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Abstract 

Purpose 

To introduce T2-adjusted computed DWI (T2-cDWI), a method that provides synthetic 

images at arbitrary b-values and echo times (TEs) that improve tissue contrast by 

removing or increasing T2 contrast in diffusion-weighted images. 

 

Materials and Methods 

 In addition to the standard DWI acquisition protocol T2-weighted echo-planar images at 

multiple (≥2) echo times were acquired. This allows voxelwise estimation of apparent 

diffusion coefficient (ADC) and T2 values, permitting synthetic images to be generated at 

any chosen b-value and echo time. An analytical model is derived for the noise 

properties in T2-cDWI, and validated using a diffusion test-object. Furthermore, we 

present T2-cDWI in two example clinical case studies: (i) a patient with mesothelioma 

demonstrating multiple disease tissue compartments and (ii) a patient with primary 

ovarian cancer demonstrating solid and cystic disease compartments. 

 

Results 

Measured image noise in T2-cDWI from phantom experiments conformed to the 

analytical model and demonstrated that T2-cDWI at high computed b-value/TE 

combinations achieves lower noise compared with conventional DWI. In patients, T2-

cDWI with low b-value and long TE enhanced fluid signal while suppressing solid 

tumour components. Conversely, large b-values and short TEs overcome T2 shine-
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through effects and increase the contrast between tumour and fluid compared with 

conventional high-b-value DW images. 

 

Conclusion 

T2-cDWI is a promising clinical tool for improving image signal-to-noise, image contrast, 

and tumour detection through suppression of T2 shine-through effects. 

 

Key words: 

Diffusion-weighted imaging,  computed DWI, tumour enhancement, T2 contrast, T2 

shine-through effect. 

https://mc.manuscriptcentral.com/jmri#RemoveKeywordModal
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Introduction 

Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive functional 

imaging technique, where endogenous image contrast is generated through differences 

in the rate of diffusion of water molecules in different environments. DWI is particularly 

attractive in oncological applications as the rate of extracellular water diffusion is 

thought to provide a surrogate marker of tissue cellularity and the integrity of cell 

membranes[1-3]. In recent years, DWI has become mandatory as a source of oncological 

imaging biomarkers for tumour detection and characterization [1]. Furthermore, it has 

shown great promise for the assessment of early treatment response due to its ability to 

non-invasively provide quantitative and qualitative information at the cellular level 

throughout the course of therapy[4; 5]. 

Computed diffusion-weighted imaging (cDWI) has previously been proposed for 

achieving improved image contrast and signal-to-noise ratio (SNR) through the 

synthesis of images with arbitrary ‘diffusion weighting’ (b-value); by acquiring images at 

a range of lower b-values, it is possible to generate synthetic images corresponding to 

arbitrarily high b-values without increasing the scan acquisition time[6]. However, as 

cDWI is intrinsically T2-weighted it is often unable to distinguish between cellular 

disease and tissues with long T2-relaxation times (e.g. cystic areas, necrosis, fluid, pleural 

effusion), leading to a diagnostic misinterpretation phenomenon known as `T2 shine-

through'. 

In this study we propose a novel method, T2-adjusted computed diffusion-weighted 

imaging (T2-cDWI), to produce both ADC and T2, thus enabling the generation of 

synthetic images corresponding to both arbitrary b-value and echo time (TE) by 
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acquiring a small subset of additional images with different (≥2) echo times. This 

implementation allows clinicians to independently modify the level of diffusion- and T2-

weighting for a given image and retrospectively remove or isolate the T2-shine-through 

effect [7]. 

In this article we describe the technology required to perform this novel imaging 

strategy, derive mathematical approximations for the noise in T2-cDWI, and validate 

these models using a diffusion test-object. We further present two clinical examples of 

T2-cDWI where adjusting the T2 and/or diffusion contrast provides improved clinical 

interpretation of disease. 

 

Materials and Methods 

T2-cDWI Model 

We utilise a spin-echo echo-planar imaging (SE-EPI) sequence that allows for the 

acquisition of images at multiple combinations of b-values and echo times. The intensity 

for a given pixel location in the magnitude image may be modelled by: 

𝑆𝑖(𝑏𝑖, 𝑇𝐸𝑖) =  𝑆0 ∙  exp{−𝑏𝑖 ∙ 𝐴𝐷𝐶} ∙  exp{−𝑇𝐸𝑖 ∙ 𝑅2} + 𝜀𝑖                           (1) 

for the ith combination of b and TE, where ADC and R2 = 1/T2 are the tissue apparent 

diffusion coefficient and transverse relaxivity respectively. We assume 𝜀𝑖~𝑁(0, 𝜎𝑖) to be 

the additive noise. T2-cDWI is an approach whereby enough combinations of b and TE 

are acquired (at least 3) such that ADC and R2 may be estimated and then used to 

generate signal contrast at bc and TEc, the desired b-value and TE: 

