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Abstract: Purpose 

Current normal tissue complication probability (NTCP) modeling using 

logistic regression suffers from bias and high uncertainty in the 

presence of highly correlated radiation therapy (RT) dose data. This 

hinders robust estimates of dose-response associations and, hence, 

optimal normal tissue-sparing strategies from being elucidated. Using 

functional data analysis (FDA) to reduce the dimensionality of the dose 

data could overcome this limitation. 

 

Methods and Materials 

FDA was applied to modeling of severe acute mucositis and dysphagia 

resulting from head and neck RT. Functional partial least squares 

regression (FPLS) and functional principal component analysis (FPCA) were 

used for dimensionality reduction of the dose-volume histogram data. The 

reduced dose data were input into functional logistic regression models 

(FPLS-LR and FPC-LR) along with clinical data. This approach was compared 

with penalized logistic regression (PLR) in terms of predictive 

performance and the significance of treatment covariate-response 

associations, assessed using bootstrapping. 

 

Results 

The area under the receiver operating characteristic curves (AUC) for the 

PLR, FPC-LR and FPLS-LR models were 0.65, 0.69 and 0.67 for mucositis 

(internal validation) and 0.81, 0.83 and 0.83 for dysphagia (external 

validation), respectively. The calibration slopes/intercepts for the PLR, 

FPC-LR and FPLS-LR models were 1.6/-0.67, 0.45/0.47 and 0.40/0.49 for 

mucositis (internal validation) and 2.5/-0.96, 0.79/-0.04 and 0.79/0.00 

for dysphagia (external validation). The bootstrapped odds ratios 

indicated significant associations between RT dose and severe toxicity in 

the mucositis and dysphagia FDA models. Cisplatin was significantly 



associated with severe dysphagia in the FDA models. None of the 

covariates was significantly associated with severe toxicity in the PLR 

models. Dose levels greater than approximately 1.0 Gy/fraction were most 

strongly associated with severe acute mucositis and dysphagia in the FDA 

models. 

 

Conclusions 

FPLS and FPCA marginally improved predictive performance compared with 

PLR and provided robust dose-response associations. FDA is recommended 

for use in NTCP modeling. 
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Dear Prof Zietman, 
 
Please find enclosed the revised version of our manuscript entitled: ‘functional data 
analysis applied to modeling of severe acute mucositis and dysphagia resulting from 
head and neck radiation therapy’, for exclusive consideration for publication as an 
article in the International Journal of Radiation Oncology, Biology, Physics. We have 
made substantial changes to our original manuscript based on the helpful comments of 
the editor and reviewers and believe that it now represents a far stronger paper. 
 
The paper demonstrates the successful application of a novel statistical modeling 
approach, that is robust to the multicollinearity that conventionally used methods suffer 
from, to improve NTCP modeling of severe acute mucositis and dysphagia. As such this 
paper should be of interest to a broad readership including radiation oncologists 
treating head and neck cancer, those interested in head and neck radiation therapy 
dose-response studies, normal tissue toxicity, treatment planning, statistical modeling 
and clinical decision-support tools. 
 
Thank you for your consideration of our work. Please address all correspondence 
regarding this manuscript to me at The Institute of Cancer Research and The Royal 
Marsden NHS Foundation Trust and feel free to correspond with me by email 
(jamie.dean@icr.ac.uk). 
 
Yours sincerely, 
 

 
 
Jamie Dean 

Cover Letter



We wish to thank the editor and reviewers for their helpful comments. We have 
addressed each one as detailed below. 
 
Editorial Comments: 
The manuscript investigated the application of functional data analysis to NTCP 
modeling in comparison to standard logistic regression in cases of head and neck 
toxicities . The manuscript is well written and the concept was found to be of 
interest. However, the reviewers have delineated several issues particularly in 
the interpretation of the evaluation methods and corresponding results that 
would benefit from further clarifications as delineated below. 
 
Reviewer #1: 
No review 
 
Reviewer #2: This is a generally well-written paper that introduces the use of 
functional data analysis to NTCP models.  While I believe that the paper 
overstates certain key results, in general it is interesting and will provide a 
valuable addition to the literature. 
 
I have a number of questions about the presentation. 
 
p. 3, authors state that "logistic regression assume[s] all the covariates are 
independent."  While LR will work better in a number of ways it the predictors 
are independent, LR does not "assume" that. 
We have rephrased this in line with your comment (p.3 par.2). 
 
p. 3, what does "structure of the correlations is often consistent between 
patients" mean? 
We have clarified this (p.3 par.2). 
 
p. 3, there are a number of references to "unstable" regression 
coefficients.  Authors should use the correct statistical term, since I am not sure 
exactly what they mean by "unstable" in this context. 
We have removed this term and described this phenomenon in terms of 
uncertainty and bias (p.3 par.2 and throughout manuscript). 
 
p. 3, I do not understand "...values for the strength of the correlation between the 
dosimetric variables and toxicity that are highly sensitive to the training data 
and so do not generalize well to new patients..."  This seems to imply that 
modeling works better if the predictors are uncorrelated to the outcomes. 
We have rewritten this sentence to clarify it (p.4 par.1). 
 
p. 3, "which dose levels are most strongly associated with toxicity" is inexact. 
We have rephrased this (p.4 par.1). 
 
p. 4, While it is true that picking the FPCA components with the most variance 
does not guarantee association with the outcome of interest, I do not agree that 
there is "no reason" they should be related. 

*Detailed Response to Reviewers (No Author Details)



We have changed the wording of this in line with your suggestion (p5. par.1). 
 
p. 5-6  The authors start out with 351 patients, remove some for a number of 
reasons, and then end up with 183+179=362 patients. 
The same patients were used for modeling both toxicities. We have clarified this 
(p.6 par.1). 
 
p. 6  In the description of the external validation, it appears that a different 
toxicity criterion was used in the training and validation sets of dysphagia 
patients.  Is this so, if so, why, and what effect does this have on the validation? 
A slightly different toxicity endpoint was used due to the data available. We have 
clarified this (p.6 par. 1) and noted this as a limitation in the discussion (p.21 
par.2). 
 
p. 7  Was any effort at dimension reduction (variable selection) attempted for the 
MLR model?  Inclusion of collinear and non-explanatory variables could be a 
cause of the "instability" the authors observe. 
Yes, that is correct. That is the problem we were attempting to overcome using 
the FDA techniques. We included the MLR model to demonstrate this problem. 
However, we have repeated the MLR modeling, with the addition of LASSO 
regularization to reduce the multicollinearity problems by shrinkage of the 
regression coefficients and variable selection (p.8 par.2). This resulted in more 
stable (in a way) odds ratios, compared with unpenalized multivariable logistic 
regression, as most of the odds ratios were set to 1 by the penalization due to the 
high correlations between the covariates. This led to the PLR models underfitting 
the data, as evidenced by the calibration slopes being greater than 1. 
 
p. 9  Is equation 5 correct?  Does the RHS necessarily resolve to either 0 or 1 for 
each patient? 
Equation 5 is correct (except that there should not be a hat above the y on the 
left hand side which we have now removed; p.10). The equation describes a 
linear model so the right hand side does not have to be 0 or 1 in this general case. 
Functional logistic regression (equation 11) is a functional linear model with a 
logistic link function and binary (0 or 1) outcome. This is what we used for the 
FPC-LR and FPLS-LR modeling. 
  
p. 10  More detail is needed on how the BIC was used to select the penalty, 
especially since the penalty was selected to be 0 (p. 12), which I found 
remarkable. 
We have added more detail about the BIC and penalization (p.11 par.1). Due to a 
coding error we accidentally left the penalization off (the default setting for this 
function in fda.usc was to use no penalization). We have now corrected this and 
rerun all of the analysis. 
 
p. 11 & Table 1  Was bootstrapping used to estimate the AUC (internal 
validation)?  The AUC can be estimated in the bootstrap cycle by classifying the 
out-of-bag samples.  This can also be used to provide confidence intervals for the 
statistics in Table 1, which need them. 



Yes, bootstrapping was used with 2000 replicates and correction for optimism. 
Bootstrapping with correction for optimism does not provide confidence 
intervals, but is an alternative technique to estimate performance with 
correction for overfitting. It is recommended by expert statisticians who provide 
guidelines for statistical modeling (see, for example, Frank Harrell’s textbooks 
and papers on statistical modeling). We have added additional details on this in 
the manuscript (p.13 par.3). 
 
p. 12  The Brier Score will be obscure to the readers of the Red Journal and 
requires some description. 
We have added the definition of the Brier score (p.13 par.2). 
 
p. 13  "The decrease in the first FPCA and FPLS component loadings at around 
1.8 Gy..."  Where is the reader supposed to be seeing this? 
This can be seen in figure 1. We have now directed the reader to this figure in the 
text (p.15 par.2). 
 
p. 14 and Figure 2.  What is the reader supposed to conclude from this 
figure?  The text points to it but does not comment on whatever the authors find 
interesting about it. 
We have added an explanation of what the figure indicates (p.17 par.1). 
 
p. 16  "Our results demonstrate that FPC-LR and FPLS-LR produced models with 
better predictive performance than MLR."  This is utterly 
unsupported.  According to Table 1, the AUC of FPC-LR and FPLS-LR is 0.01 
better than that of MLR for mucositis, and 0.04 better for dysphagia. 
We have toned down the description of the improvement in predictive 
performance. We have indicated that improvements in discrimination were 
marginal and the improvements in calibration were larger (p.16 par.3, p.17 
par.1). 
 
