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Key objective: Our study was focused on understanding the link between somatic copy 42	

number alterations (SCNAs) and intrinsic resistance to aromatase inhibition (AI) therapy 43	

and we observed tumors with high levels SCNAs had intrinsic resistance to therapy. 44	

 45	

Knowledge generated: There is a well established link between high genomic instability 46	

(GI) and TP53 mutations and resistance to cancer treatment; however, we are the first to 47	

show that primary ER+ tumors with high GI have an intrinsic resistance to treatment that 48	

can be measured after a short two-week AI treatment. High GI tumors do not require time 49	

to evolve resistance to estrogen deprivation therapy as they already have de novo 50	

resistance to treatment. 51	

 52	

Revelance: Estrogen deprivation therapy with AI treatment is highly effective in ER+ 53	

breast cancer (BC), but more than 20% of postmenopausal women with early-stage BC 54	

suffer a relapse.  The POETIC phase III trial with 2-weeks of perioperative AI therapy 55	

offers the opportunity to identify mechanisms and biomarkers of intrinsic AI resistance, and 56	

in the POETIC study up to 20% of tumors showed resistance to AI treatment after just 2 57	

weeks of treatment.  The results show high genomic instability (GI) is associated with AI 58	

resistance and detection of copy number alterations and mutations in TP53 are predictive 59	

of high GI. Validation of these results in a larger study would provide a framework for 60	

better stratifying patients into high risk of AI-resistance that are likely to benefit from added 61	

or alternative treatment. 62	

 63	

  64	
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Abstract 65	

 66	

Purpose: While aromatase inhibition (AI) is an effective treatment for estrogen receptor-67	

positive postmenopausal breast cancer (BC) resistance is common and incompletely 68	

explained. Genomic instability (GI) as measured by somatic copy number alterations 69	

(SCNAs) is important in BC development and prognosis. SCNAs to specific genes may 70	

drive intrinsic resistance, or high GI may drive tumor heterogeneity allowing differential 71	

response across the tumors and surviving cells to rapidly evolve resistance to treatment. 72	

We therefore evaluated the relationship between SCNAs and intrinsic resistance to 73	

treatment as measured by a poor anti-proliferative response. 74	

Patients and Methods: SCNAs were determined by SNParray in baseline and surgery 75	

core-cuts from 73 postmenopausal patients randomized to receive 2 weeks’ pre-operative 76	

AI or no AI in the POETIC trial. Fifty-six samples from the AI-group included 28 poor 77	

responders (PrRs, <60% reduction in Ki67) and 28 good responders (GdRs, >75% 78	

reduction in Ki67). Exome sequencing was available for 72 pairs of samples.  79	

Results: GI correlated with Ki67 expression at both baseline (P=0.0003) and at surgery 80	

(P= 0.0002), and GI was higher in PrRs (P=0.048). The SCNA with the largest difference 81	

between GdRs and PrRs was loss of heterozygosity (LOH) observed at 17p (FDR=0.08), 82	

which includes TP53. Nine of 28 PrRs had loss of wildtype TP53 due to mutations and 83	

LOH compared to 3 of 28 GdRs. In PrRs, somatic alterations of TP53 were associated 84	

with higher GI, higher baseline Ki67 and greater resistance to AI treatment compared to 85	

wildtype TP53. 86	

Conclusion: We observed that primary tumors with high GI have an intrinsic resistance to 87	

AI treatment and do not require further evolution to develop resistance to estrogen 88	

deprivation therapy. 89	
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Introduction 90	

Estrogen deprivation is the major treatment strategy for hormone-dependent breast cancer 91	

(BC) and typically involves agents that inhibit aromatase, the enzyme catalyzing the 92	

conversion of androgens to estrogens. Despite near complete suppression of circulating 93	

estrogen levels by aromatase inhibitor (AI) treatment, acquired and de novo resistance to 94	

AI is common1. There are few pre-treatment biomarkers for AI resistance and mechanisms 95	

of resistance are incompletely understood2.  96	

 97	

Mutations and somatic copy number alterations (SCNAs) can play important roles in 98	

activating oncogenes or inactivating tumor suppressors, and BC is characterised by 99	

multiple recurrent SCNAs and few recurrent mutations3. We have previously shown that 100	

TP53 mutations occur at a higher rate in tumors with poor response to AI treatment 101	

suggesting these patients received less benefit from AI4 but SCNAs to specific genes may 102	

also play an important role in AI resistance5. It is known that non-specific genomic 103	

alterations like high genomic instability (GI) is associated with poor prognosis and probably 104	

due at least partly to tumor heterogeneity allowing some cells to survive and evolve 105	

resistance to treatment6. There is evidence in other solid tumors for an association of high 106	

GI and intrinsic resistance to chemotherapy7. However, there are few studies of GI and 107	

response to endocrine treatment. The aim of this work was therefore to determine if 108	

genome-wide measures of SCNAs (i.e. genomic instability - GI) and/or focal SCNAs are 109	

associated with intrinsic resistance to AI treatment.  110	

 111	

Response to AI treatment can be measured by change in the proliferation marker Ki67, 112	

following 2-4 weeks of presurgical therapy, and AI resistance in primary tumors can be 113	

characterized and defined by limited or no Ki67 response to AI treatment8-10. This change 114	
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in Ki67 has been found to predict benefit from endocrine therapy better than clinical 115	

response10. We therefore extended our earlier study on the relationship between 116	

mutations and resistance to AIs in the pre-surgical Perioperative Endocrine Therapy—117	