𝑆𝑐(𝑏𝑐, 𝑇𝐸𝑐) =  𝑆0̂ ∙  exp{−𝑏𝑐 ∙ 𝐴𝐷𝐶̂}  ∙ exp{−𝑇𝐸𝑐 ∙ 𝑅2̂}                                  (2) 
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where 𝑆0̂, 𝐴𝐷𝐶̂, 𝑅2̂ are the corresponding estimated values for each voxel determined 

from the joint fitting.  

Noise considerations for T2-cDWI 

Equation 1 may be considered a special case of a family of exponential functions: 

𝑆 = exp {X ∙ 𝛼} , X = (
𝑏1 𝑇𝐸1 1
⋮ ⋮ ⋮

𝑏𝑁 𝑇𝐸𝑁 1
) , 𝛼 = (

𝐴𝐷𝐶
𝑅2

ln 𝑆0

) 

such that linearized least-squares estimate of the tissue parameters is given by: 

𝛼̂ =  (𝑋T𝑋)
−1

𝑋T ln 𝑆 

In matrix notation we may write equation 2 as 

𝑆𝑐 = exp {X𝑐  ∙ 𝛼̂} = exp{𝐴 ∙ ln 𝑆} =  ∏ 𝑆𝑖
𝐴𝑖𝑁

𝑖=1 ,      X𝑐 = (𝑏𝑐, 𝑇𝐸𝑐, 1)              (3) 

where     𝐴 = 𝑋𝑐 ∙ (𝑋𝑇𝑋)
−1

𝑋𝑇 

Using error propagation it is possible to approximate the expected variance of Sc: 

𝜎𝑐
2 ≈ 𝑆𝑐

2 ∙ ∑ (
𝐴𝑖

𝑆𝑖
)

2
𝑁
𝑖=1 𝜎𝑖

2                                                (4) 

The N-vector A, which depends only on the acquisition parameters of the scan and the 

desired computed b-values and TEs, can be complex to compute in the general case. We 

suggest an optimised imaging protocol for calculations of ADC and R2 according to the 

methodology proposed in [8; 9]: For every image acquired at a minimum possible b-

value and echo time (b1=0, TE1=TEm) for the scanner, 3 images should be acquired with 

(b2=0, TE2=TEm+∆TEopt) , and 3 images acquired with (b3=bopt, TE3). The values are 

optimised according to the expected tissue properties: bopt≈1.28/ADC (ignoring the 

effects of b-value dependence on minimum echo time [10]), ∆TEopt≈1.28/R2  [8; 11]. 
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c 

TE3 should be the minimum echo time achievable on the scanner for the high b-value 

acquisition (for our protocol and scanners a lookup table has been derived to provide 

the minimum TE over the range 0≤b≤6000s/mm2, although approximations are 

available in [11]). For this specially optimised protocol we find that: 

𝐴 = (−
𝑏𝑐(𝑇𝐸2 − 𝑇𝐸3)

𝑏3(𝑇𝐸2 − 𝑇𝐸1)
−

(𝑇𝐸𝑐 − 𝑇𝐸2)

(𝑇𝐸2 − 𝑇𝐸1)
, −

𝑏𝑐(𝑇𝐸3 − 𝑇𝐸1)

𝑏3(𝑇𝐸2 − 𝑇𝐸1)
−

(𝑇𝐸1 − 𝑇𝐸𝑐)

(𝑇𝐸2 − 𝑇𝐸1)
,
𝑏𝑐

𝑏3
) 

𝑆𝑐 = 𝑆1
𝐴1 ∙ 𝑆2

𝐴2 ∙ 𝑆3
𝐴3                                                           (5) 

𝜎𝑐
2 ≈ 𝜎2𝑒−2𝑏𝑐𝐴𝐷𝐶𝑒−2𝑇𝐸𝑐𝑅2 {

𝐴1
2

𝑒−2𝑇𝐸1𝑅2
+

𝐴2
2

3𝑒−2𝑇𝐸2𝑅2
+

𝐴3
2

3𝑒−2𝑇𝐸1𝑅2𝑒−2𝑏3𝐴𝐷𝐶}               (6) 

 where σ2 is the noise variance for the image acquired with one signal average. 

