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Lack of an association between gallstone disease and bilirubin
levels with risk of colorectal cancer: a Mendelian
randomisation analysis
Richard Culliford 1, Alex J. Cornish 1, Philip J. Law1, Susan M. Farrington2, Kimmo Palin3, Mark A. Jenkins4, Graham Casey5,
Michael Hoffmeister6, Hermann Brenner6,7,8, Jenny Chang-Claude9,10, Iva Kirac11, Tim Maughan12, Stefanie Brezina13, Andrea Gsur13,
Jeremy P. Cheadle14, Lauri A. Aaltonen3, Malcom G. Dunlop2 and Richard S. Houlston1

BACKGROUND: Epidemiological studies of the relationship between gallstone disease and circulating levels of bilirubin with risk of
developing colorectal cancer (CRC) have been inconsistent. To address possible confounding and reverse causation, we examine
the relationship between these potential risk factors and CRC using Mendelian randomisation (MR).
METHODS: We used two-sample MR to examine the relationship between genetic liability to gallstone disease and circulating
levels of bilirubin with CRC in 26,397 patients and 41,481 controls. We calculated the odds ratio per genetically predicted SD unit
increase in log bilirubin levels (ORSD) for CRC and tested for a non-zero causal effect of gallstones on CRC. Sensitivity analysis was
applied to identify violations of estimator assumptions.
RESULTS: No association between either gallstone disease (P value= 0.60) or circulating levels of bilirubin (ORSD= 1.00, 95%
confidence interval (CI)= 0.96–1.03, P value= 0.90) with CRC was shown.
CONCLUSIONS: Despite the large scale of this study, we found no evidence for a causal relationship between either circulating
levels of bilirubin or gallstone disease with risk of developing CRC. While the magnitude of effect suggested by some observational
studies can confidently be excluded, we cannot exclude the possibility of smaller effect sizes and non-linear relationships.

British Journal of Cancer (2021) 124:1169–1174; https://doi.org/10.1038/s41416-020-01211-x

BACKGROUND
Gallstone disease has been proposed to increase the risk of
colorectal cancer (CRC); however, evidence for a causal relation-
ship from epidemiological studies is lacking.1,2 The observational
nature of studies has made them vulnerable to confounding,
from measured and unmeasured risk factors and reverse
causation. It is especially noteworthy that many of the risk
factors for gallstone disease include factors that are well-
established as risk factors for CRC (obesity, high energy intake,
alcohol consumption and diabetes).3,4 Increased production of
bilirubin, the metabolic by-product of haemoglobin degradation,
is also associated with gallstone disease.5–10 This is intriguing as
bilirubin has anti-oxidant and anti-inflammatory attributes, with
experimental studies reporting mildly elevated levels being
associated with decreased oxidative stress-related disease,
including cancer.11–13

Mendelian randomisation (MR) is an analytic methodology in
which germline genetic variants are used as proxies, or instru-
mental variables (IVs), for putative risk factors. We assume that
these genetic variants follow Mendel’s laws of inheritance, where
the variants are randomly assorted at conception and are not in
linkage disequilibrium (LD) with one another. These genetic
variants are not influenced by reverse causation. The variants can
also provide unconfounded estimates of disease risk, provided
they do not directly influence the disease without complete
mediation of the risk factor and are not associated with
confounders of the relationship between risk factor and dis-
ease.14–19 Confounding can, however, be introduced to MR by
population stratification, assortative mating and dynastic effects.20

To address the shortcomings of conventional observational
epidemiological studies, we investigated whether genetic liability
to gallstone disease and circulating levels of bilirubin are causally
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associated with CRC using MR. Specifically, we used two-sample
MR, in which genetic variants associated with relevant risk factors
as instrumental variables were first identified from genome-wide
association studies (GWAS). We then assessed the association
between these instrumental variables and CRC in a large GWAS.