Table 1.  All of the statistics in Table 1 require confidence intervals, which can be 
generated by bootstrapping 
We have already applied bootstrapping with a correction for optimism. We have 
added additional details on how this was performed (p.13 par.3). Bootstrapping 
with correction for optimism is an alternative method for estimating 
performance whilst accounting for overfitting (see, for example, Frank Harrell’s 
textbooks and papers on statistical modeling). 
 
p. 17  "Unlike the FDA models, the MLR models were unable to identify that high 
doses had higher correlations with toxicity than low doses, as would be 
intuitively expected."  First, the authors need to be specific about the definitions 
of "high" and "low" doses.  Mean?  Maximum?  This is something of a straw man 
argument if they did not submit variables to MLR representative of "high dose." 
The description of the dose-volume metrics included in each of the models is 
given in the methods section (p.8 par.2, p.8 par.3). For all of the models the 
included dose volume metrics went up to V260. We have specified that by high 
and intermediate doses we mean greater than approximately 1 Gy per fraction 
(p.19 par.1). 



 
p. 18  All the "unstable" odds ratios observed in MLR models are due to the lack 
of variable selection prior to estimation.  I can't speak for the set of all data 
analysts, but most of the ones I know who use MLR use it with some sort of 
variable selection method, or use the lasso. 
We have repeated the MLR modeling using LASSO (p.8 par.2). 
 
p. 19  First line of the Conclusion is unsupported by the Results. 
We have toned down the description of the improvements in predictive 
performance (p.22 par.2). 
 
Tables 2-4.  It would be more instructive to place the three dysphagia and three 
mucositis models side-by-side, since the comparison of mucositis with dysphagia 
is of less interest. 
Arranging the tables in the manner suggested would result in lots of blank space 
in the tables so we prefer to keep them as they are currently arranged. 
 
 
 
Reviewer #3: The authors describe the use of Functional Data analysis (FDA) to 
improve NTCP modeling. Two different methods were applied: functional partial 
least square regression and functional principal component analysis. The 
research question addressed from the authors and their findings are important 
for the readers of Red Journal. The development of this application is important 
to push research in this field forward. The manuscript is very well written and 
very readable. The methods are carefully chosen, explained, and evaluated. 
I have only few minor comments. 
 
1 "Data from 351 patients….". Please, specify "head and neck RT patients". 
We have specified this (p.5 par.3). 
 
In addition, Dysphagia: please clarify if the dysphagia endpoint has been scored 
using a common definition for both training and external cohort. 
We have now specified this and clarified the (slightly different) scoring systems 
for the training and external validation cohorts (p.6 par.1). We have mentioned 
this slight difference as a potential limitation (p.21 par.2). 
 
2 The use of fractional DVH offers food for thought. Indeed, the fractional DVH is 
just a doppelgänger of the total DVH. In order to give a more appropriate dose-
volume representation for modeling acute toxicity, the time to acute toxicity 
event should be considered. A first order more effective alternative approach to 
total DVH could be to describe acute complication risk as a function of 
accumulated dose-volume at toxicity appearance. In any way, some 
radiobiological aspects would be neglected. 
We initially considered the time-to-event approach. However, we decided 
against it as the subjective choice of the treating clinicians of when to initiate a 
feeding tube intervention would lead to a lot of noise in the cumulative dose 
delivered up to the time of intervention, which would substantially weaken the 
study. We have added a note on this to the manuscript (p.8 par.1).  



 
The use of fractional DVH obtained simply as total DVH divided by the number of 
fractions just focus the attention on the fraction size rather than on the total dose 
that is a correct approach when different fraction sizes are considered. Because 
the references are blanked to ensure blind reviewing treatment data are not 
available to the reviewer, the fraction sizes are not known. 
We have added the different fractionation regimens to appendix A. They are 
quite similar so corrections based on radiobiological models (which were 
performed in preliminary work) did not make any substantive differences to the 
results. We have added a note on this to manuscript (p.7 par.3). 
 
This reviewer can suppose a wide variety of fractionation schedules. 
The fractionation schedules were similar. They are now listed in appendix A. 
 
The physical dose distribution was converted to the fractional dose distribution 
(physical dose delivered in each fraction). This, to some extent, accounts for 
differences in the fractionation schedules. However an EQD2 correction by the 
Withers formula could have been a better approach. This point should be  at least 
discussed in the Discussion section. 
Preliminary work showed that using radiobiological corrections, e.g. BED/EQD2, 
made negligible differences to the results. We have added a note about this (p.7 
par.3). 
 
3. Is the dose level 2.6 Gy the higher dose per fraction? 
Yes, there were no doses to any of the OARs higher than 2.6 Gy/fraction. We  
have added the fractionation regimens used to appendix A to make this clearer. 
 
 
4. To be fair with the "ridden roughshod over" MVL approach some 
preprocessing on dosimetric variables should be performed in order to avoid 
overfitting or at least discuss also this point. 
We have repeated the MLR modeling with LASSO regularization to reduce 
collinearity related problems and overfitting by shrinkage of the regression 
coefficients and variable selection (p.8 par.2). This resulted in more stable (in a 
way) odds ratios, compared with unpenalized multivariable logistic regression, 
as most of the odds ratios were set to 1 by the penalization due to the high 
correlations between the covariates. This led to the PLR models underfitting the 
data, as evidenced by the calibration slopes being greater than 1. 
 
5. Page 16. "To the best of our knowledge….the best predictive performance to 
date". Some numerical comparison and some references would be welcome. 
We have added some comparisons (p.18 par.3). 
 
 
 
Reviewer #4: The paper investigates the functional data analysis (FDA) as 
modeling of severe acute mucositis and dysphagia and compared with 
multivariable logistic regression.FDA models describing the dose-volume 
histogram as a continuous curve demonstrated better predictive performance 



and more robust dose- response estimates than MLR. The paper is clearly 
written and the results sound.  
 
Minor revision  
Please provide the definition of 3 or more score of the mucositis and dysphagia 
grading systems.  (page 6, lines 1). 
We have added the definitions for these (p.6 par.1). 
 
Authors should clarify te reason to exclude patients with a peak score below 3. 
(see page 6 lines 7-9) 
We have added additional detail on the justification for this approach in 
appendix B and added a reference (p.6 par.1).  
 
 
Reviewer #5: There are a number of issues within this paper that require 
substantial explanation or clarification to warrant publication. Adding a 
statistician to this paper would greatly benefit it. 
We already have multiple authors with expertise in statistical modeling. 
 
*     It is surprising that the external validation dataset outperforms the original 
training dataset. This may be due to overfitting as the external validation set 
includes only 90 participants with unknown number of events, yet >12 variables 
are being fit in the model. 
To clarify, we did not fit any models using the external validation data. We just 
used the external validation data to make predictions using the models fit on the 
training data and test those predictions. There is no reason that the external 
validation should not outperform the internal validation. Plenty of other papers 
have external validation results that are better than internal validation results, 
for example Buettner et al. 2012 Radiother Oncol. We corrected our internal 
validation results for optimism due to overfitting. Many other studies do not do 
this so their internal validation results may be overly optimistic and so their 
external validation results are more likely to be worse than the internal 
validation results. We have added the severe toxicity incidences in the training 
and external validation cohorts (p.6 par.1). We have now noted the size of the 
external validation cohort as a limitation (p.21 par.2). 
 
*     How is it possible for the estimate of the odds ratio in the MLR Dysphagia 
model to be outside of the 95% CI? In fact, many estimates of the odds ratios lie 
outside the 95% CIs. This indicates some type of coding error or biased 
estimation. 
This is due to bias caused by collinearity. This was one of the problems with MLR 
modeling with correlated dose metrics that we were trying to demonstrate. We 
have repeated the MLR modeling using LASSO regularization to reduce bias in 
the regression coefficients (p.8 par.2). This resulted in more stable (in a way) 
odds ratios, compared with unpenalized multivariable logistic regression, as 
most of the odds ratios were set to 1 by the penalization due to the high 
correlations between the covariates. This led to the PLR models underfitting the 
data, as evidenced by the calibration slopes being greater than 1. 
 