Individualising Care (POETIC) trial. We used SNParray technology to identify SCNAs and 118	

included paired baseline and surgery samples to assess the degree of intra-tumoral 119	

heterogeneity and selection during AI treatment.  120	

 121	

Methods 122	

Patients and tissues 123	

The POETIC trial (CRUK/07/015) is a pre-surgical randomized study with 4,486 post-124	

menopausal patients receiving non-steroidal AI (anastrozole 1 mg/day or letrozole 125	

2.5 mg/day) or no treatment (2:1) two-weeks before surgery11. Core-cut biopsies (14-G) 126	

were collected from c.15% of patients into RNAlater (Qiagen). Whole blood was collected 127	

for germline DNA analysis. The trial was approved by the NRES Committee London-South 128	

East. Patients gave informed consent for DNA analysis. 129	

 130	

Biomarker analyses 131	

Ki67% staining was centrally analyzed on formalin-fixed samples as previously described8. 132	

HER2 status was measured locally. Ki67 and HER2 results are shown in Supplementary 133	

Table 1.  134	

 135	

Sample Selection 136	

DNA was extracted from 192 baseline/surgery samples from the subset of POETIC ER+ 137	

tumors stored in RNAlater and matching blood controls from 73 patients with baseline Ki67 138	

scores greater than 5%. Poor responders (n=28) were defined as having a Ki67 decrease 139	
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of <60% between baseline and surgery, and good responders (n=28) with >75% Ki67 140	

decrease (Supplemental Figure 1). Patients with intermediate Ki67 decrease between 60-141	

75% were not considered. Exome sequencing was available for 72 tumors from a previous 142	

study4. Samples from 17 patients who received no-AI were also analysed to ensure that 143	

changes in SCNAs ascribed to AI treatment were not artefactual. Aliquots were taken from 144	

10 tumor DNA samples and assessed as technical replicates (Supplemental Figure 1). 145	

 146	

DNA extractions 147	

8-μm sections were taken from RNAlater-stored core-cuts embedded in OCT (Cryo-M-148	

Bed, Bright Instruments, UK) and stained with Nuclear Fast Red (0.1% (w/v)). Needle 149	

microdissection was used to achieve >60% pure tumor cells when necessary. DNA was 150	

extracted from the sections using the DNeasy Tissue and Blood kit (Qiagen), and from 151	

peripheral blood using the EZ1 system (LifeTechnologies). 152	

 153	

SNParray Analysis 154	

Illumina Human OmniExpress Exome BeadChip v.3 was used to generate genotype and 155	

intensity data for blood and tumor samples, and ASCAT12 for the estimate of ploidy, 156	

fraction of tumor cells and copy number alterations (CNA) in the tumor samples. Two 157	

samples did not pass ONCOSNP QC13 and visual inspection of the SNP-array data. Ploidy 158	

and purity using default parameters and a range of higher segmentation penalties were 159	

estimated with ASCAT and OncoSNP. The segmentation penalty in ASCAT was increased 160	

(22-samples) or the estimate of ploidy and purity from OncoSNP was used in ASCAT (4-161	

samples) to generate SCNA calls that best described the data. For five samples, germline 162	

genotype predictions generated by ASCAT were due to contamination or QC failure of 163	

blood controls. Bedtool multiintersect14 was used to identify 47807 non-overlapping 164	
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segments from all samples. Data has been deposited in the European Genome-phenome 165	

Archive (EGAS00001001940). 166	

 167	

Measures of Genomic Instability 168	

Chromosomal gains and losses were determined relative to estimates of tumor ploidy by 169	

ASCAT (sum of major and minor allele calls minus tumor ploidy rounded to nearest 170	

integer). Loss of heterozygosity (LOH) was assigned when the estimated copy number 171	

was zero for the minor allele (LOH). Genomic Instability (GI) was defined as the 172	

percentage of the genome with SCNAs calculated by summing the total basepairs (bp) of 173	

segments with gains, loss or LOH relative to paired normal blood control samples for each 174	

tumor sample and dividing by the size of the genome (3x109bp). 175	

 176	

Intrinsic Subtypes 177	

PAM50 intrinsic subtypes were determined for 36 tumors15.  Details are available in 178	

Supplemental Table 1. 179	

 180	

Statistical methods 181	

Mann-Whitney, F, chi-squared, Pearson’s correlation (Pearson’s), Fisher’s exact tests 182	

