

not under dispute: such mutations provide effective risk discrimination and there are established 

clinical pathways for those in whom mutations are identified. However, the notion that PRSs will 

offer equivalent utility population-wide by providing informative risk stratification across multiple 

diseases is misleading. Raising unrealistic expectations and implementing programmes without 

careful evaluation risks compromising the application of PRSs for specific niches, and indeed, of 

genomic medicine as a whole.  

 

 

 

 

 

 

 



8 
 

FIGURE AND TABLE LEGENDS 

 

Figure 1. Overlapping relative frequency distributions of polygenic risk score in prostate cancer 

cases and unaffected individuals. The detection rate for a false positive rate of 5% is 16%.  

 

Figure 2. Receiver operator plots of polygenic risk scores for eight common cancers.  AUC, area 

under the curve. The AUC provides an estimate of the probability a randomly selected subject with 

the condition has a test result indicating greater than that of a randomly chosen individual without 

the cancer. The solid line represents a receiver operator curve based on polygenic risk score from 

known risk SNPs based on reference 13. An AUC of 0.5 (dashed line) indicates that the classifier 

does not provide any useful information in discriminating cases from controls.  

 

Supplementary Figure 1. Probability of cancer (detection rate) according to polygenic risk score 

defined relative risk for each common cancer. Polygenic risk score - >95% centile compared with 

<5th centile. Analysis conducted using the risk screening converter tool13.
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