*     Why and how were the categories of dose selected for the MLR model? It 
appears that perhaps the FPC and FPLS models do better due to poor model 
construction of the MLR model- we expect unstable coefficient estimates if the 
discretized dose variables do not include much information- would a different 
discretization produce different results for MLR? The entire MLR models are 
unstable due to poor variable selection, yet model selection criteria was used 
with the FDA models. 
The discretization encompasses the entire range of dose levels with plenty of 
granularity to capture the shape of the DVHs. We have added a line justifying the 
choice of dose metrics to include (p.8 par.2). We believe that the instability is not 
related to the discretization, but that it is due to multicollinearity. The FDA 
methods were employed in order to overcome this limitation. We have now 
improved our MLR modeling using LASSO regularization, which performs 
regularization and variable selection to reduce overfitting and the instability 
problems caused by multicollinearity (p.8 par.2). A different discretization 
would not be expected to have much influence on the results unless the number 
of DVH points selected was too small to properly describe the shapes of the 
DVHs. 
 
*     It is argued that it is challenging to interpret results from PCA, but it seems 
similarly challenging to interpret results from FDA since the sign of the estimates 
do not indicate direction of effect. How does a clinician actually use one of these 
models? They see the significance of the effect then must go into the loadings to 
see where dose has high loadings and then attempt to avoid those doses? What 
about efficacy? 
The statement that PCA is challenging to interpret was from the referenced 
paper. However, we do not fully agree with this criticism of PCA so have 
removed this statement from our manuscript. Your interpretation of  how to use 
the models is correct. OAR-sparing should not compromise tumor coverage. We 
have added a note on this (p.19 par.1). 
 
*     Are the same individuals used in both the mucositis and dysphagia models? A 
CONSORT diagram of inclusion of patients would be useful since the numbers 
are confusing (351 total patients but after exclusion, 183 and 179 remain for the 
models, if not the same patients, then 362 patients remain post exclusion which 
is greater than the initial number). 
Yes it is the same patients for mucositis and dysphagia. We have clarified this 
(p.6 par.1). 
 
What are the consequences of using the same patients in these 2 models- do we 
expect models to be similar? 
There is a correlation between the two different toxicities endpoints, as patients 
who had large volumes irradiated to high and intermediate doses were more 
likely to experience severe toxicity, but this does not effect the modeling of either 
toxicity. 
 
*     How does the external validation dataset compare to the training set in terms 
of characteristics, proportion of toxicities, etc? 
We have added details on this (p.6 par.1 and appendix C). 



 
*     On page 7, it claims the FDA is penalized, but later in the manuscript it says 
the penalty was 0 (unpenalized). 
Due to a coding error we accidentally left the penalization off (the default setting 
for this function in fda.usc was to use no penalization). We have now corrected 
this and rerun all of the analysis. 
 
*     Equation 5 denotes an estimated toxicity outcome but the right-hand side 
includes an error. Either the left-hand side should not contain the hat/estimate 
or the right-hand side should contain hats and no error 
We have removed the hat from the left hand side (p.10 eq.5). 
 
*     It is not obvious how equation 7 is found. An appendix of the derivation by 
substituting equations 4 and 6 into 5 could be beneficial or a reference to the 
derivation. 
We have added the reference to this derivation (p.10, ref.29).  
 
*     The bootstrapping process could be further explained- how was it stratified? 
We have added more detail to the explanation of the bootstrapping procedure 
(p.13 par.3). 
 
*     The brier scores and AUCs are nearly identical for all three options, so the 
only discriminating factor is the calibration which is not overly impressive 
except in the external validation set (which is likely due to overfitting) 
We have toned down our description of the benefit in predictive performance 
using the FDA models. We have indicated that improvements in discrimination 
were marginal and the improvements in calibration were larger (p.16 par.3, p.17 
par.1). There cannot be any overfitting in the external validation as none of the 
models were fit using that data. None of the external validation data was “seen” 
during model training. 
 
*     There is no discussion how in the FDA models, the clinical covariates are 
unstable and the tradeoff between clinical and dose estimation. 
We have added comments on this to the discussion (p.20 par.2). 
 
*     It would be interesting to apply PCA to this study as a comparator 
We agree that it would be interesting to compare PCA to the models presented 
here. It would also be interesting to compare many other models. However, for 
the sake of clarity we feel that it would be better not to add in extra models, such 
as PCA. Studies using PCA for NTCP modeling have already been performed (and 
are referenced in our manuscript; p.4 par.2). 
 
*     Minor- results on page 12 are mixed up: 2 components for the mucositis FPLS 
model and 1 component for the mucositis and dysphagia model for FPCA and for 
dysphagia FPLS (or table labeling is mixed). 
The text was incorrect. We have now corrected it (p.15 par.1). 
 
*     Minor- on page 3, should 50 Gy be 50 cGy? 
We have generalized this to Vx (p.3 par.2). 



 
We changed the bootstrapping so that it includes the model selection step within 
each replication to prevent optimistic internal validation. We have noted this in 
the manuscript (p.14 par.1) and rerun all of the analysis with the improved 
bootstrapping approach. 
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Summary 

 

Normal tissue complication probability modeling using logistic regression (LR) 

suffers from bias and uncertainty in the presence of highly correlated radiation 

therapy dose data. Consequently robust estimates of the dose levels most 

strongly associated with toxicity and, potentially, predictive performance are 

limited. To overcome this limitation, functional data analysis (FDA), which 

describes the dose-volume histogram as a continuous curve, was applied to 

modeling of severe acute mucositis and dysphagia and compared with LR. FDA 

models demonstrated slightly better predictive performance and more robust 

dose-response estimates than LR. 

*Summary
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Manuscript 

 

Abstract 

 

Purpose 

Current normal tissue complication probability (NTCP) modeling using logistic 

regression is unstablesuffers from bias and high uncertainty in the presence of 

highly correlated radiation therapy (RT) dose data. This hinders robust 

estimates of dose-response associations and, hence, optimal normal tissue-

sparing strategies from being elucidated. Using functional data analysis (FDA) to 

reduce the dimensionality of the dose data could overcome this limitation. 

 

Methods and Materials 

FDA was applied to modeling of severe acute mucositis and dysphagia resulting 

from head and neck RT. Functional partial least squares regression (FPLS) and 

functional principal component analysis (FPCA) were used for dimensionality 

reduction of the dose-volume histogram data. These The reduced dose data were 

then input into functional logistic regression models (FPLS-LR and FPC-LR) 

along with non-functional clinical data. This approach was compared with 

conventional penalized multivariable logistic regression (MLRPLR) in terms of 

predictive performance and the significance of treatment the stability of 

dosecovariate-response associations, . The stability of regression coefficients 

was assessed using bootstrapping. 

 

Results 

*BLINDED Revised Manuscript (Changes Highlighted)
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The area under the receiver operating characteristic curves (AUC) for the 

MLRPLR, FPC-LR and FPLS-LR models were 0.7165, 0.72 69 and 0.72 67 for 

mucositis (internal validation) and 0.7981, 0.83 and 0.83 for dysphagia (external 

validation), respectively. The calibration slopes/intercepts for the PMLR, FPC-LR 

and FPLS-LR models were 0.291.6/-0.670, 0.451/0.437 and 0.540/0.449 for 

mucositis (internal validation) and 0.802.5/-0.096, 0.79/-0.04 and 0.79/0.00 for 

dysphagia (external validation). The bootstrapped regression coefficientsodds 

ratios indicated significant associations between RT dose and severe toxicity in 

the mucositis and dysphagia FDA models. Cisplatin was significantly associated 

with severe dysphagia in the FDA models. None of the covariates was 

significantly associated with severe toxicity in the PLR modelswere substantially 

more stable in the FDA models than the MLR models as evidenced by their far 

narrower confidence intervals. High and intermediate dDose levels, greater than 

approximately 1.0 Gy/fraction , were most strongly associated with severe acute 

mucositis and dysphagia in the FDA models. 

 

Conclusions 

FPLS and FPCA marginally improved predictive performance compared with PLR 

and provided robust the stability of estimates of dose-response associations 

compared with MLR. FDA is recommended for use in NTCP modeling. 

 

Introduction 

Normal tissue complication probability (NTCP) modeling uses radiation therapy 

(RT) dose data, often in combination with clinical and biological data, to 

construct statistical models of RT-induced toxicity. There are two distinct aims of 
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NTCP modeling: (i) accurate prediction of toxicity outcomes for individual 

patients and (ii) estimates of associations between treatment covariates and 

toxicity. Accurate prediction enables clinical decision-support (1), treatment 

plan comparison, treatment modality selection (2) and personalized dose 

prescription (3). Robust estimates of associations between covariates and 

toxicity can inform the design of RT planning interventions aimed at reducing 

toxicity. 