(Fisher’s), and multiple correction by Benjamini-Hochberg method16 (FDR) were also 183	

carried out using R with the wilcox.test, var.test chisq.test, cor.test, fisher.test, p.adjust 184	

functions, respectively. Fisher’s exact tests were one-sided and remaining reported p-185	

values were two-sided tests unless otherwise specified. Boxplot plots were generated with 186	

the boxplot function in R to show median, interquartile and range of values excluding 187	

outliers.  188	

 189	
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Results  190	

SCNA characteristics in the overall population 191	

SCNAs were identified in 28 patients with tumors classified as PrRs, 28 classified as GdRs 192	

and 17 tumors from the no-treatment control group (Figure 1A). The median percent of the 193	

genome with SCNAs was 46% for all tumors with a single representative tumor sample 194	

chosen from matched baseline, surgery or technical replicate samples to calculate the 195	

median percentage of SCNAs. The median percent of the genome with gains relative to 196	

tumor ploidy, losses relative to tumor ploidy, and LOH  was 15%, 16%, and 15%, 197	

respectively (Figure 1B, Supplemental Table 2). Highly recurrent SCNAs (gains at 1q, 16p, 198	

20q and 8q, and losses/LOH at 11q 16q, 17p and 8p) occurred in >50% of all 199	

representative samples (Supplemental Figure 2A-D). The majority of sites with losses 200	

overlapped with LOH (Supplemental Figure 2E), as expected17,18.  201	

 202	

Intratumoral heterogeneity of SCNAs 203	

Overlap of SCNAs between paired core-cuts  204	

Discordance between baseline and surgery time points was significantly greater than 205	

differences between technical replicate samples taken from the same DNA extraction 206	

(Supplemental Figure 2F). Discordance in SCNAs was observed in >10% of the genome 207	

in only one pair of technical replicate samples; notably, these samples had the highest GI 208	

with >90% of the genome with SCNAs (P088 samples, Supplemental Figure 3A). 209	

 210	

Overall SCNA calls in baseline and surgery AI pairs were very similar (Supplemental 211	

Figure 3) with the median overlap for SCNAs at 87% and 88% for 33 baseline/surgery AI 212	

pairs and 11 no-AI pairs respectively. There was no significant difference between the 213	

frequency of discordant SNCA calls between baseline and surgery AI pairs after correction 214	
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for multiple testing and only 4% of 47807 non-overlapping regions have >10% more 215	

events in baseline or surgery samples (>4 additional SCNA events in the baseline or 216	

surgery samples in the 33 pairs)(Supplemental Figure 4). Much larger sample sizes are 217	

required to determine if these regions are significantly different between baseline and 218	

surgery. 219	

 220	

Concordance of SCNAs between paired core-cuts 221	

For pairs of baseline and surgery samples, the median percentage of the genome with 222	

discordant SCNA calls was 5% (Figure 1C), and discordance between samples was 223	

associated with the percentage of the genome with SCNAs (Supplemental Figure 5). 224	

There was only one paired set of core-cuts in which discordant SCNAs were greater than 225	

the SCNAs shared between the pair of samples, suggesting two independently evolved 226	

tumors (Supplemental Figure 6).  227	

 228	

Discordance in PrR and GdR paired samples 229	

There was a trend for PrRs to have more discordant SCNAs between paired samples than 230	

GdRs (average 10% in PrRs and 6% in GdRs) but this difference was not significant. 231	

However, the variance in the percent of the genome with discordant SCNAs was 232	

significantly greater in PrRs than GdRs (P < 10-6, F test) (Figure 1D). These data indicate 233	

that the tumors with the highest topographic heterogeneity in SCNAs were more frequent 234	

among the PrRs. 235	

 236	

Intrinsic subtypes  237	

PAM50 intrinsic subtype calls15 were performed on 36 baseline tumors. There is an 238	

enrichment of poor prognosis intrinsic subtypes (PrR non-luminal/luminal-B ) in PrR 239	
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samples (64%) compared to GrR (20%);  however, >30% of measured PrR samples are 240	

luminal-A subtypes suggesting intrinsic subtyping is not fully capturing the higher risk of 241	

recurrence in these samples (Supplemental Table 1). 242	

 243	

Inter-tumoral heterogeneity in SCNAs 244	

Comparison between PrRs and GdRs in percent of genome altered  245	

Given the overall concordance between baseline and surgery core-cuts in SCNAs and the 246	

results of previous observations of minimal impact of AI treatment on mutation counts4, we 247	

merged all the SCNA events from multiple samples from the same tumor to represent the 248	

SCNAs events in that tumor (merged 35-baseline and surgery; 9-baseline, surgery and 249	

technical replicates; 1-baseline technical replicates). The GI was higher in the 28 PrR 250	

combined samples than the 28 GdR combined samples (P=0.048, Mann-Whitney) and GI 251	

was significantly correlated with baseline (r=0.41,P=0.0003, Pearson’s) and surgery 252	

(r=0.48,P=0.0002, Pearson’s) Ki67 (Figure 2).  253	

 254	

Comparison of SCNAs between PrRs or GdRs  255	

The percentage of a chromosomal arm with gains, losses and LOH was calculated, and 256	

PrRs showed a significantly higher percentage of gains in chromosome 6p, losses in 5q, 257	

and LOH in 10q, 17p, and 19p (FDR < 0.1, one-sided Mann-Whitney) (Figure 3A-C, 258	

