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Abstract 

Cullin-RING ubiquitin ligases (CRLs) responsible for substrate specificity of ubiquitination and play 

a key role in cell-cycle control and DNA damage response. In this study, we assessed associations 

between 16,599 SNPs in 115 CRL genes and lung cancer risk by using summary data of six 

published genome-wide association studies (GWASs) of 12,160 cases and 16,838 cases of 

European ancestry. As a result, we identified three independent SNPs in DCAF4 (rs117781739, 

rs12587742 and rs2240980) associated with lung cancer risk (odds ratio = 0.91, 1.09 and 1.09, 

respectively; 95% confidence interval = 0.88-0.95, 1.05-1.14 and 1.05-1.13, respectively; and P = 

3.99×10-6, 4.97×10-5 and 1.44×10-5, respectively) after multiple comparison correction by a false 

discovery rate <0.05. Since SNP rs12587742 is located within the promoter region and one CpG 

island of DCAF4, we further performed in silico functional analyses and found that the rs12587742 

variant A allele was associated with an increased mRNA expression (P = 2.20x10-16, 1.79x10-13 and 

0.001 in blood cells, normal lung tissues and tumor tissues of lung squamous carcinoma, 

respectively) and a decreased methylation status (P = 2.48x10-9 and 0.032 in adipose and lung 

tumor tissues, respectively). Moreover, evidence from differential expression analyses further 

supported oncogenic effect of DCAF4 on lung cancer, with higher mRNA levels in both lung 

squamous carcinoma and adenocarcinoma (P = 4.48x10-11 and 1.22x10-9, respectively) than in 

adjacent normal tissues. Taken together, our results suggest that rs12587742 is associated with 

increased lung cancer risk, possibly by up-regulating mRNA expression and decreasing methylation 

status of DCAF4.   
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Summary  
 
By using meta-analysis and in silico functional analysis, we identified one functional SNP 

rs12587742 within the CpG island of DCAF4, associated with lung cancer risk, possibly by 

decreasing methylation status and up-regulating mRNA expression of DCAF4.   
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Introduction 

Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer deaths in 

the world. In USA, the estimated incidence of lung cancer in 2016 is 57.3 per 100,000 with an 

estimated mortality of 46 per 100,000 (1). Etiology studies have revealed several environmental 

risk factors for lung cancer, such as exposures to cigarette smoke, radon, asbestos, and arsenic 

(2). Genetic factors such as heritable and somatic mutations are also involved in the etiology of 

lung cancer. Multiple genetic loci with moderate effects have also been reported by genome-

wide association studies (GWASs) of lung cancer at chromosome regions of 3q28, 5p15.33, 

6p21.33, 6p22.1, 13q13.1, 15q25.1 and 22q12.1 in European populations (3-8). However, most 

of the published GWASs had mainly focused on SNPs that reached genome-wide significance, 

most of which did not have clear biological functions (9). In the post-GWAS era, identification of 

genetic variants with moderate but detectable effects and potential biological functions might 

provide additional insight about the complex mechanisms of cancer development. Currently, the 

availability of enormous genetic data made such studies feasible (8).  

Carcinogenesis is a multiple-step process that often involves loss control of cell proliferation. 

The ubiquitin-proteasome system (UPS) is a major player in the regulation of critical cellular 

processes, including cell proliferation, differentiation and apoptosis.  Dysfunction of the system 

has been implicated in several clinical disorders including inflammation and cancer (10,11). 

There are three types of enzymes that specifically mediate ubiquitin attachment to the target 

proteins: ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s) and ubiquitin 

ligases (E3s). In humans, there are only 2 E1s, at least 38 E2s and over 600 kinds of E3. Cullin-

RING ubiquitin ligases (CRLs) represent one of the largest classes of E3 ubiquitin ligases 

mainly responsible for the substrate-specific ubiquitination. In addition, CRLs play a key role in 

cell-cycle control and DNA damage response (12), and deregulation of CRLs may lead to 

abnormal cell proliferation and genomic instability, which in turn could result in malignance 
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transformation. Currently, several components of CRLs (e.g., SKP2, CUL4A, CUL1 and RBX1/2) 

have been found to behave as oncogenes and are frequently amplified or overexpressed in 

human cancers, while several others (e.g., FBXW7 and VHL) act as suppressor genes for they 

were often mutated or inactivated in cancers (13-15). Notably, as one of the most studied CRLs, 

SKP2 is found to be overexpressed and associated with aggressiveness and metastasis of non-

small cell lung cancer (NSCLC), as a result of accelerated degradation of a cell-cycle inhibitor 

p27 (16,17). Moreover, large-scale somatic mutations of KEAP1, another well-studied CRL, 

occurred in multiple human cancers, including NSCLC (18). According to the findings of these 

previous studies, we hypothesize that genetic variants with potential functions in genes 

encoding CRLs are associated with risk of lung cancer. 

To test our hypothesis, we first performed a meta-analysis for SNPs in CRL-related genes by 

using summary statistics from six published lung cancer GWASs, including 12,160 cases and 

16,838 controls from the TRICL-ILCCO Consortium (Transdisciplinary Research for Cancer in 

Lung of the International Lung Cancer Consortium) (19). For those identified SNPs as significant, 

we further performed stratified analysis by smoking status and histological types and 

investigated their effects on gene expression and methylation in cell lines and tissues by using 

the available genomic and genetic data from multiple public databases (e.g, TCGA and GTEx).  