 

A major weakness of many NTCP models is suboptimal dimensionality reduction 

of the RT dose distribution (reducing the number of variables used to describe 

the dose distribution from all of the points on the 3D dose grid to a small number 

of summary metrics). In order to input dose data into statistical models the 3D 

dose distribution delivered to an organ at risk (OAR) is reduced to a single or 

series of scalar metrics, for example maximum dose, mean dose or multiple 

points sampled from the dose-volume histogram (DVH), such as the volume of an 

OAR receiving at least 50 x cGy (V50Vx). Ideally, information from each dose level 

should be explicitly input into the model to prevent loss of potentially important 

information. However, due to the nature of the dose deposition within the 

patient, adjacent dose levels are very highly correlated (4) (appendix D). This is 

problematic for many statistical modeling methods, such as (the commonly 

used) logistic regression, which often assume exhibit biased regression 

coefficients with large standard errors that all covariates are independentin the 

presence of collinearity (5). Since tThe structure of the correlations is often 

consistent between patients as the volumes of an OAR receiving adjacent dose 
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levels are highly correlated for all patients,. Therefore,  if the same or similar 

treatment techniques are employed, this does not necessarily prevent the 

models from being able to accurately predict outcomes prospectively for new 

patients. However, it does result in the unstable regression coefficients of the 

dosimetric covariates being biased and having large standard errors. The 

apparent regression coefficients of the dosimetric covariates do not (values for 

the strength of the correlations between the dosimetric variables and toxicity 

that are highly sensitive to the training data and so do not generalize well to new 

patients) and, hence,  so should not be used to determine which dose levels are 

most stronglythe strength of associations between correlated dose metrics ed 

withand toxicity, as is commonly done (6). 

 

A small number of studies have attempted to address this issue through using 

principal component analysis (PCA) to reduce the dimensionality of the DVH 

data (7–12). However, PCA was found to be challenging to interpret in the 

context of NTCP modeling [9,11] and has been shown to perform poorly when 

the number of predictors (DVH points) is comparable to, or larger than, the 

number of observations (patients), as is often the case in NTCP modeling (9, 11). 

Functional data analysis (FDA) is a statistical framework for analyzing 

continuous curves rather than discrete measurements (13). Treating an entire 

curve, for example, a DVH curve, as a single entity removes the problem of 

correlation (14) and explicitly retains the relationship between points on the 

DVH curve, which standard, non-functional, statistical techniques do not capture. 

Data are represented as curves through the use of basis functions. There are 
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different types of basis function including a priori fixed bases, such as splines or 

wavelets, and data-driven bases, for example functional principal component 

analysis (FPCA). Functional logistic regression uses functional data to predict 

binary outcomes. It is well suited to NTCP modeling due to the functional 

continuous nature of DVH curves and the binary nature of toxicity endpoints. 

Functional logistic regression has recently been applied to NTCP modeling by 

Benadjaoud et al. (15), using FPCA (16) for dimensionality reduction of the DVH 

data. However, FPCA (and non-functional PCA) is unsupervised (does not use 

outcome data), which may be a limitation for NTCP modeling. There is no reason 

why tThe FPCA components with the most variance in the RT dose data should 

may not be the ones that are most strongly associated with the toxicity outcome 

of interest. Functional partial least squares regression (FPLS) (17, 18) is a 

supervised analogue of FPCA. It overcomes this limitation through generating 

uncorrelated covariates (FPLS components) in the linear space of the predictors, 

accounting for the correlation between those predictors and toxicityoutcome, in 

this case toxicity. As PLS (and FPLS) uses the outcome (toxicity) data in 

establishing the components it often outperforms PCA (and FPCA) in prediction 

tasks (19). However, due to the inclusion of outcome data, it is more susceptible 

to overfitting. 

 

In this study we apply applied FPLS and FPCA to NTCP modeling of severe acute 

mucositis and dysphagia. We compared our novel application of FDA with non-

functional penalized multivariable logistic regression (MLRPLR) models. The 

aims of this study were to (i) determine whether using FPLS or FPCA to reduce 
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the DVH data would improve discriminative abilitypredictive performance 

compared with PMLR and (ii) assess whether FPLS or FPCA would lead to more 

robust estimates of associations between DVH data and toxicity than PMLR.  

 

Methods and Materials 

Patient data 

Data from 351 head and neck RT patients, enrolled in one of the six different 

clinical trials (20–24)[ISRCTN XXXX], were used to train and internally validate 

severe acute mucositis and dysphagia NTCP models. Data from the same patients 

were used for the modeling of both toxicities. This dataset has previously beenis 

described in appendix A and detail [XXXX et al. 2016a (in press), XXXX et al. 

2016b (under review)]. Mucositis and dysphagiaToxicity  wereas both 

consistently scored for all studies using the Common Terminology Criteria for 

Adverse Events (CTCAE) versions 2 (25) or 3 (26) instruments. The mucositis 

and dysphagia grading systems are near equivalent in both versions. Both 

Ttoxicities were recorded, prospectively, for all patients prior to the start of RT, 

weekly during RT, and at 1 - 4 and 8 weeks post-RT by head and neck cancer 

specialists, trained in the use of the scoring systems, using standard trial 

protocols. The toxicity outcome was defined as the peak grade of toxicity, 

dichotomized into grade 3 or worse (severe) and less than grade 3 (non-severe). 

Grade 3 mucositis corresponds to confluent mucositis and grade 3 dysphagia 

corresponds to feeding tube dependence for more than 24 hours. Patients with 

baseline toxicity were excluded from the analysis. To reduce bias at the expense 

of statistical power, patients with any missing toxicity scores and a peak score 
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below 3 were excluded from the analysis. A detailed justification for this 

approach is provided in appendix B and [XXXX et al. 2016a (in press)]. Of the 351 

patients, This left 183 met the inclusion criteria for mucositis modeling (severe 

mucositis incidence = 73%) and 179 patients for mucositis andmet the inclusion 

criteria for dysphagia modeling (severe dysphagia incidence = 66%), 

respectively. Ninety head and neck RT patients treated at XXXX with acute 

dysphagia data available were used as an external validation cohort for the 

dysphagia models (severe dysphagia incidence = 48%). In this cohort severe 

acute dysphagia was defined as the requirement for percutaneous endoscopic 

gastrostomy (PEG) tube insertion. It should be noted that there was a slight 

difference in the scoring systems due to the data available. All centers involved in 

treating patients included in this study employed a reactive approach to PEG-

insertion, that is, delaying insertion until deemed clinically necessary. 

 

Induction chemotherapy (yes or no), concurrent chemotherapy regime 

(cisplatin, carboplatin, one cycle of cisplatin followed by one cycle of carboplatin 

or none), definitive versus post-operative RT, primary disease site 

(oropharynx/oral cavity, nasopharynx/nasal cavity, hypopharynx/larynx, 

parotid gland or unknown primary), age and sex were also included as 

covariates in the models. Concurrent chemotherapy was administered in two 

cycles, on day 1 and day 29 of RT. A comparison of the clinical covariate data in 

the training and external validation data sets is provided in appendix C. 
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RT dose data 

The extended oral cavity [XXXX et al. 2016a (in press)] and pharyngeal mucosa 

[XXXX et al. 2016b (under review)] were contoured by clinical oncologists and 

used as OARs in the mucositis and dysphagia models, respectively. The physical 

dose distribution was converted to the fractional dose distribution (physical 

dose delivered in each fraction). This has been shown to be appropriate for NTCP 

modeling of acute toxicity (27) as the toxicities often develop before the total 

dose is administered. The fractional dose distribution was described by the 

normalized cumulative dose-volume histogram (DVH). Preliminary work 

indicated that corrections for different fractionation regimens based on 

radiobiological models made negligible difference to the results. This is due to 

the fact that the fractionation regimens employed (appendix A) were similar. An 

alternative approach would be to use the cumulative dose delivered up to the 

appearance of the toxicity endpoint. However, subjective choice of the treating 

clinicians of when to initiate a feeding tube intervention would lead to 

substantial noise the in the cumulative dose delivered up to the time of 

intervention. 

 

Penalized Multivariable logistic regression model 

For the non-functional model the fractional DVH curves were discretely sampled 

from 0.2 Gy to 2.6 Gy at 0.2 Gy intervals. This sampling was chosen to encompass 

the entire range of OAR doses with enough granularity to capture the shapes of 

the DVHs. These DVH measurements were input into a PMLR model along with 

the clinical covariates. Penalization was performed using the least absolute 
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shrinkage and selection operator (LASSO) (28). LASSO reduces the magnitude of 

the regression coefficients, setting some to 0, in order to prevent overfitting. In 

the context of correlated variables, it reduces the impact of multicollinearity. The 

penalization strength was selected by 10-fold cross-validation with the value 

producing the highest average (over all of the cross-validation folds) area under 

the receiver operating characteristic curve (AUC) on cross-validation selected. 