METHODS
Procedures
The genetic instruments, i.e., single-nucleotide polymorphisms
(SNPs) to be used as IVs, were identified from recent meta-
analyses or the largest GWAS published to date. Details on each
meta-analysis are provided in Supplementary Tables 1 and 2.
Briefly, summary statistics for gallstone disease were obtained
from a meta-analysis of UK and Icelandic biobank data21,22

comprising 27,174 cases and 736,838 controls;23 effect sizes were
not adjusted for covariates. Summary statistics for log bilirubin
levels were obtained from a meta-analysis of three GWAS
comprising 9464 individuals of Europeans ancestry;24 SNP-
exposure effect sizes were age- and sex-adjusted.
To examine the association of each genetic instrument with

CRC risk, we made use of summary effect estimates and
corresponding standard errors (SEs) from a recent meta-analysis
of 15 GWAS by Law et al.25,26 After imputation, this meta-analysis
related over 10 million genetic variants to CRC in individuals
of European ancestry. One of the 15 GWAS was an analysis of
UK BioBank data. Since the published gallstone disease meta-
analysis included UK BioBank data, we recomputed CRC associa-
tion statistics excluding UK BioBank data to avoid bias from
sample overlap. The 14 studies provided data on 26,397 patients

with CRC and 41,481 controls. Aside from principal component
adjustment for residual population substructure, none of the
contributing GWAS were adjusted for covariates (Supplementary
Table 3). Ethical approval for this study was not required as all data
came from summary statistics and no individual-level data
were used.
We only considered SNPs associated with each trait at P value of

less than 5 × 10−8 with minor allele frequency greater than 0.01 in
Europeans as potential instruments. We excluded SNPs with poor
imputation quality (info score <0.8). For each SNP, the chromo-
some position was recovered, and effect estimates harmonised
according to their effect alleles and corresponding frequencies in
both datasets (failure in harmonisation, such as palindromic
alleles, resulted in those SNPs being removed). Effect estimates
were expressed in standard deviations (SD) of the trait per allele,
along with the corresponding SE. While Ferkingstad et al.23 used a
‘multiplicative allele’ model in their analysis of gallstone disease,
we assumed association estimates equated to those that would
have been obtained using an additive model (an assumption our
MR estimator applies). To avoid co-linearity between SNPs for each
trait, correlated SNPs were excluded (LD threshold, r2 ≥ 0.01, with
LD estimates for the European population obtained from MR-
Base17) within each trait, with SNPs with the strongest effect size
retained. Post filtering (Fig. 1), 26 and 2 SNPs were used as IVs for
gallstone disease and circulating bilirubin, respectively (Supple-
mentary Table 4).

Statistical analysis
The MR methodology assumes that genetic variants used as
instruments for a risk factor are associated with only the risk factor

Consider SNPs associated
with exposure at
P value < 5 × 10–8

Remove SNPs that
fail harmonisation

Standardise effect
sizes (per SD)

ldentify SNPs in LD
(r2 < 0.01). For each LD
pairing, remove the SNP

with the weakest
SNP–exposure association

Exclude SNPs with info
score < 0.8 and MAF < 0.01

Harmonise alleles
across exposures

to match outcome variable

Estimate
power

Estimate PVE
 and F-statistics

Estimate
MRE-lVW effect

Supplementary
lnformation

Fig. 1 Flowchart of single-nucleotide polymorphism filtering. EA effect allele, MAF minor allele frequency, LD linkage disequilibrium, PVE,
proportion of variation explained, SD standard deviation, MRE-IVW multiplicative random effect inverse variance weighted.

Lack of an association between gallstone disease and bilirubin levels. . .
R Culliford et al.

1170

1
2
3
4
5
6
7
8
9
0
()
;,:



and not with any confounders or another causal pathway
(Fig. 2).15–18,27,28

To examine for a causal relationship between genetic liability to
circulating levels of bilirubin and gallstone disease with CRC, we
used a multiplicative random effect inverse variance weighted
estimator (MRE-IVW)28,29 as our primary measurement. We adopted
this method as it is robust in the presence of pleiotropic effects,
provided any heterogeneity is balanced or normally distributed
(centred at zero) and that the instrument strength independent of
direct effect (InSIDE) and no measurement error (NoME) assump-
tion is met.19,28 The results for the relationship between the levels
of circulating bilirubin and CRC are reported as odds ratios per
genetically predicted standard deviation unit increase (ORSD) and
95% confidence intervals (CIs). Two-sample MR analysis of the
association between a binary risk factor (i.e., gallstone disease) and
a binary outcome (i.e., CRC) is problematic as estimates can be
positively biased should there exist a true causal association,
although bias becomes less of an issue as the true causal effect
tends to unity.30,31 In view of this when testing the association
between gallstone disease and CRC, we primarily consider whether
there exists a significant non-zero effect, and only report ORs for
completeness.32,33 We assessed evidence of heterogeneity by
Cochran’s Q,28,34,35 I2 statistics35,36 and by examining funnel and
forest plots of Wald ratio estimates for SNPs. To test the robustness
of findings, we also derived weighted median37 and weighted
mode38 MR estimators. Evidence of directional pleiotropy was
assessed using MR-Egger regression.39,40 We also formally assessed
the effect of SNP heterogeneity on the MRE-IVW estimate, by
implementing MR-PRESSO outlier and distortion tests.41