Materials and methods 

Study populations 

The study populations included in the present study have been detailed in previous publications 

from TRICL and ILCCO (8,19). Briefly, six published lung cancer GWASs were obtained from 

the TRICL-ILCCO consortium, which consists of 12,160 lung cancer cases and 16,838 controls 

of European descent. The GWAS participants included Institute of Cancer Research (ICR), The 

University of Texas MD Anderson Cancer Center (MDACC), International Agency for Research 
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on Cancer (IARC), National Cancer Institute (NCI), Lunenfeld-Tanenbaum Research Institute 

study (Toronto), and German Lung Cancer Study (GLC). Two additional GWAS data sets were 

also requested from other independent GWASs of Caucasian populations: the Harvard Lung 

Cancer Study (984 cases and 970 controls) and Icelandic Lung Cancer Study (deCODE) (1,319 

cases and 26,380 controls) from the ILCCO (20,21). A written informed consent was obtained 

from each participant of each GWAS. The present study was approved by Duke University 

Health System Institutional Review Board and all methods performed in this study were in 

accordance with the relevant guidelines and regulations.  

Genotyping platforms and quality controls 

For all the GWAS datasets, multiple genotyping platforms were applied, including Illumina 

HumanHap 317, 317+240S, 370Duo, 550, 610 or 1M arrays (22). For the meta-analyses, 

imputation was performed based on the reference data from the 1000 Genomes Project (phase 

I integrated release 3, March 2012) by using IMPUTE2 v2.1.1 (23), MaCH v1.0 (24) or minimac 

(version 2012.10.3) software. Only SNPs with an information score ≥ 0.40 in IMPUTE2 or an r2 

≥ 0.30 in MaCH were included in the final analyses. Standard quality control on samples was 

performed on all scans, excluding individuals with a low call rate (< 90%), extremely high or low 

heterozygosity (P < 1.0 × 10−4) and non-European ancestry (using the HapMap phase II CEU, 

JPT/CHB and YRI populations as a reference). 

Gene and SNP selection 

The CRL-related genes were collected from the category of “Cullin-RING ubiquitin ligase 

complex” in the Gene Ontology database 

(http://amigo.geneontology.org/amigo/term/GO:0031461). In total, we retrieved 118 genes from 

the database, 115 of which were located in autosomal genes (listed in Supplementary Table 1). 

We then mapped all the SNPs located within 2 KB up- and down-stream of the NCBI Reference 

http://amigo.geneontology.org/amigo/term/GO:0031461
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sequence of those selected genes and extracted their summary data from the GWAS datasets. 

SNPs included in the final meta-analysis were those with call rate ≥ 90%, minor allele frequency 

≥ 1%, and P value for the Hardy Weinberg Equilibrium test ≥ 10-5. All remained SNPs also 

passed the quality control of imputation with info ≥ 0.40 in IMPUTE2 or an r2 ≥ 0.30 in MaCH.  

In-silico functional analysis as a biological validation 

For those identified SNPs as significant, we first performed bioinformatic functional prediction by 

using three online tools: SNPinfo (http://snpinfo.niehs.nih.gov), RegulomeDB 

(http://www.regulomedb.org) and HaploReg 

(http://archive.broadinstitute.org/mammals/haploreg/ haploreg.php). We then performed 

expression quantitative trait loci (eQTL) analysis by using data from multiple sources: 

lymphoblastoid cell data of 373 European individuals from Genetic European Variation in Health 

and Disease Consortium (GEUVADIS) and the 1000 Genomes Project (phase I integrated 

release 3, March 2012) (25); lung tissues data from the Genotype-Tissue Expression (GTEx) 

project (26); tumor tissues and adjacent normal tissue data from the Cancer Genome Atlas 

(TCGA) database (27,28). SNP-methylation correction analysis was further performed by using 

the data from TCGA and the Multiple Tissue Human Expression Resource (MuTHER) project 

implemented in the Genevar software (29). Different expression analyzes between tumor and 

normal tissues were also performed for those identified genes using the data from TCGA and 

Oncomine (https://www.oncomine.org ). The TCGA level 3 RNAseq data 

(LUSC_rnaseqv2_Level_3_RSEM_genes_normalized_data.2016012800.0.0.tar.gz and 

LUAD_Level_3_RSEM_genes_normalized_data_2016012800.0.0.tar.gz) and methylation data 

(gdac.broadinstitute.org_LUSC.Methylation_Preprocess.Level_3.2016012800.0.0.tar.gz and 

gdac.broadinstitute.org_LUAD.Methylation_Preprocess.Level_3.2016012800.0.0) were 

obtained from the Broad TCGA GDAC site (http://gdac.broadinstitute.org).  