 

Functional data analysis 

The fractional DVH curves (sampled from 0 Gy to 2.60 Gy in 0.01 Gy intervals) 

were represented using penalized FPCA (16, 29) and penalized FPLS (17, 30) 

basis functions. FPCA is a dimensionality reduction technique that represents the 

functional DVH data as orthonormal vector components explaining the maximum 

variance between patients in the DVH curves. The orthonormality constraint 

removes the collinearity in the dose metrics used for subsequent modeling and, 

hence, overcomes the limitations associated with modeling collinear data. The 

functional principal components           
  represent the functional DVH data 

(normalized volume as a function of dose for patient i),       as the sum of the 

eigenfunctions,       weighted by their coefficients,    : 

                    

 

   

         

where      is the mean       and     describes the score for functional principal 

component k for the DVH of patient i and is given by 
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The eigenfunctions,        
  and their corresponding eigenvalues (describing the 

amount of variance explained by each eigenfunction),        , are 

determined by eigendecomposition (factorization into eigenvalues and 

eigenvectors) of the covariance operator,   where 

                                                       
 
         

where       is the mean volume receiving dose   . V(d) can be approximated by 

a small number of principal components,   , assuming that       for     , to 

achieve dimensionality reduction to a small number of basis functions efficiently 

describing the variation between patients in the DVH data: 

                    

  

   

         

The eigenfunctions and their coefficients can then be used in subsequent 

analyses. The FPCA components can be used to estimate a toxicity outcome for 

patient i,       using a functional linear model (29, 31): 

                                

where   is the intercept and    is a centered random error. 

When FPCA is used to describe the DVH data β(d) represents a “weighting 

function” describing the amount of variation between patients at all dose levels 

on the DVH. It can be approximated by kn eigenfunctions: 
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Substituting equations 4 and 6 into equation 5 allows aAn estimate of the 

response,     to can be made using (derivation in (29)): 

                            

  

   

         

where 

          
   
  

   
   

    
  

    
           

The model was fit to the data, placing penalization on the curvature (second 

derivative) of the eigenfunctions, by 

         
       

     
  
  
            

where   is the amount of penalization, P is the vector (0, 0, 1) that defines the 

penalty matrix such that the second derivative (curvature) is penalized and y is 

the actual response data. The choice of which components to include (within the 

first 5 components) and the amount of penalizationmagnitude of the roughness 

penalty,   to apply (selected from a set of values in the range from 0 to 1350), to 

best estimate the toxicity outcomes, were determined using model selection 

criteria (MSC) (16) with the Bayesian information criterion: 
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where   is the number of patients and    is the actual outcome (toxicity) data. 

This penalizes the model complexity to reduce overfitting. Models with different 

values of   and   were generated and the combination of values that minimized 

MSC was selected. The FPCA or FPLS components included affect the smoothness 

of the estimate of the      function as the dominant mode of variation tends to 

be smooth and roughness tends to increase for subsequent modes of variation, in 

part due to the orthogonality constraint. 

 

FPLS is similar to FPCA, but uses the response (toxicity) data in constructing the 

FPLS components (17),          
 

 in order to establish orthogonal components 

that have maximum covariance to the response. This is achieved through 

maximizing the squared covariance between       and the response, yi with the 

constraint that all components are mutually orthogonal (30). This takes the place 

of the eigendecomposition used for FPCA, described in equation 3. The iterative 

algorithm used to compute the FPLS components is described in (32). When 

FPLS is used for dimensionality reduction of the DVH data, β(d) can be 

interpreted as a data-driven “weighting function” for the importance of each 

dose level in causing severe toxicity. It is important to consider that, as this is a 

data-driven approach, the “weighting function” is an estimate of the “true 

weighting function” over the range of available data and is influenced by the 

structure (i.e. distribution in dose-volume space) of the available data. MSC was 

performed for the FPLS analysis in the same manner as for FPCA. The FPCA and 

FPLS components wereanalysis was bootstrapped with 2000 stratified replicates 

to assess their stabilityuncertainty of the shapes of the components. 
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The optimal FPCA and FPLS components (those producing the lowest MSC) were 

used as basis functions as input into functional logistic regression (33, 34) 

models (FPC-LR and FPLS-LR) along with the (non-functional) clinical covariates. 

The functional logistic regression model describes the probability of patient i, 

experiencing severe toxicity P(yi  = 1), and is given by 

   
       

       
       

  

 

   

                   
  

 

   

      

  

   

         

using the substitution for the functional linear model described in equation 7, 

where   is the intercept and     
   

 
 are the non-functional covariates with 

regression coefficients        
 

. Maximum likelihood estimation of the regression 

coefficients was performed using iteratively weighted least squares. 

 

Model comparisons 

The predictive performance and generalizability of the models (addressing aim i) 

were assessed in terms of discrimination, calibration and overall performance on 

internal validation, and additionally for the dysphagia models on external 

validation. The discriminative abilities of the models were assessed using the 

area under the receiver operating characteristic curve (AUC). Calibration was 

evaluated by the slope and intercept of a logistic regression model of the actual 

toxicity against the predicted probability of severe toxicity (35, 36). Overall 

model performance was measured using the Brier score (37),   . It is defined as 
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where    is the predicted probability,    is the actual outcome and   is the 

number of predictions. The score takes a value between 0 and 1 with lower 

values indicating better performance. 

 

For the internal validation the performancese metrics were “corrected for 

optimism” using bootstrapping with 2000 stratified replicates (38). The 

optimism-corrected performance metrics,            were calculated by 

                                

where           is the performance metric, for example AUC, calculated using all 

of the training data to, both, fit the model and evaluate its performance, and the 

optimism,   is given by  

     
 

 
                  

 

   

       

where   is the number of bootstrap replicates,         is the performance metric 

calculated using the bootstrap dataset   to, both, fit and evaluate model 

performance, and         is the performance of the model fit using the bootstrap 

dataset   evaluated on the original dataset. This provides an unbiased estimate 

of internal validity, penalizing for overfitting. Model hyper-parameter tuning, 

such as the selection of the amount of penalization for the PLR models and the 

selection of components and penalization for the FDA models, was performed for 
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each bootstrap replicate. This prevents any “data leakage” from the training data 

into the internal validation data. The dysphagia models were used to predict 

severe dysphagia probability for the external validation cohort. Those 

predictions were compared to the actual PEG-dependence data for the cohort 

and the same performance metrics calculated. The stabilities uncertainties of the 

regression coefficientsodds ratios (addressing aim ii) were assessed by 

calculating the width of their bootstrappeded  95%  percentile confidence 

intervals with 2000 replicates. Statistical analysis was performed using the 

statistical computing R language version 3.2.4 (39) and the fda.usc version 1.2.2 

(40), glmnet version 2.0 (41), rms version 4.5 (42) and val.prob.ci.2 (43)  

packages.  

 

Results 

For FPCA, the variances in the DVH data explained by the first three five 

functional principalFPCA components were 80.8%, 12.5% and 3.7%, 1.2% and 

0.6% for mucositis and 70.8%, 14.5%,  and 5.6%, 4.4% and 1.6% for dysphagia. 

For FPLS, the covariances between the DVH data and severe acute toxicity 

explained by the first three five functional partial least squaresFPLS components 

were 80.578.1%, 17.516.9%,  and 2.0%, 2.5% and 0.6% for mucositis and 

79.476.2%, 9.08.6%,  and 11.62%, 2.7% and 1.3% for dysphagia. The model 

selection resulted in only the first two FPCA or FPLS components being selected 

for the dysphagia FPCA and FPLS mucositis models and only the FPLS mucositis 

model and the first  two components being selected forin both of the 

mucositidysphagias FPCA FDA models. Penalization of 1342 was chosen by the Formatted: Font: Cambria, 12 pt

Formatted: Font: Cambria, 12 pt
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model selection for the mucositis FPCA model, 0 for the mucositis FPLS model 

and 1350 for both of the dysphagia FDA models. 

Penalization of 0 was selected for all four FDA models. 

 

Figure 1 shows the first FPCA and FPLS components for the mucositis and 

dysphagia models, respectively. Bootstrapping the FPCA and FPLS indicated that 

the shapes of the first FPCA and FPLS components were very similar irrespective 

of the random sample of patients selected. There was a general trend that the 

FPCA and FPLS loadings increased with increasing dose and sharply decreased to 

0 at the maximum dose. The FPCA components indicate that the variation, 

between patients, in the volume of OAR irradiated to a certain dose level 

increased with increasing dose level. The same trend in the FPLS components 

indicates that higher doses were more strongly associated with severe toxicity. 

The decrease in the first FPCA and FPLS component loadings at around 1.8 Gy 

(figure 1) for the dysphagia training data is indicative of reduced variation in this 

region of the DVHs between patients. This is likely to be due to the fact that most 

of the variation in the pharyngeal mucosa dose distribution between patients is 

related to the variation in volume of overlap of the two different planning target 

volumes (whose prescription dose levels correspond to the positions of the two 

peaks in the FPCA and FPLS components) with the pharyngeal mucosa. 

 

For the PMLR, FPC-LR and FPLS-LR modeling, oropharynx/oral cavity and no 

concurrent chemotherapy were removed as covariates to prevent perfect 

collinearity (correlation matrices are shown in the appendix D). Odds ratios for 

other primary disease sites are thus relative to oropharynx/oral cavity and odds 
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ratios for concurrent chemotherapy are relative to no concurrent chemotherapy. 