It may be noted that for this protocol multiples of 7 image acquisitions are required to 

perform the T2-cDWI calculation. It is therefore of interest to consider regions where 

σc2<σ2/7, where improvements in noise may be gained using T2-cDWI over 

conventionally acquired data. Figure 1 demonstrates the theoretical advantages in noise 

can be achieved using this suggested T2-cDWI protocol for a wide range of desired bc 

and TEc. Furthermore, T2-cDWI allows the generation of contrast in regions where it 

would not be possible to directly acquire the data (i.e. where TEc<TEmin(bc)). 

Validation of T2-cDWI models using a diffusion test-object 

We validate equation (6) using a diffusion test-object consisting of 5 vials containing 

sucrose, manganese chloride and water with differing ADC (0.7-1.1×10-3mm2/s) and T2 

(75-1408ms) properties at 0°C (Figure 2).  

Three axial images were acquired at the isocenter of a 1.5T system (MAGNETOM Avanto, 

Siemens Healthcare, Erlangen, Germany) using a prototype monopolar, SE-EPI sequence 

with the following parameters: b-value=0/0/1100s/mm2 (three optimized orthogonal 
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diffusion directions (three optimized, orthogonal diffusion directions (3-Scan-Trace)), 

TE=34.0/136.0/58.8ms, NEX=2/6/2, readout bandwidth=1796Hz/px, repetition time 

(TR)=8s, slice thickness=5mm, resolution=2.71×2.71mm2, field-of-view 

(FOV)=26×19.5cm2, partial Fourier factor =6/8. No parallel imaging was used. T2-cDWI 

images were calculated using these data for each pairwise combination of bc= 0, 750, 

1500, 2250, 3000s/mm2 and TEc= 0, 75, 150, 225, 300ms, using in-house software [12]. 

The protocol was repeated such that T2-cDWI difference images could be generated for 

each combination of bc and TEc. Regions-of-interest (ROIs), consisting of 75 pixels, were 

drawn within the vials on the images acquired at b=0s/mm2 and TE=34ms, and then 

translated onto the difference maps. The variance of the difference values within these 

ROIs, divided by a factor of 2, provided an estimate for the true noise variance for T2-

cDWI. The estimated noise variance from equation 6 was computed and compared with 

the ground-truth values: σ2 was estimated from values within the same ROIs placed on 

the difference map for the two images acquired at b=0s/mm2 and TE=34ms. 

Clinical Examples 

To investigate the feasibility of T2-cDWI in clinical settings, we applied T2-cDWI 

prospectively to two patients on a 1.5T system (MAGNETOM Avanto, Siemens 

Healthcare, Erlangen, Germany).  All the measurements were acquired with multiple 

averaging during free breathing using body-array surface receiver coils. The following 

cases were considered: 

Patient 1: a 62-year-old male patient with malignant pleural mesothelioma (MPM).  

Combinations of b value and TE include (b = 100s/mm2, TE = 82ms), (500, 82), (800, 



9  

82), (0, 60), (0, 82), and (0, 177). Other sequence parameters include: TR =8.1s, 

FOV=273×380mm2, matrix = 128*92, 30 axial slices. 

Patient 2:  a 59-year-old female patient with ovarian cancer. Combinations of b value and 

TE include (b = 100s/mm2, TE = 69.0ms), (600, 69.0), (1050, 69.0), (0, 26.4), (0, 102.0), 

and (0, 200.0). Other sequence parameters include: TR=5s, FOV=261×380mm2, matrix = 

160*110, 50 axial slices. 

Computed images were generated for both clinical datasets using equation (3) at the 

following combinations of bc and TEc by using the same software [12]:  

Patient 1: (bc =1100s/mm2, TEc =82ms), (1100, 0), (0, 200).  

Patient 2: (bc =1200s/mm2, TEc =82ms), (1200, 0), (0, 300).   

 
Results 

Validation of T2-cDWI model using a diffusion test-object 

In Figure 3, it is observed that by synthesizing images at short echo times and high b-

values it is possible to suppress the signal from components with long T2 (vial 2, top-

right image), whilst increasing the signal from components with low ADC but shorter T2 

(vial 5, top-right image, arrow). Direct acquisition of images with TE =0ms would not be 

possible. Conversely, by extending the TEc to long values (e.g. 300ms) it is possible to 

increase the signal of regions with long T2 (vials 2, bottom-left image) compared to other 

regions without requiring a significant increase in image acquisition time. Figure 2 

demonstrates that true image noise in T2-cDWI (black circles) is well approximated by 

equation (6) (surface plot) over the range of T2, ADC, bc, and TEc values explored in this 

phantom. Furthermore, it is shown that the noise variance is lower than that expected by 
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direct calculation over the same image acquisition time (black wireframe) for many 

larger b/TE values. 