 

http://snpinfo.niehs.nih.gov/
http://www.regulomedb.org/
http://archive.broadinstitute.org/mammals/haploreg/%20haploreg.php
https://www.oncomine.org/
http://gdac.broadinstitute.org/
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Statistical methods 

For each GWAS data set, we performed an unconditional logistic regression to estimate odds 

ratios (ORs) and 95% confidence intervals (CIs) per effect allele by using R (v2.6), Stata (v10, 

State College, Texas, US) and PLINK (v1.06) software with adjustment for the top significant 

principle components (8). We performed meta-analysis by the inverse variance method using a 

fixed effects model (30). If the Cochran's Q Test P-value > 0.100 or the heterogeneity statistic (I2) 

< 25%, a random-effects model was employed. We used the linear step-up method of Benjamini 

and Hochberg to calculate false discovery rate (FDR) with a cut-off value of 0.05 to correct for 

multiple comparisons (31) and used linear regression for the eQTL analysis and paired t-test for 

the gene differential expression analysis between tumor and adjacent normal tissues. For the 

differential expression and mRNA-methylation correlation analyses, outliers were defined as 

those outside the interval (Q1 -3×IQR, Q3 +3×IQR) and were removed in the final analysis. Q1 

and Q3 denote the first and third quartiles, respectively and IQR denotes the interquartile range. 

Based on the 1000 Genomes European (EUR) reference data (phase I integrated release 3, 

March 2012), we used LocusZoom (32) and Haploview v4.2 (33) to construct the regional 

association plots and linkage disequilibrium (LD) plots, respectively. SNP pruning was applied, 

and SNPs with paired-wise r2 < 0.30 were considered as independent. All other analyses were 

conducted with SAS (version 9.4; SAS Institute, Cary, NC, USA), if not mentioned specifically. 

Results 

Meta-analysis of the main effects 

The sample sizes for the eight GWASs included in the present study are summarized in 

Supplementary Table 2, and the workflow of this study is depicted in Figure 1. We first 

performed meta-analysis using summary statistics from six GWASs (i.e., ICR, MDACC, IARC, 

NCI, Toronto and GLC) including 12,160 lung cancer cases and 16,838 non-cancer controls. 
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The overview of the overall association results is shown in the Manhattan plot (Figure 2a). We 

found there were 84 SNPs of 10 CRL-encoding genes with a nominal P < 0.001, 28 of which are 

in the DCAF4 gene with FDR < 0.05. More detailed information for each of the 84 SNPs 

(including position, effect allele, relative minor allelic frequency, effect sizes, unadjusted and 

FDR adjusted P-values, and heterogeneity test results) is summarized in Supplementary Table 

3. The regional association plots (Fig 2b) demonstrated that the top SNP rs72734410 of DCAF4 

was in moderate to high LD with other SNPs of the same gene but in very low LD (r2 < 0.2) with 

the top SNP rs214278 in the neighboring gene PSEN1.  

We then performed functional prediction for these 28 significant SNPs by using three 

bioinformatics tools (SNPinfo, regulomDB and HaploReg) and selected those apparently 

independent SNPs (paired-wise r2 < 0.3) with potential effects on gene expression or functions 

for further analysis. As a result, two SNPs (rs17781739 and rs2240980) together with another 

functional SNP rs12587742 were chosen in further analysis (Fig 2c-2e). As shown in Table 1, 

SNP rs17781739 G>T was associated with a significantly decreased risk of lung cancer (OR = 

0.91, 95% CI = 0.88 – 0.95, P = 3.99 × 10-6), while two other SNPs in moderate LD (pair-wise r2 

= 0.38) were associated with a significantly increased lung cancer risk (rs12587742 G>A: OR = 

1.09, 95% CI = 1.05 – 1.14, P = 4.97 × 10-5; and rs2240980 C>G: OR = 1.08, 95% CI = 1.05 – 

1.14, P = 1.44 × 10-5). There was no heterogeneity observed for the effect estimates of these 

three SNPs from the six GWASs (Table 1).  

We then expanded the meta-analysis for these three identified SNPs by including two additional 

GWASs with European descents from Harvard University (984 cases and 970 controls) and 

deCODE (1,319 cases and 26,380 controls) as a population validation, and similar results were 

observed (Table 2).  
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Stratified analyses 

As lung adenocarcinoma and squamous cell carcinoma may have different risk factors, we 

performed stratified analysis by these histological types. By using 4862 adenocarcinomas and 

3897 squamous cell carcinomas from all the eight GWASs (supplementary table 1), we found 

that the effect of rs1258772 was more significant in squamous cell carcinomas (OR = 1.12, 95% 

CI = 1.05 – 1.20, P = 4.16 × 10-4) than in adenocarcinomas (OR = 1.08, 95% CI = 1.02 – 1.15, P 

= 0.010), while SNP rs2240980 had more significant effects in adenocarcinomas (OR = 1.10, 95% 

CI = 1.04 – 1.15, P = 3.44 × 10-4) than in squamous cell carcinomas (OR = 1.07, 95% CI = 1.01 

– 1.13, P = 0.017) (Table 2). However, heterogeneity test showed that the effect difference 

between two histological strata was non-significant for both SNPs.  