A Bonferroni-corrected P value of 0.025 (i.e., 0.05/2 putative risk
factors) was considered significant, with a 0.025 <P value < 0.05
being considered suggestive of a causal association. The power of
our MR analysis to demonstrate causal effects was estimated
considering the proportion of variance (PVE) in the risk factor
explained by the genetic instruments,42,43 stipulating a P value of
0.05. We assumed that the PVE explained by all variants combined
was approximately equal to the sum of the individual PVEs as per
Shim et al..44 Since calculation of power for binary exposure and
binary outcome in a two-sample setting is problematic, we did not
estimate study power for gallstone disease. Bias from weak
instruments, or violation of the strong variant–risk-factor associa-
tion assumption, affecting bilirubin effect estimates, were
analysed using the estimated total PVE, the mean F statistic and
the Staiger–Stock rule.45 Analyses were conducted using R v3.4.046

and the TwoSampleMR R-package.17

RESULTS
Analysis on the basis of MRE-IVW provided no evidence to support
a causal association between gallstone disease and CRC (P= 0.60).
MR-Egger showed no evidence to suggest directional pleiotropy
(P= 0.20). Following on from MRE-IVW, we examined the
relationship between gallstone disease and CRC under weighted
median, weighted mode and MR-Egger regression methodologies,
all providing little evidence to support a causal association
(P values of 0.23, 0.19 and 0.4, respectively, Table 1, Supplemen-
tary Tables 5–6, Figs. 3–4, Supplementary Fig. 1). There was
evidence of heterogeneity between the SNPs used as IVs for
gallstone disease (Cochran’s Q P = 6.57 × 10−23, I2= 85%), and
the outlier test from MR-PRESSO identified six SNPs being
responsible for this heterogeneity (Supplementary Table 4). Effect
re-estimation excluding the outlying SNPs showed no evidence to
support a causal association (P= 0.37). There was also no evidence
to indicate that outliers were causing a large distortion in the
causal association estimate (P= 0.77, Supplementary Tables 5–6,
Fig. 4 and Supplementary Fig. 2).
The mean F statistic for the IVs used for genetically determined

circulating level of bilirubin was 1038, corresponding to a PVE of
18%. Hence, the risk of weak instrument bias and violation of the

A2

A1

SNP1

SNP2

SNPn

A3

Confounders

Gallstone disease or
circulating bilirubin

levels (X )

Colorectal
cancer (Y )

Fig. 2 Mendelian randomisation (MR) and the key assumptions required to obtain an unbiased estimate of the causal effect. (A1) genetic
variants used as instrumental variables are only associated with the modifiable risk factor (X, gallstone disease or circulating bilirubin levels);
(A2) there exists no instrument-outcome confounding including, but not limited to, conventional confounders of the exposure-outcome
relationship; (A3) genetic variants only influence the risk of CRC (Y) through the risk factor (X).

Table 1. Two-sample Mendelian randomisation analysis of the
relationship between circulating levels of bilirubin and gallstone
disease with risk of colorectal cancer.

ORSD CI (95%) P value

Bilirubin

MRE-IVW 1.00 (0.96, 1.03) 0.90

Gallstone disease OR*
MRE-IVW 1.23 (0.57, 2.66) 0.60

WME 0.71 (0.41, 1.24) 0.23

WMO 0.68 (0.39, 1.19) 0.19

MR-Egger 0.52 (0.12, 2.27) 0.4

MRE-IVW multiplicative random effects inverse variance weighted, WME
weighted median, WMO weighted mode, CI (95%) 95% confidence
interval, ORSD odds ratio per genetically predicted standard deviation unit
increase in bilirubin, OR* odds ratio per genetically predicted standard
deviation (of the log odds of gallstone disease) log unit increase of the risk
of gallstone disease, caveated by issues discussed in the main text.
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NOME assumption was low. Specifically, we had 80% power to
detect an ORSD of 1.05 and over 90% power to detect an ORSD of
1.10 for CRC (Supplementary Tables 4 and 5). Nevertheless, there
was no evidence for a causal association between levels of
circulating bilirubin and CRC risk using MRE-IVW methodology
(ORSD= 1.00, 95% CI= 0.96–1.03, P= 0.90, Table 1, Fig. 4). As only
two IVs were used, other estimators such as MR-Egger could not
be applied.