Clinical Examples 

In Patient 1 (mesothelioma), we observed two compartments within the disease (Figure 

4 e&f): (i) solid tumour characterised by low ADC and short T2 and (ii) pleural effusion 

with high ADC but long T2. Both compartments were hyperintense on the acquired high 

b-value (Figure 4a) due to the T2 shine-through effects caused by the long T2 of pleural 

effusions. Although contrast improvements could be achieved by computing a higher b-

value through conventional cDWI (Figure 4b), the suppression of T2 shine-through was 

inadequate to discriminate between compartments. However, after decreasing TEc to 

zero through the use of T2-cDWI (Figure 4c), it was possible to reduce the hyperintense 

signal of pleural effusions, and improve the contrast of the solid tumour. Conversely, by 

using a high TEc and low bc (Figure 4d) it was possible to identify only those 

compartments associated with long T2 and thus visualise the extent of pleural effusion.  

Similar observations were made for Patient 2 (ovarian cancer). We identified a cystic 

region with high ADC and long T2 that confounds the interpretation of the extent of solid 

disease on the native high-b-value DW image (Figure 5a). This remains confounding 

when a higher b-value was applied through the conventional cDWI (Figure 5b). By 

setting TEc=0ms using T2-cDWI, it was possible to eliminate the T2 shine-through effects 

and improve the contrast between solid tumour and cystic components. Conversely, by 

setting bc=0s/mm2 and TEc=300ms, we were able to enhance the signal from fluid and 

minimise signal from solid tumour to visualise the extent of the cystic region.  
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Discussion 

We have developed a new acquisition and post-processing method that is able to reduce 

the T2 shine-through effect that often confounds diffusion-weighted images, by allowing 

arbitrary modulation of T2 and diffusion weighting. This is achieved by acquiring 

additional T2-weighted EPI images at different echo times. Using the identical EPI 

readout ensures that the geometry- and B0-related distortions are inherently matched. 

Through voxel-wise estimation of ADC and T2 it is possible to synthesise image contrast 

corresponding to any combination of b-value and TE.   It is important to note that the 

role of T2-cDWI is purely a visualisation mechanism for improving image contrast for the 

identification of cellular tumours, and for separating confounding T2 effects. We do not 

consider resulting images to be generally comparable with conventionally acquired 

images using the same b-value and echo time. In this context of visualisation, the 

diffusion model being used is not of primary concern provided that desirable tumour 

characteristic can be achieved. In this study, a joint monoexponential diffusion model 

was used without consideration of perfusion contribution, but the T2-cDWI methodology 

easily lends itself to alternative diffusion models with appropriate data support.  

 

We have derived analytical approximations to the noise characteristics of the T2-cDWI 

model and validated the results through phantom experiments; in particular at high b-

value and long TE combinations, T2-cDWI images have reduced noise variance compared 

with acquired images. Increased signal noise was observed at low b-value and short TE 

combinations, due to the smaller number of signal averages at bc =0s/mm2, compared 

with a non-zero b-value, thus introducing larger errors [13].  
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Our clinical examples show T2-cDWI was able to independently vary the image contrast 

by computation of images at desired b-values and echo times. With a large b-value and 

small/zero echo time, which are not possible to be acquired on the scanner, T2-cDWI 

provided higher contrast for identifying areas of true impeded diffusion (e.g. tumour), 

due to efficient suppression of the T2 shine-through effect, compared with acquired high-

b-value images. Conversely, T2-cDWI images with a low b-value and a long echo time 

enhance areas with long T2 (e.g. fluid, effusion, and cystic disease) by effectively 

suppressing regions with shorter T2. The greater freedom to adjust image contrast by 

manipulating b-values and echo times independently with T2-cDWI may prove to be a 

useful clinical tool. There is a clear need for further investigation in future prospective 

studies, but our early proof of concept data appears promising.  Other clinical uses of T2-

cDWI include multi-centre trials where computed TEs and b-values could be made 

equivalent for radiological reading thus minimising the impact of scanner variations in 

acquisition protocols. In addition, T2-cDWI may facilitate automated segmentation based 

on the enhanced contrast.  

Other authors have investigated the use of exponential images to eradicate T2 shine-

through effects by removing the S0 component for conventional cDWI [14-16]. However, 

these images are associated with poor SNR and are not able to independently vary the 

relative contributions of both tissue diffusivity and T2 relaxivity. Relaxation-corrected 

DWI [17] and short-TE cDWI [18] were used to correct for T2 shine-through effect; 

however T2-cDWI is able to provide synthetic images at any b-value and/or echo time. In 

another study, an ADC-dependent voxelwise cDWI (vcDWI) was proposed to improve 
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SNR and reduce T2 shine-through effects [19], but without taking into account variations 

in tissue T2-relaxation times.  