 

In regards to aim i, the predictive performance of the three different mucositis 

and dysphagia models, as assessed by internal and external (for dysphagia) 

validation, is displayed in table 1. The MLR, FPC-LR and FPLS-LR mucositis 

models all had modest (PLR and FPLS-LR) or modest-to-good (FPC-LR) 

discriminative ability (using the interpretation in (44)) on internal validation. 

The discriminative abilities and overall performances of the FPC-LR and FPLS-LR 

models were slightly marginally better than the PMLR model. Calibration was 

relatively poor for all of the models, with the The FPC-LR and FPLS-LR models 

overfitting the data (calibration slope less than 1) had substantially better 

calibration (slope closer to 1 and intercept closer to 0) thanand the PMLR model 

underfitting the data (calibration slope greater than 1).  However, none of the 

mucositis models demonstrated good calibration.The underfitting exhibited by 

the PLR models was likely due to over shrinkage of the regression coefficients by 

the LASSO penalization caused by high multicollinearity. It should be noted that 

the “However, none of the mucositis models demonstrated good 

calibration.correction for optimism” may have improved the calibration of the 

PLR models, as they underfit the data. 

 

The discrimination and calibration of the dysphagia models were better than the 

mucositis models. The MLRAll three dysphagia models had good discriminative 

ability on internal validation, whilst the FPC-LR and FPLS-LR models showed 

good-to-excellent discrimination. The discriminative abilities of all three models 
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increased on external validation, with the PMLR model demonstrating good-to-

excellent discrimination and the FPC-LR and FPLS-LR models showing excellent 

discrimination. The overall performance of all of the FPC-LR and FPLS-LR models 

was slightly better than the MLR model similar, both on internal and external 

validation. The FPC-LR and FPLS-LR models had substantially better calibration 

than the MLR model on internal validation. Calibration of all of the models on 

internal validation was modest, with the PLR model underfitting the data and the 

FDA models overfitting the data. The FPC-LR and FPLS-LR models had 

substantially better calibration than the PLR model on external calibration.All of 

the dysphagia models were well calibrated on the external validation data and 

had similar calibration slopes and intercept. The FPLS-LR model had slightly 

marginally better calibration than the other FPC-LR models on external 

calibration. A logistic calibration curve for the external validation of this model is 

shown in figure 2. The curve lies close to the identity line indicating good model 

calibration on external validation. 

 

Concerning aim ii, the results of the bootstrapped penalized and functional 

logistic regression odds ratios are shown in tables 2 – 4. The odds ratios for the 

dosimetric covariates in the PMLR models are highly unstablewere often set to 1 

by the LASSO penalization as evidenced by their wide bootstrapped confidence 

intervals. In the mucositis and dysphagia PMLR models none of the dosimetric 

covariates was was significantly associated with severe toxicity.  and in the 

dysphagia MLR model only the V140 was significantly associated with severe 

toxicity (although the odds ratio was outside the 95% confidence interval and 

the association with severe dysphagia was negative whereas there was a positive 
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association between 95% confidence limits and severe dysphagia). The negative 

association is likely a result of multicollinearity. Conversely, there was a 

significant association between the first FPLS component and severe toxicity in 

the mucositis and dysphagia FPLS-LR models. The first FPCA components was 

were not significantly associated with severe mucositis or dysphagia. Compared 

with the first FPLS components,The difference between this component and the 

first FPLS component for dysphagia was that slightly less weight was given to the 

higher doses. The first FPCA component was significantly associated with severe 

mucositis. It should be noted that the sign of the FPCA component loadings is 

arbitrary so the fact that the odds ratios are less than 1 does not indicate that 

there is an inverse correlation between RT dose and severe toxicity. 

 

None of the clinical covariates was significantly associated with toxicity in the 

mucositis models. Of the clinical covariates, only unknown primary disease site 

was significantly associated (negative association) with toxicity in the FPC-LR or 

FPLS-LR mucositis models. In the MLR mucositis model carboplatin was 

positively associated with severe mucositis and 1 cycle of cisplatin followed by 1 

cycle of carboplatin was negatively associated with severe toxicity.Concurrent 

Ccisplatin and carboplatin werewas significantly associated with severe acute 

dysphagia in the FPC-LR and FPLS-LR models, but not the PLR model, but not in 

the MLR model. None of the clinical covariates was significantly associated with 

severe toxicity in either of the PLR models. 

 

Discussion 

Our results demonstrate that FPC-LR and FPLS-LR produced models with 
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marginally better better predictive performancediscrimination and overall 

performance than MPLR and superior calibration (aim i). They also show that 

FPCA and FPLS are appropriate methods for highly correlated DVH data to 

provide robust estimates of dose-response associations, to inform RT planning, 

in the presence of highly correlated DVH data (aim ii). We, therefore, encourage 

the use of FDA methods in future NTCP modeling studies. We suggest that our 

externally validated dysphagia FPLS-LR model is suitable for clinical decision-

support and . To the best of our knowledge, theyit represents the severe acute 

mucositis and dysphagia models with the best predictive performance to date. 

Previous models of severe dysphagia during or shortly following RT that 

measured discrimination had AUC values of 0.62 (45) and 0.74 (46). These 

studies did not perform external validation. that ourThe mucositis FPLSC-LR 

model should be externally validated to determine its potential to aid clinical 

decision-making. To the best of our knowledge, they represent the severe acute 

mucositis and dysphagia models with the best predictive performance to date. 

Both models are available at https://github.com/XXXX. 

 

The shapes of the first FPLS components indicate that both severe mucositis and 

dysphagia are most strongly associated with the volume of the oral cavity or 

pharyngeal mucosa receiving high and intermediate fractional doses (greater 

than approximately 1.0 Gy). Therefore, RT planning interventions aiming to 

minimize the incidence of severe acute mucositis and dysphagia should minimize 

the volumes of oral cavity and pharyngeal mucosa receiving high and 

intermediate fractional doses, without compromising other aspects of the plan, 
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such as target coverage. Whilst this is intuitively unsurprising, many RT planning 

protocols, such as RTOG 0912, RTOG 0920 and RTOG 1216, set planning 

objectives based on OAR mean doses, which give equal importance to low doses 

and high doses. This suboptimal approach is likely taken due to the common use 

of mean dose, to achieve dimensionality reduction, in studies aiming to elucidate 

dose-response relationships. The first FPCA components, which are 

unsupervised, had similar shapes to the first FPLS components, which are 

supervised, suggesting that, for this dataset, the variation in severity of toxicities 

is related to the variations in the DVHs. This suggestion is further supported by 

the fact that the MSC for FPCA selected the first FPCA component (the one 

describing the most variation in the DVH data). This will not necessarily be the 

case for all datasets. The 95% confidence intervals of the first FPLS components 

are slightly wider than the first FPCA components (figure 1) due to the presence 

of patients who did not follow the general dose-response trend (i.e. received 

lower doses, but experienced severe toxicity and vice versa). The substantial 

penalization of the instability of the PMLR odds ratios (many often being set to 1) 

demonstrates the severe limitations of using MLR PLR models to infer 

associations between correlated dosimetric covariates and toxicity and, hence, 

we do not recommend its use in this context. Unlike the FDA models, the PMLR 

models were unable to identify that high doses, greater than approximately 1.0 

Gy per fraction, had higher correlations with toxicity than low doses, as would be 

intuitively expected. 
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The FDA models were also able to identify an association between concurrent 

cisplatin and carboplatin and severe acute dysphagia. The associations between 

concurrent chemotherapycisplatin and dysphagia in the MLR PLR model were 

was not significant (although the size of the odds ratios was similar to that in the 

FDA models). This may be due to the fact that concurrent chemotherapy was 

correlated to with the DVH metrics (which have highly unstable odds ratios) due 

to patients with parotid gland primary tumors (who receive unilateral, rather 

than bilateral, irradiation and, hence, lower pharyngeal mucosa doses) not 

receiving concurrent chemotherapy. The number of patients receiving 

concurrent carboplatin or a combination of cisplatin and carboplatin was low 

(appendix C), leading to large uncertainties in the odds ratios for those 

covariates. The FDA models featured large uncertainties for the odds ratios of 

clinical covariates that were highly correlated with other covariates or which 

applied to small numbers of patients. It should be noted that the regression 

coefficients of the clinical covariates were not penalized in the FDA models. 

 

There have been very few previous attempts to apply FDA to NTCP modeling (15, 

47, 48). These have used either spline basis functions or FPCA (15). To the best 

of our knowledge, this study represents the first application of FPLS to NTCP 

modeling. Many previous NTCP modeling studies have not addressed the 

problem of instability the high uncertainties of the model regression coefficients 

caused by multicollinearity. Investigators who have recognized this limitation 

have avoided the multicollinearity problem by reducing the data describing 

heterogeneous dose distributions to simple summary metrics, such as mean or 
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maximum dose. However, this leads to suboptimal recommendations for RT 

planning. For example, using mean dose to optimize or assess RT plans gives 

equal weight to all dose levels, whereas preferentially minimizing the volume of 

an OAR receiving high doses rather low doses is, in fact, likely to result in a lower 

toxicity incidence. 