Cigarette smoking is one of the major risk factors for lung cancer and may interact with genetic 

factors. According to the currently available smoking data, study subjects were divided into two 

groups: ever smokers (defined as individuals having smoked at least 100 cigarettes in their 

lifetime) and never smokers. We performed stratified analysis by smoking status and found that 

only SNP rs17781739 had a significant effect in ever smokers (OR = 0.92, 95% CI = 0.88-0.96, 

P = 3.31 × 10-4) (Table 2). No significant association was observed in never smokers for all 

three SNPs, which might be due to a reduced sample size (731 never smokers). The forest 

plots of the overall and stratification results for these three SNPs are shown in Supplementary 

Fig 1a-c. 

In silico functional validation 

The three SNPs were predicted with potentials to influence mRNA transcription (Table 1 and 

Fig 2d, 2e). According to experimental data (e.g., histone modification, DNase cluster, 

transcription factor binding, RNAseq) from the ENCODE project (Fig 2d), we found that two 

SNPs (rs17781739 and rs12587742) are located within one CpG island with strong signals for 
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active enhancer and promoter functions (indicated by DNase hypersensitivity and histone 

modification H3K27 acetylation, and H3K4 tri-methylation, respectively). Further transcription 

factor binding analysis (using the transcription factor ChIP-seq data) showed that rs12587742 is 

located at the c-MYC motif as shown by the position weight matrix (PWM) based Sequence 

Logo (Fig 2e), and the allele difference might influence the binding activity of the transcription 

factor. SNP rs2240980 was also predicted to be located at a regulatory region with evidence 

from DNase cluster and transcription factor CHIP-seq data (Fig 2d).   

As genotyping data for the three identified SNPs were not available in the TCGA database, we 

performed imputation for them by using the reference data from the 1000 Genomes project. 

Further eQTL and meQTL analyses were conducted for SNPs with high quality imputation. Only 

SNPs from patients with lung squamous carcinoma passed the imputation quality control 

(imputation info > 0.9) and were used in further SNP-expression/methylation correlation analysis. 

As shown in Fig 3a, 3d and 3g, all of those three SNPs had a significant correlation with the 

mRNA expression of DCAF4 in the blood cells from 373 Europeans individuals (P = 7.85x10-10, 

2.20x10-16 and 8.76x10-6 for rs17781739, rs12587742 and rs2240980, respectively). When put 

all these three SNPs into the same regression model, only SNP rs1258772 and rs2240980 

remained significant (P =0.208, 5.86 x10-25 and 0.003 for rs17781739, rs12587742 and 

rs2240980, respectively). These results suggest that two SNPs (rs1258772 and rs2240980) in 

DCAF4, particularly rs1258772, have an independent effect on the gene expression. 

We also performed SNP and mRNA expression correlation analysis by using the expression 

data in tumor tissues from 182 lung squamous cell carcinomas from TCGA database (Fig 3b, 

3e and 3h). Once again, only SNP rs12587742 showed a significant correlation with increased 

mRNA expression of DCAF4 (P = 0.001). Such correlation was also supported by the results 

from normal lung tissues (P = 1.79x10-13) (Supplementary Fig 2a) as well as multiple other 

tissues (e.g., testis, skin, colon, esophagus, subcutaneous adipose, stomach, pancreas, breast 
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and thyroid) based on the data from the GTEx project (Supplementary Table 4). Based on 

those results, the rs12587742 “A” allele was associated with an increased mRNA expression of 

DCAF4 in most tissues except for testis. Considering this SNP is located within one CpG island, 

we further explored its influence on the methylation status of DCAF4 by using the data from 

TCGA and the MuTHER project. We observed that the “A” allele was associated with a 

decreased methylation status (beta value, which is defined as the ratio of methylated probe 

intensity and the sum of methylated and un-methylated probe intensities) in the tumor tissues 

from 157 lung squamous cell carcinomas (Fig 3f, P = 0.032) and the adipose tissues from 428 

female twin-pairs (Supplementary Fig 2b, P = 2.48x10-9) (34). No significance was observed 

for two other SNPs (rs17781739 and rs2240980) to be associated with mRNA expression (Fig 

3b and 3h) and methylation in the tumor tissues (Fig 3c and 3i). However, it should be noted 

that two other SNPs (rs2302587 and rs9788482) that had a moderate to relatively high LD with 

rs17781739 and rs2240980 (r2 = 0.73 and 0.43, respectively) showed a significant correlation 

with the methylation status in the adipose tissues from the female twin-pairs (Supplementary 

Fig 2c and 2d).  

Differential expression analyses revealed that the DCAF4 gene had higher mRNA expression in 

tumor tissues from 156 lung squamous cell carcinomas and 238 adenocarcinomas (P = 4.48 x 

10-11 and 1.22 x 10-9) than in adjacent normal tissues (Fig 4a and 4b). Results from other 

studies collected in the cancer microarray database Oncomine also showed some evidence for 

a high expression level of DCAF4 in lung adenocarcinomas than in the normal tissues 

(Supplementary Fig 3a and 3b). We also observed a significantly negative correlation between 

the DCAF4 methylation status and mRNA expression levels in tumor tissues from both lung 

squamous cell carcinomas and adenocarcinomas (P = 0.070 and 8.22 x 10-6, respectively) (Fig 

4c and 4d), which suggests that a high methylation status may led to a decrease in mRNA 

expression of DCAF4 in the target tissues.  
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We finally investigated the mutations of DCAF4 in lung tumor tissues by using the public 

available data from the database of the cBioPortal for Cancer Genomics 

(http://www.cbioportal.org). As shown in Supplementary Fig 4, this gene had low somatic 

mutation rates in both the lung adenocarcinoma (LUAD; mutation rate = 0.5% [1/183], 5.9% 

[2/34], 0.4% [1/230] and 0% [0/163] in the Broad, MSKCC, TCGA and TSP studies, respectively) 

and squamous cell carcinoma (LUSC; mutation rate = 1.1% [2/178] in the TCGA study). Such 

results suggested the functional SNPs in DCAF4 might play more important role in the 

dysregulation of mRNA expression and methylation than mutations in tumor tissues.      