Supplemental Figure 7). The largest difference in percentage values (mean and median 259	

values) for arms between GdRs and PrRs was observed in LOH at 17p (Figure 3D-G), 260	

followed by LOH in 8p and gains in 8q. There were no chromosomal arms with significantly 261	

greater gains, losses or LOH in GdRs.  262	

 263	
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Analysis of smaller regions, based on the 47807 non-overlapping segments, revealed the 264	

most significant differences in gains were observed at 10p12.31 and 10p13 (P=0.0004, 265	

Fisher’s), losses at 5q11.2 (P=0.0002), and LOH at 17p13.3 (P=0.0005).  These regions 266	

had approximately 40% more events in PrRs  (13 to 10 more SCNA events in the 28 PrR 267	

samples than GrRs) but were not significant after multiple correction (Supplemental Figure 268	

8A). 269	

 270	

TP53 alterations  271	

Occurrence of TP53 mutations and LOH in cohort 272	

Our previous work from exome sequencing showed PrRs and TP53 mutations associated 273	

with a higher mutational load and that the mutational load was correlated with Ki67 levels 274	

at a surgery after 2-weeks of AI treatment4. We did not observe a significant correlation 275	

between the percent of the genome with SCNAs and mutational load, but we did observe 276	

greater GI in tumors with TP53 mutations (Figure 4E). 277	

 278	

As expected for a tumor suppressor, LOH at the TP53 locus in 17p was associated with 279	

TP53 mutations across all tumors (driving loss of the functioning copy of the tumor 280	

suppressor gene) (P=0.004, Fisher’s). Of the 17 patients with TP53 mutations in baseline 281	

or surgery samples, 15 had LOH at the TP53 locus (9-PrRs, 5-GdRs, 3-Controls). All nine 282	

PrR samples and three out of five GrR samples with TP53 mutations also had LOH at the 283	

TP53 locus. There was a significant enrichment of TP53 genomic alterations in PrRs 284	

(P=0.03, Fisher’s) and significant difference in the distribution of TP53 genetic alterations 285	

between PrRs and GdRs (P=0.02, Chi-squared) (Figure 4A). 286	

 287	

AI resistance and TP53 status 288	
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Within the PrR group, samples with no LOH and TP53WT had the best anti-proliferative 289	

response to AI compared with samples with TP53WT+LOH and TP53MUT+LOH as 290	

measured by the change in Ki67 (P=0.01 and P=0.05 respectively, Mann-Whitney) (Figure 291	

4B). The difference in the change in Ki67 between TP53WT+LOH and TP53MUT+LOH was 292	

not significant but there were significant differences between TP53WT+LOH and 293	

TP53MUT+LOH for baseline Ki67 scores (P=0.02), for surgery Ki67 scores (P=0.04) and for 294	

the percentage of the genome with SCNAs (P=0.0004), (Figure 4B-E). 295	

 296	

Impact of HER2 status  297	

There were seven HER2 positive samples in the PrR group and none in the GdR group. 298	

HER2 positive samples had a significantly higher percentage of the genome with gains in 299	

copy number compared to HER2-negative PrR samples (P=0.03, Mann-Whitney) but did 300	

not have significantly higher percentage of SCNAs in general, losses or LOH 301	

(Supplemental Figure 8B-E). The results with HER2-negative cases were similar to those 302	

with all samples with the most significant differences between PrRs and GdRs being loss 303	

at 5q and LOH at 17p for HER2-negative samples (Supplemental Figures 8F-G, 9-10). 304	

There was also a significant enrichment of TP53 genomic alterations in PrRs (P=0.02, 305	

Fisher’s) and significant difference in the distribution of TP53 genetic alterations between 306	

PrRs and GdRs in HER2-negative samples (P=0.03, Chi-squared) (Supplemental Figure 307	

10C).  308	

 309	

Discussion 310	

Our primary goal was to identify global and focal SCNAs that were associated with the 311	

anti-proliferative response of ER+ BC to short-term estrogen deprivation using AIs. Our 312	

selection of samples from >3000 patients in the AI-group from the POETIC study aimed to 313	
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exploit this large study to understand good/poor response to AI treatment in a general ER+ 314	

BC population but not to represent the trial population per se. The sampling of tumors 315	

before and after 2-weeks of AI treatment allowed the impact of tissue heterogeneity to be 316	

assessed, and prior exome sequencing gave the opportunity to integrate the SCNA and 317	

mutation data to better understand intrinsic resistance. While the number studied seems 318	

modest, the ability to assess response in individual tumors allows much greater confidence 319	

with molecular associations that larger studies with time to recurrence.  HER2 positivity 320	

was enriched in the PrPs, as previously noted4, but the genomic changes were similar in 321	