 

A limitation of our approach is that, as the technique is an empirical data-driven 

method, there are decreases in the regression coefficient with increasing dose, 

which does not have a biophysical rationale. This should be carefully considered 

when interpreting dose-response associations from these components. This 

limitation could be overcome through adopting a Bayesian approach whereby 

prior knowledge is provided to the model dictating that with increasing dose 

level the regression coefficient can only remain constant or increase, and not 

decrease. Mathematically, this would take the form of a monotonically increasing 

prior function (47). The slight difference in the dysphagia scoring systems 

between the training and external validation cohorts may have reduced the 

performances of the models on external validation. However, the models 

performed at least as well on external validation as internal validation. The 

relatively small size of the external validation cohort should also be considered 

as a potential limitation. 

 

In the future, FPCA or FPLS could be applied to the 3D dose distribution (rather 

than the DVH) (15), either to a single OAR or the entire dose grid, encompassing 

multiple OARs. This would allow associations between spatial aspects of the dose 
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distribution and toxicity to be explored. This would require accurate mapping of 

the 3D dose distributions onto a common reference. 

 

Conclusions 

FPC-LR and FPLS-LR models of severe acute mucositis and dysphagia had 

marginally better predictive performancediscrimination than PMLR on internal 

validation. FDA models of dysphagia had marginally improved discrimination 

and substantially superior calibration than PLR on external validation indicating 

potential advantages and should be considered for clinical decision-support. 

FPCA and FPLS enable robust estimates of dose-response associations in the 

context of correlated dose data. This permits understanding of the most 

beneficial dose levels to spare in RT planning. Minimizing the volumes of the oral 

cavity and pharyngeal mucosa receiving high and intermediate doses is expected 

to reduce the incidence of severe acute mucositis and dysphagia. We recommend 

that FDA methods be applied to future NTCP modeling studies. 
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Figure and Table Captions 

Figure 1: First functional principal component (left column) and first functional 

partial least squares component (right column) for mucositis training (top row), 

dysphagia training (middle row) and dysphagia external validation (bottom row) 

data bootstrapped with 2000 stratified replicates. Each line represents one 

bootstrap sample. The functional principal components show the variance in the 

patient DVHs over the range of dose levels. The functional partial least squares 

components show the covariance between the patient DVHs and toxicity 

outcomes over the range of dose levels. 

 

Figure 2: Logistic calibration curve of the FPLS-LR dysphagia model predictions 

against actual toxicity outcome for the external validation data. The relative 

frequency distribution of the raw predicted probabilities along with the actual 

outcome (0 = non-severe dysphagia, 1 = severe dysphagia) are displayed at the 
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bottom of the figure. 

 

Table 1: Predictive performance of the mucositis and dysphagia models on 

internal validation (corrected for optimism by bootstrapping with 2000 

stratified replicates) and external validation (for the dysphagia models). For the 

dysphagia models the metrics of predictive performance are given as internal 

validation/external validation. AUC – area under receiver operating 

characteristic curve; PMLR – penalized multivariable logistic regression; FPC-LR 

– functional principal component-logistic regression; FPLS-LR – functional 

partial least squares-logistic regression. 

 

Table 2: Odds ratios for penalized multivariable logistic regression models. 95% 

CI – 95 percentile confidence intervals calculated by bootstrapping the model 

fitting with 2000 stratified replicates; * - statistically significant at the α = 0.05 

level; definitiveRT – definitive radiotherapy; indChemo – induction 

chemotherapy; cisCarbo – one cycle of cisplatin followed by one cycle of 

carboplatin; Vx – volume of organ receiving x cGy of radiation per fraction. 

 

Table 3: Odds ratios for functional principal component-logistic regression 

models. 95% CI – 95 percentile confidence intervals calculated by bootstrapping 

the model fitting with 2000 stratified replicates; * - statistically significant at the 

α = 0.05 level; definitiveRT – definitive radiotherapy; indChemo – induction 

chemotherapy; cisCarbo – one cycle of cisplatin followed by one cycle of 
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carboplatin; dvh.PC1DVH FPCx –  first functional principal component x of dose-

volume histogram data. The sign of the FPC loadings is arbitrary so the fact that 

the odds ratios are less than 1 does not indicate that there is an inverse 

correlation between RT dose and severe toxicity. 

 

Table 4: Odds ratios for functional partial least squares-logistic regression 

models. 95% CI – 95 percentile confidence intervals calculated by bootstrapping 

the model fitting with 2000 stratified replicates; * - statistically significant at the 

α = 0.05 level; definitiveRT – definitive radiotherapy; indChemo – induction 

chemotherapy; cisCarbo – one cycle of cisplatin followed by one cycle of 

carboplatin; dvhDVH. FPLSx – functional partial least squares component x of 

dose-volume histogram data. 
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Manuscript 

 

Abstract 

 

Purpose 

Current normal tissue complication probability (NTCP) modeling using logistic 

regression suffers from bias and high uncertainty in the presence of highly 

correlated radiation therapy (RT) dose data. This hinders robust estimates of 

dose-response associations and, hence, optimal normal tissue-sparing strategies 

from being elucidated. Using functional data analysis (FDA) to reduce the 

dimensionality of the dose data could overcome this limitation. 

 

Methods and Materials 

FDA was applied to modeling of severe acute mucositis and dysphagia resulting 

from head and neck RT. Functional partial least squares regression (FPLS) and 

functional principal component analysis (FPCA) were used for dimensionality 

reduction of the dose-volume histogram data. The reduced dose data were input 

into functional logistic regression models (FPLS-LR and FPC-LR) along with 

clinical data. This approach was compared with penalized logistic regression 

(PLR) in terms of predictive performance and the significance of treatment 

covariate-response associations, assessed using bootstrapping. 

 

Results 

The area under the receiver operating characteristic curves (AUC) for the PLR, 

FPC-LR and FPLS-LR models were 0.65, 0.69 and 0.67 for mucositis (internal 

*BLINDED Revised Manuscript (Unmarked)
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validation) and 0.81, 0.83 and 0.83 for dysphagia (external validation), 

respectively. The calibration slopes/intercepts for the PLR, FPC-LR and FPLS-LR 

models were 1.6/-0.67, 0.45/0.47 and 0.40/0.49 for mucositis (internal 

validation) and 2.5/-0.96, 0.79/-0.04 and 0.79/0.00 for dysphagia (external 

validation). The bootstrapped odds ratios indicated significant associations 

between RT dose and severe toxicity in the mucositis and dysphagia FDA models. 

Cisplatin was significantly associated with severe dysphagia in the FDA models. 

None of the covariates was significantly associated with severe toxicity in the 

PLR models. Dose levels greater than approximately 1.0 Gy/fraction were most 

strongly associated with severe acute mucositis and dysphagia in the FDA 

models. 

 

Conclusions 

FPLS and FPCA marginally improved predictive performance compared with PLR 

and provided robust dose-response associations. FDA is recommended for use in 

NTCP modeling. 

 

Introduction 

Normal tissue complication probability (NTCP) modeling uses radiation therapy 

(RT) dose data, often in combination with clinical and biological data, to 

construct statistical models of RT-induced toxicity. There are two distinct aims of 

NTCP modeling: (i) accurate prediction of toxicity outcomes for individual 

patients and (ii) estimates of associations between treatment covariates and 

toxicity. Accurate prediction enables clinical decision-support (1), treatment 

plan comparison, treatment modality selection (2) and personalized dose 
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prescription (3). Robust estimates of associations between covariates and 

toxicity can inform the design of RT planning interventions aimed at reducing 

toxicity. 

 

A major weakness of many NTCP models is suboptimal dimensionality reduction 

of the RT dose distribution (reducing the number of variables used to describe 

the dose distribution from all of the points on the 3D dose grid to a small number 

of summary metrics). In order to input dose data into statistical models the 3D 

dose distribution delivered to an organ at risk (OAR) is reduced to a single or 

series of scalar metrics, for example maximum dose, mean dose or multiple 

points sampled from the dose-volume histogram (DVH), such as the volume of an 

OAR receiving at least x cGy (Vx). Ideally, information from each dose level 

should be explicitly input into the model to prevent loss of potentially important 

information. However, due to the nature of the dose deposition within the 

patient, adjacent dose levels are very highly correlated (4) (appendix D). This is 

problematic for many statistical modeling methods, such as (the commonly 

used) logistic regression, which often exhibit biased regression coefficients with 

large standard errors in the presence of collinearity (5). The structure of the 

correlations is often consistent between patients as the volumes of an OAR 

receiving adjacent dose levels are highly correlated for all patients. Therefore, if 

the same or similar treatment techniques are employed, this does not necessarily 

prevent the models from being able to accurately predict outcomes prospectively 

for new patients. However, it does result in the regression coefficients of the 

dosimetric covariates being biased and having large standard errors. The 
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apparent regression coefficients of the dosimetric covariates do not generalize 

well to new patients and, hence, should not be used to determine the strength of 

associations between correlated dose metrics and toxicity, as is commonly done 

(6). 