Discussion 

In the present study, we performed an extensive analysis for associations between SNPs in 115 

CRL-related genes and lung cancer risk by combining the summary data of six GWASs from the 

TRICL-ILLCO consortium including 12,160 cases and 16,838 cases. Such a large sample size 

allowed us to identify novel susceptibility loci with some moderate effects, which would have 

been often omitted in previous single GWAS. As a result, we identified three independent, 

potentially functional DCAF4 SNPs (rs117781739, rs12587742 and rs2240980) that were 

significantly associated with lung cancer risk in European populations. Further functional 

prediction analyses using data from blood cells and tumor tissues from the LUSC database 

revealed that the rs12587742 variant A allele was associated with an increased mRNA 

expression and a decreased methylation status of DCAF4. In addition, higher mRNA expression 

level of DCAF4 was also observed in tumor tissues than in adjacent normal tissues from 

patients with lung squamous cell carcinoma and adenocarcinoma. Moreover, significantly 

negative correlations were also observed between methylation status and mRNA expression 

levels in both sub-types of lung cancer. Taken together, our results provide a strong case that 

this novel genetic variant in DCAF4 was associated with lung cancer risk possibly by decreasing 

gene methylation status that had led to reduced mRNA expression of DCAF4.   

http://www.cbioportal.org/
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DCAF4, also known as WDR21, is located on chromosome region 14q24.3 and encodes a 

WD40 repeat protein that interacts with the CUL4 and DDB1 to form the CUL4A-DDB1-DCAF 

complex. This interaction suggests that DCAF4 may be involved in nucleotide excision repair 

(NER), since DDB1 is one key component of the NER pathway, and that the CUL4A-DDBs 

complex may regulate NER activity through ubiquitination of several NER components, e.g., 

DDB2, XPC, and histone H2A at the damaged DNA sites (35,36). Considering that smoking is 

the major risk factor for lung cancer and that smoking caused DNA damage is mainly repaired 

by the NER pathway, the increased DCAF4 expression as a compensation to a high level of 

damage to DNA may not be sufficient for the NER activity and thus result in high risk of lung 

cancer. This may partly explain the underlying biological and molecular mechanisms for the 

observed associations. In addition, DCAF4 may also be involved in the regulation of the 

telomere pathway and influence the telomere length, which is associated with risk of many 

cancers (37). Indeed, SNP rs2535913 in the DCAF4 gene was recently reported to be 

associated with a shorter leucocyte telomere length (38). A shorter telomere length had been 

found to be associated with an increased risk of lung squamous carcinoma and a decreased 

risk of lung adenocarcinoma in one large population study (39) in one recent meta-analysis (40). 

In the present study, we found that the rs2535913 minor A allele (38) also showed a significant 

association with a decreased lung cancer risk (Supplementary Table 3) and a decreased 

DCAF4 expression in adipose tissue and blood cells (GTEx data not shown). This SNP was 

also in a high LD (r2 = 0.78) with one identified functional SNP rs17781739. Although there is 

still no report about functions of DCAF4 on telomerase activity and telomere length, it is known 

that the DDB1 is involved in the regulation of telomerase expression via E2f1 (41,42) and the 

telomerase inhibition through ubiquitination-mediated TERT protein degradation (43). Thus, 

DCAF4 might indirectly influence telomerase activity and telomere length through interaction 

with DDB1 to inhibit the formation of other DDB1 complexes.  
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CRLs mediate the substrate-specific binding in the ubiquitination and play important roles in 

maintaining cellular protein homeostasis, which is especially critical for the lung, as the lung 

often experiences chronic or acute inflammation and frequent immune responses as well as 

DNA damage-repair responses induced by toxic or pathogenic exposures (24,44,45). Previous 

studies have reported that multiple CRL-related genes have been associated with inflammatory 

response and lung cancer. In the present study, in addition to DCAF4, we also found genetic 

variants in nine other CRL-related genes (i.e., COMMD1, CUL5, CUL7, DCAF8, KCTD10, 

KLHL21, KLHL22, PARK2, and TRIM21) to be associated with lung cancer risk with FDR < 0.2.  

Most of these genes were reported as tumor suppressor genes and also involved in the 

inflammation regulation (46-49).  Notably, PARK2 is well studied as a Parkinson disease gene 

located at a fragile region of chromosome 6, which is prone to breakage and rearrangement. 

Genetic changes in this region have been found in several types of tumors, including glioma, 

lung cancer, colorectal, and ovarian cancer (49). We also observed that SNPs in PARK2 are 

associated with lung cancer risk, which might provide some additional biological support for the 

connection between risks of cancer and Parkinson (49,50).  