In this study, the acquisition times for clinical studies were increased to acquire the 

additional T2-weighted scans; however, the additional time was modest (<2 minutes for 

our example cases). In future studies, the dependence of image quality on the choice and 

number of echo times will be explored. 

In this study, we were able to demonstrate objective and quantitative improvements in 

image noise and contrast when using the T2-cDWI method.  
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Legends: 

 
Figure 1: Comparison of the logarithm of noise variance from an optimally acquired T2-

cDWI sequence, σ2(bc, TEc) (surface-plot) with logarithm of noise-variance from a 

conventionally acquired sequence, σ2 = 1 (black wireframe). Where σc2 < σ2, the surfaces 

are coloured in green. Areas in which the surfaces are coloured in blue represent those 

combinations of b and TE that could not be acquired directly using the given gradient 

performance of our scanner, otherwise they are coloured red.  Units of ADC are given in 

× 10-3 mm2/s, whilst for T2 they are in ms. It is apparent there is often little advantage in 

directly acquiring images at a given bc and TEc combination (red surface areas) as T2-
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c 

c 

cDWI either affords improved SNR (green areas) or allows generation of images that 

would not be possible to acquire directly (blue areas). 

 

Figure 2: An illustration of the diffusion test-object is depicted in the bottom right. Each 

vial identifier is shown with its measured (ADC × 10−3 mm2/s, T2 ms) values. Black 

circles in the surface plots represent measured noise variance, σ2, for each of the vials in 

computed images with a range of b-values and echo times. The analytical estimation of 

the noise variance from the vial ADC and T2 values is depicted as a surface plot (Green 

areas: σc2 < σ2, red areas: σc2 > σ2, blue areas: combinations of b and TE that could not be 

acquired directly using the given gradient performance of our scanner). There is a clear 

correspondence between the estimated and measured values for σc2. Black wireframes 

indicate the expected noise variance for an acquisition scheme of equivalent acquisition 

time to T2-cDWI, but with multiple image averages at each respective bc/TEc: The solid 

black line represents the intersection between the surface curves and the black 
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wireframes. It is observed that T2-cDWI provides SNR advantages over conventional 

acquisitions for certain combinations of bc/TEc in this phantom. 

 

Figure 3: T2-cDWI images of the diffusion test-object at varying computed b-values, bc 

and echo times, TEc. It is shown that by extrapolating the echo time to TEc = 0.0 ms and 

the b-value to bc = 3000 s/mm2 it is possible to enhance the signal in the vial with low 

ADC and long T2 (V5, white arrow). Conversely, by synthesising images with long TEc we 

acquire images where the contrast favours components with a long T2 (V2, black arrow). 

Those combinations of bc and TEc surrounded by black dashed boxes cannot be acquired 

directly using conventional diffusion-weighted EPI sequences. The windowing on all 

images has been set to optimise the visual contrast between vials. 
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Figure 4: Axial DW MR images of a 62-year-old man with mesothelioma in the right lung 

for (a) acquired b-values of 800 s/mm2 at TE of 82 ms, (b) computed b-value of 1100 

s/mm2 at TE of 82 ms, (c) T2-adjusted computed b-value of 1100 s/mm2, TE of 0 ms, and 

(d) T2-adjusted computed b-value of 0 s/mm2 TE of 200 ms. (e) R2 map and (f) ADC map 

generated from all acquired images. The solid tumour (arrow) and pleural effusion 

(arrowhead) both show hyperintense signal on the acquired high-b-value DW image due 

to T2 shine-through. Pleural effusions are still misinterpreted with solid disease even 

using a higher b-value in cDWI. By bringing the TE down to zero ms on T2-cDWI, pleural 

effusions are suppressed very well and the solid tumour can be easily segmented out. In 
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contrast, using a very high TE and small b-value, the solid tumour and background tissue 

are suppressed. (For viewing of the colour R2 and ADC maps, the reader is referred to 

the online version of this article). 

 

Figure 5: Axial DW MR images of a 59-year-old woman with ovarian cancer (a) acquired 

using b-values of 1050 s/mm2 at TE of 69 ms, and (b) computed DWI (b-value of 1200 

s/mm2, TE of 69 ms), and (c) T2-adjusted computed DWI (b-value of 1200 s/mm2, TE of 

0 ms). e) R2 map and (f) ADC map generated from all acquired images. Arrow: ovary 
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tumour, arrowhead: cystic disease. (For viewing of the colour R2 and ADC maps, the 

reader is referred to the online version of this article). 