HER2-negative cases and the overall population. 322	

 323	

The lack of recurrent alterations specific to only baseline or surgery in AI-treated samples 324	

indicates a limited impact and selection for SCNAs after 2-weeks of AI treatment in line 325	

with other studies4,19. Notably, mean tumor volume did not change significantly in the 326	

nearly 3,000 POETIC AI-treated patients within the 2-week treatment window (data not 327	

shown) indicating little opportunity for selection of resistant cells in that time. Reduced 328	

heterogeneity might be observed from longer treatment20. These data therefore indicate 329	

that a small biopsy before or after short-term AI treatment is likely to be representative of 330	

the whole tumor for most BCs; however for tumors with high GI and greater heterogeneity, 331	

multiple biopsies may be necessary to capture all genomic alterations. 332	

 333	

There is a large body of evidence to associate GI poor outcomes in solid tumors6, and 334	

incorporation of GI scores can greatly improve molecular prognostic models for BC21,22. It 335	

is not known if high GI and greater tumor heterogeneity allows the few surviving tumors to 336	

evolve resistance to AI treatment or if there is intrinsic resistance to AI in these tumors. 337	

Our data here support the latter with tumors with high GI showing de novo resistance to AI 338	
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therapy as measured by a poor Ki67 response after two weeks of treatment, a validated 339	

intermediate marker of benefit from endocrine therapy10. This also suggests that GI not 340	

only has prognostic value but also predicts which postmenopausal ER+ primary tumors 341	

are likely to be resistant to AI therapy.  342	

 343	

LOH in 17p was significantly SCNA associated with poor Ki67 change, and LOH was 344	

significantly greater in PrR tumors compared to GdRs in HER2-negative tumors and the 345	

overall population. This region encodes for several cancer driver genes including TP53, a 346	

key regulator of cellular processes controlling proliferation and genomic stability. LOH and 347	

mutations inTP53 has been shown to result in worse outcomes23 and we have now shown 348	

that it is also associated with poor anti-proliferation response to AI and intrinsic resistance 349	

to treatment. Clearly there are other factors besides TP53 that can modulate GI and AI 350	

resistance, and GI is significantly inversely correlated with the average expression of the 351	

ER-regulated genes TFF1, GREB1, PGR and PDZJK1 in ER+ tumors from METABRIC24 352	

(r=-0.24,P<10-16,Pearson’s) suggesting other factors besides ER are driving proliferation 353	

and resistance to AI in tumors with high GI. Even in tumors with high ER expression and 354	

good prognosis, TP53 genomic alterations can results in worse outcomes (Supplemental 355	

Figure 11). 356	

 357	

Recent work by other groups has associated mutations in DNA repair pathways25 or 358	

mismatch repair pathways19 and co-amplification of FGFR1 and CCND15 with resistance 359	

to AI treatment, but we have not observed enrichment of these genomic alterations in our 360	

PrRs. This may be due to small samples sizes in each study and additional differences in 361	

how AI resistance is classified: we classified response/resistance based on changes of 362	

Ki67 between baseline and AI-treated tumors since this dynamic assessment relates to 363	
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benefit from treatment. Others have used the level of residual Ki67 in AI-treated tumors as 364	

the endpoint to define resistance which reflects residual risk of recurrence on AI. Notably, 365	

a patient with a large reduction in proliferation after treatment has clearly benefited from 366	

and responded to AI treatment regardless of her residual risk based on Ki67 367	

measurements at surgery26.  368	

  369	

We conclude that the poor prognosis of ER+ postmenopausal tumors associated with high 370	

GI, TP53 LOH and TP53 mutations is at least in part due to intrinsic resistance of these 371	

tumors to AI therapy. The short two-week AI treatment can reveal poor anti-proliferative 372	

response in these primary tumors indicating that they continue to proliferate in an estrogen 373	

deprived environment and do not require further evolution to enable the tumor to resist 374	

treatment. It is not clear if high GI or TP53 genomic alterations directly play a role in AI 375	

resistance or if these are biomarkers for other drivers of resistance. Further analysis of the 376	

>3000 AI-treated patients from POETIC may reveal additional links between GI, TP53 and 377	

AI resistance and lead to better treatment for those patients with high GI and intrinsic 378	

resistance to AI treatment. 379	

 380	
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Figure Legends: 455	

Figure 1.  456	

A. Arrow plot showing the change in Ki67 between baseline and surgery for GdRs (green), 457	

PrRs (red) and untreated Controls (blue). B. Boxplot showing percent of the genome with 458	

SCNAs, gains relative tumor ploidy, losses relative to tumor ploidy, LOH and HD for 127 459	

tumor samples (PrRs in red, GdRs in green and controls in blue). Barplot (C) and boxplot 460	

(D) showing the average percentage of genome discordant between pairs of core-cuts 461	

(baseline and surgery) for all SCNAs (GdRs - green, PrRs - red and untreated Controls - 462	

blue).  463	

 464	

Figure 2.  465	

Boxplot showing the difference in GI (the percentage of genome with SCNAs) between 466	

GdRs (green) and PrRs (red) tumors (A). Comparisons of Ki67 baseline IHC scores with 467	

GI (the percent of the genome with SCNAs). B. for GdRs (green circles), PrRs (red 468	

squares) and untreated Controls (light blue squares). Comparisons of Ki67 surgery IHC 469	

scores after AI treatment with GI (the percent of the genome with with SCNAs). C. PrRs 470	

(red squares) and GdRs (green circles). Grey lines represent regression line. 471	

 472	

 473	

Figure 3.  474	
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Percentage of samples with gains relative to tumor ploidy for PrRs (dark red) and GdRs 475	