In the present study, although we revealed associations between multiple genetic variants in 

DCAF4 and lung cancer risk and also provided functional evidence to support these 

associations, the exact biochemical and molecular mechanisms of the effects of those variants 

on DNA methylation and expression as well as possibly inflammation, DNA repair and telomere 

functions are still unclear. The associations between DCAF4 expression levels with telomerase 

activity and telomere length warrant additional experimental validation. Further biochemical 

studies are also required to reveal the hidden mechanisms, such as the role of DCAF4 in DNA 

repair. Although these identified variants only had a moderate effect on lung cancer risk, their 

joint effect might have driven the risk higher, which needs to be further explored in future 

association studies. In addition, as shown in the supplementary data, rs12587742 is significantly 
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associated with DCAF4 mRNA levels in multiple tumor tissues, which implies this SNP might 

have a pleiotropic effect on cancer risk. This also needs to be clarified by future population 

studies across cancers. 

In conclusion, the present study revealed one novel functional genetic variant rs12587742 in 

DCAF4, which is associated with a moderately increased lung cancer risk possibly by 

influencing its gene expression in normal and tumor tissues. We also provided multiple levels of 

evidence to support possible oncogenic effect of DCAF4. Our findings have provided new clues 

for future functional studies to investigate the roles of CRL-related genes in lung carcinogenesis.  
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Figure legends 

Figure 1. Workflow of the study.  

Figure 2. Association results and functional prediction of SNPs in 115 Cullin-ring ligase encoding 

genes. (A) Manhattan plot of the overall results. There were 84 SNPs on 10 CRLs genes with 

nominal P < 0.001 and 28 of them were on the DCAF4 gene with false discovery rate (FDR) < 0.05. 

The x-axis indicated the chromosome number and the y-axis showed the association P values with 

lung cancer risk (as –log10 P values). The horizontal blue line represents P values of 0.001 while 

the red line indicated the FDR threshold 0.05. (B) Regional association plot, which demonstrated 

that the linkage disequilibrium (LD) between the top SNP rs72734410 on DCAF4 and other SNPs in 

the region of 500 kb up- or downstream of the top SNP.  (C) Pair-wise LD plot between the 28 SNPs 

in DCAF4 with FDR < 0.05. Based on it, two tag SNPs (rs17781739 and rs2240980) together with 

one functional SNP rs12587742 were chosen for further analysis. (D) Locations and functional 

prediction of the three chose SNPs. Two SNPs (rs17781739 and rs12587742) are located within 

one CpG island and presented strong signals of active enhancer and promoter functions (indicated 

by DNase hypersensitivity, histone modification H3K27 acetylation and H3K4 methylation, 

respectively). (E) Position weight matrix (PWM) based Sequence Logo, which showed rs12587742 

is located on the c-MYC motif. 

Figure 3. Correlations of the three SNPs with DCAF4 mRNA expression and methylation status in 

blood cells and tumor tissues. Correlation between DCAF4 mRNA expression and (A) rs17781739; 

(D) rs12587742; (G) rs2240980 in 373 blood cells from 373 Europeans individuals in 1000 

genomes project (P = 7.85x10-10, 2.20x10-16 and 8.76x10-6, respectively). Boxplots of DCAF4 mRNA 

expression and (B) rs17781739; (E) rs12587742; (H) rs2240980 in 182 lung squamous cell 

carcinomas (LUSC) tumor tissues from The Cancer Genome Atlas (TCGA) database (P = 0.335, 

0.001 and 0.429, respectively). Boxplots of DCAF4 methylation status and (C) rs17781739; (F) 
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rs12587742; (I) rs2240980 in 157 LUSC tumor tissues from the TCGA database (P = 0.823, 0.032 

and 0.179, respectively).  

Figure 4. Differential mRNA expression and methylation analysis by using the data generated by 

The Cancer Genome Atlas (TCGA). Higher DCAF4 mRNA expression were found in the tumor 

tissues of (A) 156 lung squamous cell carcinomas (LUSC) and (B) 238 adenocarcinomas (LUAD) 

than in the adjacent normal tissues (P = 4.48 x 10-11 and 1.22 x 10-9, respectively). Negative 

correlations were found between DCAF4 methylation and mRNA expression in both the (C) 156 

lung squamous cell carcinomas and (D) 238 adenocarcinomas (P = 0.070 and 8.22 x 10-6, 

respectively).   
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Table 1. Results of the three tagSNPs in the DCAF4 gene with FDR < 0.05 
        

                          Functional prediction 

SNP Position Alleles
1
 MAF # Study # Cases # Controls Effects

2
 OR (95% CI) Pmeta

3
 FDR PQ-test I

2
 SNPinfo

4
 

RegulomDB 

score
5
 

rs17781739 14:73392839 T/G 0.30 6 12160 16838 ------ 0.91 (0.88-0.95) 3.99E-06 0.015 0.665 0 SREBP 4 

rs12587742 14:73393391 A/G 0.21 6 12160 16838 ++++-+ 1.09 (1.05-1.14) 4.97E-05 0.042 0.446 0 MYC/MAX 1a 

rs2240980 14:73409683 G/C 0.32 6 12160 16838 ++++-+ 1.09 (1.05-1.13) 1.44E-05 0.015 0.715 0 NA 3a 

Abbreviations: MAF = minor allele frequency; OR=odds ratio; CI=confidence intervals; FDR=false discovery rate. 
     