DISCUSSION
There has been interest in exploring a possible relationship
between gallstone disease and risk of CRC since an association
could be reflective of pathways linking bilirubin/bile acid
metabolism, sex hormones and cholesterol metabolism. Previous
epidemiological evidence for an association between gallstone
disease and CRC has been inconclusive. Chen et al. reported that
individuals with cholelithiasis had a higher risk of developing CRC
(adjusted hazards ratio (AHR)= 1.36, 95% CI= 1.12–1.66). The risk
increased for patients with cholelithiasis who went on to have a
cholecystectomy (AHR= 1.56, 95% CI= 1.12–2.17).1 In compar-
ison, Ward et al. concluded that the incidence of gallstone disease
did not increase the risk, hazard ratios (HRs) were stratified by sex,
of CRC (HRMen= 0.81, 95% CI= 0.63–1.04; HRWomen= 1.14, 95%
CI= 0.99–1.31).2

These epidemiological studies, however, differ substantially in
design, sample size and their ability to adjust for key covariates.
The large cohort studies with high numbers of gallstone cases
having very limited covariate data and being heavily reliant on
self-reported information. For example, in the EPIC cohort study,
data on gallstones were missing from 17% of participants and
cholecystectomy status was unknown.2 Moreover, the analysis was
based solely on baseline data. Studies with more extensive data

on potential confounders have typically been small, being based
on fewer gallstone cases.47

An important strength of our analysis is that by utilising the
random allocation of genetic variants, we were able to overcome
potential confounding, for example, from other interrelated traits.
Furthermore, reverse causation and selection bias may have
biased estimates from previously published observational studies.
Exploiting data from large genetic consortia for circulating
bilirubin levels, gallstone disease and CRC risk has enabled us to
more precisely test study hypotheses than if we had been reliant
on individual-level data from a small study. The use of summary
test statistics in two-sample MR analyses does, however, require
consideration of sample overlap, the winner’s curse and genotype
uncertainty. We have sought to avoid sample overlap between the
association studies of the exposure traits and outcome trait by
excluding CRC data based on analysis of UK BioBank.
In our MR, we have used genetic variants as proxies for

circulating log levels of bilirubin and gallstone disease. Our
findings suggest that neither trait is a major influence on the
development of CRC. Our study has several advantages over those
conducted previously. Firstly, we made use of summary GWAS
data from a large published study of CRC. Secondly, provided the
underlying assumptions of the MR estimator we use are met, the
common sources of probable bias in previous conventional
observational epidemiological studies, including reverse causation
and residual confounding, will have been avoided, albeit with
limitations and interpretation issues discussed below.
Firstly, as is the case with many MR analyses, despite our study

being based on a large case–control data, we were not powered
to detect small effects. For gallstone disease, we were unable to
assess IV strength and power to detect causal effects as we are not
aware of suitable methods for doing so when considering a binary
exposure in a two-sample MR investigation. Moreover, we were
not able to stratify by subgroups of interest, including sex and
cancer site. This may be especially relevant, as some epidemio-
logical studies have only reported significant associations for
colon cancer in women. This lack of stratification or adjustment
may also have led to bias in the causal estimates18,48 for bilirubin,
as SNP–CRC association estimates were not adjusted for by age
and sex. For bilirubin, we were not able to model non-linear
associations as this would have required us to have access to
individual data.
Analysing a binary exposure and a binary outcome in a two-

sample MR setting is problematic with Wald-type ratio estimates
potentially being positively biased should there exist a true
causal association between a binary exposure and a binary
outcome.30,31 Simulations performed by Didelez et al. demon-
strated that if standard IV assumptions were met, one-sample IV
estimators do not misspecify a no-association effect as being
false. Disney-Hogg et al.31 arrived at the same conclusion using
two-sample IVW estimators. Both simulation studies did how-
ever report inflated causal effect magnitudes when causal
associations were simulated. Based on such considerations, we
believe that our gallstone-CRC causal effect estimates, and the
corresponding P values, will only have been subjected to
minimal bias. Nevertheless, in analysing the relationship
between gallstone disease and CRC, we focused on testing
whether there exists a causal association and not principally on
the magnitude of any effect.32,33

In conclusion, our findings shed light on an area for which the
evidence to date has been mixed. Specifically, they provide
evidence against the levels of circulating bilirubin or gallstone
disease as major risk factors for CRC development.
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