(pink) (A), with losses (light blue – GdR, dark blue – PrR) (B) and with LOH (light green 476	

GdR, dark green – PrR) (C) at 47807 segments generated from POETIC SCNA analysis. 477	

Percentage of samples with LOH (light green GdRs, dark green – PrRs) for chromosome 478	

17 (D) including table for LOH events at TP53 (E) and difference in the % of samples with 479	

LOH between PrRs and GdRs (F). Boxplots showing the percent of 17p with LOH for 480	

GdRs (green) and PrRs (red) (G) and barplots showing the percent of LOH at 17p for each 481	

tumor (PrRs –red, GdRs – green) (H).  482	

 483	

Figure 4.  484	

A. Barplot showing percentage of GdR (green) and PrR (red) samples with TP53WT and no 485	

LOH at the TP53 locus, TP53WT and LOH at the TP53 locus, TP53MUT and no LOH at the 486	

TP53 locus and TP53MUT and LOH at the TP53 locus. Note: One GrR does not have 487	

exome sequencing data. Boxplot showing the % change in Ki67 (B), Ki67 baseline scores 488	

(C), Ki67 surgery score (D) and GI (the percentage of the genome with SCNAs) (E) for 489	

PrRs with TP53WT and no LOH at the TP53 locus, TP53WT and LOH at the TP53 locus, 490	

and TP53MUT and LOH at the TP53 locus. There are no PrR samples with TP53MUT and no 491	

LOH at the TP53 locus. 492	

 493	

Supplemental Tables/Figures 494	

Supplemental Table 1. Clinical, Ki67 and genomic data for 127 tumors in study. 495	

Supplemental Table 2. ASCAT estimates and segments for 127 Tumors in study. 496	

 497	

Supplemental Figure 1. Consort Diagram. 498	
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Supplemental Figure 2. Percent of representative tumors from each of the 73 patients 499	

with gains, losses or LOH and overlaps between segments. Percentage of discordance for 500	

technical and biological replicates. 501	

Supplemental Figure 3. ASCAT estimates of SCNA gains, losses and LOH for 127 502	

tumors.  503	

Supplemental Figure 4. Percentage of gains, losses and LOH for 33 AI treated pairs. 504	

Supplemental Figure 5. Percentage of genome with SCNAs and discordance. 505	

Supplemental Figure 6. Independent tumors from same patient. 506	

Supplemental Figure 7. Chromosomal arm analysis of gains, losses and LOH. 507	

Supplemental Figure 8. Differences in percentage of samples with gains, losses and 508	

LOH with and without HER2 positive samples. 509	

Supplemental Figure 9. Differences in percentage of samples with SCNAs when 510	

including or excluding HER2 positive tumors. 511	

Supplemental Figure 10. Differences in percentage of samples with LOH at 17p when 512	

including or excluding HER2 positive tumors.  513	

Supplemental Figure 11. Breast cancer-specific survival (BCSS) survival plots for 514	

METABRIC LumA stratified by TP53 mutation. 515	



Figure	1.	A.	Arrow	plot	showing	the	change	in	Ki67	between	baseline	and	surgery	for	GdRs	(green),	PrRs	(red)	and	untreated	Controls	(blue).	
B.	Boxplot	showing	percent	of	the	genome	with	SCNAs,	gains	relaFve	tumor	ploidy,	losses	relaFve	to	tumor	ploidy,	LOH	and	HD	for	127	
tumor	samples	(PrRs	in	red,	GdRs	in	green	and	controls	in	blue).	Barplot	(C)	and	boxplot	(D)	showing	the	average	percentage	of	genome	
discordant	between	pairs	of	core-cuts	(baseline	and	surgery)	for	all	SCNAs	(GdRs	-	green,	PrRs	-	red	and	untreated	Controls	-	blue).		

A	 B	

C	 D	

Figure	1	



Figure	2.	Boxplot	showing	the	difference	in	GI	(the	percentage	of	genome	with	SCNAs)	between	GdRs	(green)	and	PrRs	(red)	tumors	(A).	Comparisons	of	Ki67	
baseline	IHC	scores	with	GI	(the	percent	of	the	genome	with	SCNAs)	(B)	for	GdRs	(green	circles),	PrRs	(red	squares)	and	untreated	Controls	(light	blue	squares).	
Comparisons	of	Ki67	surgery	IHC	scores	aSer	AI	treatment	with	GI	(the	percent	of	the	genome	with	with	SCNAs)	(C)	PrRs	(red	squares)	and		GdRs	(green	circles).	Grey	
lines	represent	regression	line.	