1. Effect allele/reference allele 
            

2. "-" indicated protective effect and "+" indicated risk effect of effect alleles in one of the six GWAS studies in the order of: ICR, MDACC, IARC, NCI, Toronto and GLC. 

3. P value from meta-analysis with fixed effects model. 
          

4. Transcription factors with the highest core match score and matrix match score in SNPinfo. 
      

5. The scoring scheme refers to the available datatype for the SNP position: "1a" represents "eQTL + TF binding + matched TF motif + matched DNase Footprint + 

DNase peak"; "3a" represents "TF binding + any motif + DNase peak"; "4" represents "TF binding + DNase peak". 
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Table 2. Stratification analysis of the three identified SNPs by histological types and smoking status. 
       

    Overall   Adenocarcinoma   Squamous cell carcinoma   Never smoking   Ever smoking 

SNP Imp
1
 OR (95% CI)

2
 P

2
   OR (95% CI)

2
 P

2
   OR (95% CI)

2
 P

2
   OR (95% CI)

2
 P

2
   OR (95% CI)

2
 P

2
 

rs17781739 
              

  ICR 0.97 0.96 ( 0.88-1.04) 0.287 
 
1.01 ( 0.87-1.17) 0.880 

 
0.94 ( 0.83-1.08) 0.397 

 
NA NA 

 
NA NA 

  MDACC 0.92 0.95 ( 0.82-1.09) 0.426 
 
0.97 ( 0.82-1.15) 0.745 

 
0.86 ( 0.69-1.07) 0.164 

 
NA NA 

 
0.95 ( 0.82-1.09) 0.426 

  IARC 0.92 0.93 ( 0.85-1.01) 0.088 
 
0.95 ( 0.82-1.11) 0.524 

 
0.98 ( 0.87-1.10) 0.726 

 
0.78 ( 0.59-1.04) 0.089 

 
0.93 ( 0.85-1.02) 0.131 

  NCI 0.97 0.88 ( 0.83-0.93) 2.00E-05 
 
0.88 ( 0.81-0.96) 2.60E-03 

 
0.84 ( 0.77-0.92) 2.14E-04 

 
0.86 (0.69-1.05)

4
 0.154

4
 

 
0.89 (0.83-0.95) 5.31E-04 

  Toronto 0.94 0.88 ( 0.68-1.12) 0.300 
 
0.67 ( 0.46-0.99) 0.043 

 
1.05 ( 0.63-1.76) 0.841 

 
0.89 ( 0.58-1.36) 0.579 

 
0.85 ( 0.62-1.16) 0.308 

  GLC 0.95 0.93 ( 0.76-1.13) 0.455 
 
0.86 ( 0.66-1.14) 0.302 

 
1.04 ( 0.74-1.46) 0.836 

 
0.81 ( 0.42-1.55) 0.522 

 
0.95 ( 0.74-1.23) 0.714 

  Harvard 0.97 0.99 ( 0.91-1.07) 0.752 
 
0.93 ( 0.81-1.06) 0.254 

 
1.15 ( 0.95-1.39) 0.141 

 
1.49 ( 0.96-2.31) 0.075 

 
1.02 ( 0.88-1.20) 0.767 

  Decode 0.95 1.11 ( 0.95-1.30) 0.202 
 
1.11 ( 0.93-1.32) 0.256 

 
1.17 ( 0.89-1.53) 0.273 

 
NA NA 

 
NA NA 

Meta-analysis
3
 0.94 (0.90-0.99) 0.012   0.94 (0.88-1.01) 0.070   0.96 (0.88-1.06) 0.441   0.89 (0.77-1.03) 0.112   0.92 (0.88-0.96) 3.31E-04 

rs12587742 
              

  ICR 0.93 1.12 ( 1.02-1.24) 0.016 
 
1.07 ( 0.9-1.28) 0.423 

 
1.06 ( 0.91-1.24) 0.453 

 
NA NA 

 
NA NA 

  MDACC 0.89 1.18 ( 1.01-1.39) 0.043 
 
1.27 ( 1.05-1.53) 0.015 

 
1.05 ( 0.82-1.36) 0.698 

 
NA NA 

 
1.18 ( 1.01-1.39) 0.043 

  IARC 0.90 1.11 ( 1.01-1.22) 0.033 
 
1.10 ( 0.93-1.31) 0.273 

 
1.18 ( 1.03-1.35) 0.015 

 
1.15 ( 0.85-1.56) 0.356 

 
1.14 ( 1.02-1.27) 0.019 

  NCI 0.94 1.07 ( 1.00-1.14) 0.050 
 
1.04 ( 0.95-1.15) 0.370 

 
1.16 ( 1.05-1.29) 0.005 

 
0.88 (0.69-1.13)