A	 B	 C	

Figure	2	



Figure	3	

Figure	3.	Percentage	of	samples	with	gains	relaFve	to	tumor	ploidy	for	PrRs	(dark	red)	and	GdRs	(pink)	(A),	with	losses	(light	blue	–	GdR,	dark	blue	–	PrR)	(B)	and	
with	LOH	(light	green	GdR,	dark	green	–	PrR)	(C)	at	47807	segments	generated	from	POETIC	SCNA	analysis.	Percentage	of	samples	with	LOH	(light	green	GdRs,	
dark	green	–	PrRsfor	chromosome	17	(D)	including	table	for	LOH	events	at	TP53	(E)		and	difference	in	the	%	of	samples	with	LOH	between	PrRs	and	GdRs	(F).	
Boxplots	showing	the	percent	of	17p	with	LOH	for	GdRs	(green)	and	PrRs	(red)		(G)	and	barplots	showing	the	percent	of	LOH	at	17p	for	each	tumor	(PrRs	–red,	
GdRs	–	green)	(H).		
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Figure	4	

Figure	4.	A.	Barplot	showing	percentage	of	GdR	(green)	and	PrR	(red)	samples	with	TP53WT	and	no	LOH	at	the	TP53	locus,	TP53WT	and		LOH	at	the	TP53	
locus,	TP53MUT	and	no	LOH	at	the	TP53	locus	and	TP53MUT	and	LOH	at	the	TP53	locus.	Note:	One	GrR	does	not	have	exome	sequencing	data.	Boxplot	
showing	the	%	change	in	Ki67	(B),	Ki67	baseline	scores	(C),	Ki67	surgery	score	(D)	and	GI	(the	percentage	of	the	genome	with	SCNAs)	(E)	for	PrRs	with	
TP53WT	and	no	LOH	at	the	TP53	locus,	TP53WT	and	LOH	at	the	TP53	locus,	and	TP53MUT	and	LOH	at	the	TP53	locus.	There	are	no	PrR	samples	with	TP53MUT	
and	no	LOH	at	the	TP53	locus.	
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73 Patients with DNA extractions  
192 samples (73 blood, 67 baseline and 62 surgery) 

Good Responders (GdRs): 28 
Ki67% change after AI 2wks > 75% 

Baseline only: 6 
(1 with technical replicate)   

Surgery only: 6 

Pairs: 16 
(2 with baseline, 1 with surgery 

technical replicates)  

Poor Responders (PrRs): 28 
Ki67% change after AI 2wks < 60% 

Baseline only: 8 

Surgery only: 3 

Pairs: 17 
(3 with baseline, 1 with surgery 

technical replicate)  

Controls: 17 
No AI treatment 

Baseline only: 2 

Surgery only: 4 

Pairs: 11 
(2 with surgery technical replicates)  

202 samples hybridised  
Illumina OmniExpressExome-8 v3 

 2 tumour samples failed QC  
(2 baseline samples, 1 Good and 1 Poor)  

5 blood samples failed QC and replaced  
with germline genotype predictions 

Allele-Specific Copy number Analysis of Tumours 
(ASCAT) SCNAs Analysis 

Supplemental	Figure	1	

1	Supplemental	Figure	1.	Consort	Diagram.	



Supplemental	Figure	2	

Supplemental	Figure	2.	Percent	of	representa7ve	tumors	from	each	of	the	73	pa7ents	with	gains	(A),	losses	(B)	or	LOH	(C)	for	each	of	47807	bedtool	segments	
separated	by	chromosome.		Segments	generated	by	integra7ng	all	ASCAT	output	segments	for	all	tumor	samples	with	bedtools	mul7intersect	tool.	For	pa7ents	
with	mul7ple	tumor	samples,	representa7ve	tumor	was	randomly	chosen.		Plot	(D)	showing	percent	of	tumors	with	gains	(red),	losses	(blue)	and	LOH	(green)	for	
each	segment	from	Supplemental	Figures	1B-D.	Venn	diagram	(E)	showing	the	overlap	between	gains,	losses	and	LOH	of	ASCAT	output	segments	from	
representa7ve	tumors	of	all	73	pa7ents.		
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Supplemental	Figure	3A	
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Supplemental	Figure	3B	
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Supplemental	Figure	3C	

Supplemental	Figure	3.	ASCAT	es7mates	of	SCNA	gains	(red)	and	losses	(blue)	rela7ve	to	tumour	ploidy		for	GdRs	(A),	
PrRs	(B)	and	Control	samples	(C)	for	baseline	and	surgery	samples.	Green	bars	represent	regions	with	LOH.	Label	to	
right	of	figure	shows	sample	ID	and	7mepoint	of	biopsy	(B	–	Baseline	and	S	–	Surgery).	Samples	with	baseline	and	
surgery	pairs	or	replicate	samples	are	grouped	together	at	top	of	figures.	
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Supplemental	Figure	4.		Percentage	of	33	AI	treated	pairs	with	gains	rela7ve	to	tumour	ploidy	(A)	
in	 baseline	 (dark	 red)	 and	 surgery	 (pink)	 samples,	 with	 losses	 rela7ve	 to	 tumor	 ploidy	 (B)	 in	
baseline	(dark	blue)	and	surgery	(light	blue)	samples,	and	with	LOH	(C)	 in	baseline	(dark	green)	
and	surgery	(light	green)	samples.	Difference	in	the	percentage	of	SCNA	gains	(D),	losses	(E)	and	
LOH	(F)	between	surgery	and	baseline	samples	(%	surgery	SCNA	-	%	baseline	SCNA).		

Supplemental	Figure	4	
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Supplemental	Figure	5	

Supplemental	 Figure	 5.	 A.	 Boxplot	 showing	 percent	 of	 genome	
with	 SCNAs	 that	 are	 exclusive	 to	 one	 sample	 from	 a	 pair	 of	
baseline	and	surgery	samples	or	from	technical	replicate	samples	
taken	 from	the	same	7mepoint.	B.	Boxplot	showing	GI	 (percent	
of	genome	with	SCNAs)	for	samples	in	which	both	samples	in	the	
baseline-surgery	 pair	 were	 observed	 to	 have	 exclusive	 SCNAs	
that	 covered	 at	 least	 10%	 of	 the	 genome	 (Both),	 samples	 in	
which	only	one	sample	in	the	pair	was	observed	to	have	exclusive	
SCNAs	that	covered	at	least	10%	of	the	genome	(Single)	or	none	
of	 the	 samples	 in	 the	 pairs	 had	 exclusive	 SCNAs	 covering	more	
that	10%	of	the	genome	(None).	
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Baseline	

Surgery	

P038	

Supplemental	Figure	6.	A.	ASCAT	es7mates	of	SCNA	gains	(red)	and	losses	(blue)	rela7ve	to	tumour	
ploidy	and	regions	with	LOH	(green)	 in	paired	set	of	core-cuts	 in	which	the	SCNAs	exclusive	to	the	
baseline	 and	 surgery	 sample	 are	 greater	 than	 the	 SCNAs	 shared	between	 the	pair	 of	 samples.	 	 B.	
Comparison	of	B	or	Minor	allele	frequencies	(BAF)	for	baseline	and	surgery	biopsy	samples	showing	
the	tumor	biopsies	are	from	the	same	individual	as	there	is	a	very	high	concordance	for	alleles	to	be	
either	homozygous	or	heterozygous	in	both	samples.	

Supplemental	Figure	6	
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8	

A	

B	

Supplemental	Figure	7	

Supplemental	Figure	7.	Boxplots	showing	the	percent	of	each	chromosomal	arm	with	gains	(A),	losses	(B)	and	LOH	(C)	for	GdRs	(green)	
and	PrRs	(red).		Significance	of	difference	between	PrRs	and	GdRs	based	on	Mann-Whitney	tests	(one	sided)	aaer	mul7ple	correc7on	
(FDR	BH)	is	also	shown.	
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Supplemental	Figure	8	

Supplemental	Figure	8.	 	Difference	in	the	percentage	of	SCNA	gains,	losses	and	LOH	(A)	between	PrR	and	GdR	samples	
(%	PrR	SCNA	-	%	GdR	SCNA).	Boxplot	showing	percent	of	genome	with	SCNAs	(B),	gains	(C),	 losses	(D)	and	LOH	(E)	for	
GdRs,	PrRs	that	are	HER2	nega7ve	and	PrRs	that	are	HER2	posi7ve.	Percentage	of	samples	with	gains	rela7ve	to	tumour	
ploidy	for	PrRs	(dark	red)	and	GdRs	(pink),	with	losses	(light	blue	–	GdR,	dark	blue	–	PrR)	and	with	LOH	(light	green	GdR,	
dark	 green	 –	 PrR)	 at	 47807	 bedtool	 segments	 generated	 from	 POETIC	 SCNA	 analysis	 with	 HER2	 posi7ve	 samples	
removed.	Difference	in	the	percentage	of	SCNA	gains,	losses	and	LOH	(G)	between	PrR	and	GdR	samples	(%	PrR	SCNA	-	%	
GdR	SCNA)	including	(red)	or	excluding	(light	blue)	HER2	posi7ve	samples.	
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Supplemental	Figure	9	

Supplemental	Figure	9.	Boxplots	showing	the	percent	of	each	chromosomal	arm	with	gains	(A),	losses	(B)	and	LOH	(C)	for	GdRs	(green)	
and	PrRs	(red)	for	HER2-nega7ve	tumors.	Significance	of	difference	between	PrRs	and	GdRs	based	on	Mann-Whitney	tests	(one	sided)	
aaer	mul7ple	correc7on	(FDR	BH)	is	also	shown.	
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Supplemental	Figure	10	

Supplemental	Figure	10.	Percentage	of	samples	with	LOH	(light	green	GdR,	
dark	green	–	PrR)	for	chromosome	17	(A)	and	difference	in	the	%	of	
samples	with	LOH	between	PrRs	and	GdRs	(B).	HER2	posi7ves	samples	
were	removed	from	the	PrR	samples.	
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Supplemental	Figure	11.		Breast	cancer-specific	survival	(BCSS)	survival	plots	for	METABRIC	LumA	stra7fied	
by	TP53	muta7on	(A)	and	GI	(B).	Samples	in	the	top	25%	of	GI	for	LumA	tumors	(>35%	of	genome	with	
SCNAs)	were	defined	as	having	high	GI	(red).	Kaplan-Meier	survival	curve	analysis	was	performed	in	R	
(version	3.2.3)	with	survfit	func7on	from	the	survival	package	and	survival	plots	generated	with	ggsurvplot	
func7on	from	the	survminer	package.		
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