4
 0.331

4
 

 
1.03 (0.96-1.11) 0.394 

  Toronto 0.90 0.88 ( 0.68-1.15) 0.364 
 
0.99 ( 0.65-1.50) 0.965 

 
0.79 ( 0.47-1.33) 0.377 

 
0.62 ( 0.38-1.01) 0.054 

 
1.06 ( 0.76-1.48) 0.746 

  GLC 0.92 1.19 ( 0.94-1.51) 0.143 
 
1.24 ( 0.91-1.70) 0.174 

 
0.90 ( 0.59-1.37) 0.631 

 
1.46 ( 0.75-2.83) 0.266 

 
1.12 ( 0.82-1.53) 0.467 

  Harvard 0.95 1.08 ( 0.98-1.19) 0.137 
 
1.15 ( 0.98-1.34) 0.078 

 
1.29 ( 1.03-1.61) 0.026 

 
1.14 ( 0.72-1.81) 0.579 

 
0.90 ( 0.76-1.07) 0.246 

  Decode 0.91 0.90 ( 0.76-1.07) 0.235 
 
0.90 ( 0.74-1.10) 0.310 

 
0.84 ( 0.62-1.15) 0.283 

 
NA NA 

 
NA NA 

Meta-analysis
3
 1.08 (1.04-1.12) 8.15E-05   1.08 (1.02-1.15) 0.010   1.12 (1.05-1.20) 4.16E-04   0.97 (0.76-1.25) 0.840   1.05 (0.98-1.13) 0.163 

rs2240980 
              

  ICR 0.99 1.11 ( 1.02-1.20) 0.012 
 
1.16 ( 1.00-1.34) 0.052 

 
1.04 ( 0.91-1.18) 0.599 

 
NA NA 

 
NA NA 

  MDACC 0.95 1.14 ( 1.00-1.31) 0.048 
 
1.20 ( 1.03-1.41) 0.021 

 
0.99 ( 0.80-1.22) 0.932 

 
NA NA 

 
1.14 ( 1.00-1.31) 0.048 

  IARC 0.96 1.10 ( 1.02-1.20) 0.017 
 
1.09 ( 0.94-1.27) 0.254 

 
1.14 ( 1.02-1.29) 0.026 

 
1.32 ( 1.02-1.72) 0.035 

 
1.10 ( 1.00-1.20) 0.046 

  NCI 0.99 1.07 ( 1.01-1.13) 0.025 
 
1.07 ( 0.99-1.16) 0.101 

 
1.11 ( 1.01-1.21) 0.030 

 
1.11 (0.90-1.35)

4
 0.325

4
 

 
1.03 (0.97-1.10) 0.317 

  Toronto 0.97 0.94 ( 0.74-1.18) 0.583 
 
1.01 ( 0.70-1.44) 0.968 

 
0.77 ( 0.49-1.21) 0.249 

 
0.82 ( 0.54-1.23) 0.329 

 
1.00 ( 0.74-1.33) 0.979 

  GLC 0.98 1.08 ( 0.88-1.33) 0.455 
 
1.10 ( 0.83-1.44) 0.506 

 
0.88 ( 0.61-1.27) 0.496 

 
1.17 ( 0.64-2.17) 0.607 

 
1.04 ( 0.80-1.36) 0.756 
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  Harvard 0.98 1.08 ( 0.99-1.17) 0.087 
 
1.15 ( 1.01-1.31) 0.036 

 
1.07 ( 0.89-1.29) 0.481 

 
0.87 ( 0.58-1.31) 0.505 

 
0.99 ( 0.86-1.15) 0.933 

  Decode 0.98 0.96 ( 0.83-1.11) 0.566 
 
0.96 ( 0.82-1.13) 0.640 

 
0.92 ( 0.71-1.20) 0.554 

 
NA NA 

 
NA NA 

Meta-analysis
3
 1.08 (1.04-1.11) 1.08E-05   1.10 (1.04-1.15) 3.44E-04   1.07 (1.01-1.13) 0.017   1.08 (0.87-1.34) 0.481   1.05 (0.99-1.11) 0.127 

Abbreviations: Imp = imputation; OR = odds ratio; CI = confidence intervals; ICR = the Institute of Cancer Research Genome-wide Association Study, UK; MDACC = the MD 
Anderson Cancer Center Genome-wide Association Study, US; IARC = the International Agency for Research on Cancer Genome-wide Association Study, France; NCI = the 
National Cancer Institute Genome-wide Association Study, US; Toronto = the Lunenfeld-Tanenbaum Research Institute Genome-wide Association Study, Toronto, Canada; GLC 
= German Lung Cancer Study, Germany; Harvard = Harvard Lung Cancer Study, US; deCODE = Icelandic Lung Cancer Study, Iceland. 

1. Imputation quality score: r-squared from MACH for the MDACC, IARC, GLC and Harvard studies; info values from IMPUTE2 were used in other studies. 

2. Adjusted for the top significant principle components for each study.  
3. Fixed effects model was used in the meta-analysis if Q-test P > 0.1 and heterogeneity statistic I

2
 < 25%; otherwise random effects model. 

4. The pooling results of the four NCI sub-studies: the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC), the Cancer Prevention Study II Nutrition Cohort (CPS-
II), the Environment and Genetics in Lung Cancer Etiology (EAGLE), and the Prostate, Lung, Colon, Ovary Screening Trial (PLCO). The detailed results for each sub-study were 
presented on Figure 3. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

 