 

A small number of studies have attempted to address this issue through using 

principal component analysis (PCA) to reduce the dimensionality of the DVH 

data (7–12). However, PCA has been shown to perform poorly when the number 

of predictors (DVH points) is comparable to, or larger than, the number of 

observations (patients), as is often the case in NTCP modeling (9, 11). Functional 

data analysis (FDA) is a statistical framework for analyzing continuous curves 

rather than discrete measurements (13). Treating an entire curve, for example, a 

DVH curve, as a single entity removes the problem of correlation (14) and 

explicitly retains the relationship between points on the DVH curve, which 

standard, non-functional, statistical techniques do not capture. Data are 

represented as curves through the use of basis functions. There are different 

types of basis function including a priori fixed bases, such as splines or wavelets, 

and data-driven bases, for example functional principal component analysis 

(FPCA). Functional logistic regression uses functional data to predict binary 

outcomes. It is well suited to NTCP modeling due to the continuous nature of 

DVH curves and the binary nature of toxicity endpoints. Functional logistic 

regression has recently been applied to NTCP modeling by Benadjaoud et al. 

(15), using FPCA (16) for dimensionality reduction of the DVH data. However, 

FPCA (and non-functional PCA) is unsupervised (does not use outcome data), 
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which may be a limitation for NTCP modeling. The FPCA components with the 

most variance in the RT dose data may not be the ones that are most strongly 

associated with the toxicity outcome of interest. Functional partial least squares 

regression (FPLS) (17, 18) is a supervised analogue of FPCA. It overcomes this 

limitation through generating uncorrelated covariates (FPLS components) in the 

linear space of the predictors, accounting for the correlation between those 

predictors and outcome, in this case toxicity. As PLS (and FPLS) uses the 

outcome (toxicity) data in establishing the components it often outperforms PCA 

(and FPCA) in prediction tasks (19). However, due to the inclusion of outcome 

data, it is more susceptible to overfitting. 

 

In this study we applied FPLS and FPCA to NTCP modeling of severe acute 

mucositis and dysphagia. We compared our novel application of FDA with non-

functional penalized logistic regression (PLR) models. The aims of this study 

were to (i) determine whether using FPLS or FPCA to reduce the DVH data would 

improve predictive performance compared with PLR and (ii) assess whether 

FPLS or FPCA would lead to more robust estimates of associations between DVH 

data and toxicity than PLR. 

 

Methods and Materials 

Patient data 

Data from 351 head and neck RT patients, enrolled in one of the six different 

clinical trials (20–24)[ISRCTN XXXX], were used to train and internally validate 

severe acute mucositis and dysphagia NTCP models. Data from the same patients 
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were used for the modeling of both toxicities. This dataset is described in 

appendix A and [XXXX et al. 2016a (in press), XXXX et al. 2016b (under review)]. 

Mucositis and dysphagia were both consistently scored for all studies using the 

Common Terminology Criteria for Adverse Events (CTCAE) versions 2 (25) or 3 

(26) instruments. The mucositis and dysphagia grading systems are near 

equivalent in both versions. Both toxicities were recorded, prospectively, for all 

patients prior to the start of RT, weekly during RT, and at 1 - 4 and 8 weeks post-

RT by head and neck cancer specialists, trained in the use of the scoring systems, 

using standard trial protocols. The toxicity outcome was defined as the peak 

grade of toxicity, dichotomized into grade 3 or worse (severe) and less than 

grade 3 (non-severe). Grade 3 mucositis corresponds to confluent mucositis and 

grade 3 dysphagia corresponds to feeding tube dependence for more than 24 

hours. Patients with baseline toxicity were excluded from the analysis. To reduce 

bias at the expense of statistical power, patients with any missing toxicity scores 

and a peak score below 3 were excluded from the analysis. A detailed 

justification for this approach is provided in appendix B and [XXXX et al. 2016a 

(in press)]. Of the 351 patients, 183 met the inclusion criteria for mucositis 

modeling (severe mucositis incidence = 73%) and 179 met the inclusion criteria 

for dysphagia modeling (severe dysphagia incidence = 66%). Ninety head and 

neck RT patients treated at XXXX with acute dysphagia data available were used 

as an external validation cohort for the dysphagia models (severe dysphagia 

incidence = 48%). In this cohort severe acute dysphagia was defined as the 

requirement for percutaneous endoscopic gastrostomy (PEG) tube insertion. It 

should be noted that there was a slight difference in the scoring systems due to 

the data available. All centers involved in treating patients included in this study 
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employed a reactive approach to PEG-insertion, that is, delaying insertion until 

deemed clinically necessary. 

 

Induction chemotherapy (yes or no), concurrent chemotherapy regime 

(cisplatin, carboplatin, one cycle of cisplatin followed by one cycle of carboplatin 

or none), definitive versus post-operative RT, primary disease site 

(oropharynx/oral cavity, nasopharynx/nasal cavity, hypopharynx/larynx, 

parotid gland or unknown primary), age and sex were also included as 

covariates in the models. Concurrent chemotherapy was administered in two 

cycles, on day 1 and day 29 of RT. A comparison of the clinical covariate data in 

the training and external validation data sets is provided in appendix C. 

 

RT dose data 

The extended oral cavity [XXXX et al. 2016a (in press)] and pharyngeal mucosa 

[XXXX et al. 2016b (under review)] were contoured by clinical oncologists and 

used as OARs in the mucositis and dysphagia models, respectively. The physical 

dose distribution was converted to the fractional dose distribution (physical 

dose delivered in each fraction). This has been shown to be appropriate for NTCP 

modeling of acute toxicity (27) as the toxicities often develop before the total 

dose is administered. The fractional dose distribution was described by the 

normalized cumulative dose-volume histogram (DVH). Preliminary work 

indicated that corrections for different fractionation regimens based on 

radiobiological models made negligible difference to the results. This is due to 
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the fact that the fractionation regimens employed (appendix A) were similar. An 

alternative approach would be to use the cumulative dose delivered up to the 

appearance of the toxicity endpoint. However, subjective choice of the treating 

clinicians of when to initiate a feeding tube intervention would lead to 

substantial noise the in the cumulative dose delivered up to the time of 

intervention. 

 

Penalized logistic regression model 

For the non-functional model the fractional DVH curves were discretely sampled 

from 0.2 Gy to 2.6 Gy at 0.2 Gy intervals. This sampling was chosen to encompass 

the entire range of OAR doses with enough granularity to capture the shapes of 

the DVHs. These DVH measurements were input into a PLR model along with the 

clinical covariates. Penalization was performed using the least absolute 

shrinkage and selection operator (LASSO) (28). LASSO reduces the magnitude of 

the regression coefficients, setting some to 0, in order to prevent overfitting. In 

the context of correlated variables, it reduces the impact of multicollinearity. The 

penalization strength was selected by 10-fold cross-validation with the value 

producing the highest average (over all of the cross-validation folds) area under 

the receiver operating characteristic curve (AUC) on cross-validation selected. 

 

Functional data analysis 

The fractional DVH curves (sampled from 0 Gy to 2.60 Gy in 0.01 Gy intervals) 

were represented using penalized FPCA (16, 29) and penalized FPLS (17, 30) 
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basis functions. FPCA is a dimensionality reduction technique that represents the 

functional DVH data as orthonormal vector components explaining the maximum 

variance between patients in the DVH curves. The orthonormality constraint 

removes the collinearity in the dose metrics used for subsequent modeling and, 

hence, overcomes the limitations associated with modeling collinear data. The 

functional principal components           
  represent the functional DVH data 

(normalized volume as a function of dose for patient i),       as the sum of the 

eigenfunctions,       weighted by their coefficients,    : 

                    

 

   

         

where      is the mean       and     describes the score for functional principal 

component k for the DVH of patient i and is given by 

                                  

The eigenfunctions,        
  and their corresponding eigenvalues (describing the 

amount of variance explained by each eigenfunction),        , are 

determined by eigendecomposition (factorization into eigenvalues and 

eigenvectors) of the covariance operator,   where 

                                                       
 
         

where       is the mean volume receiving dose   . V(d) can be approximated by 

a small number of principal components,   , assuming that       for     , to 

achieve dimensionality reduction to a small number of basis functions efficiently 

describing the variation between patients in the DVH data: 
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The eigenfunctions and their coefficients can then be used in subsequent 

analyses. The FPCA components can be used to estimate a toxicity outcome for 

patient i,    using a functional linear model (29, 31): 

                             

where   is the intercept and    is a centered random error. 

When FPCA is used to describe the DVH data β(d) represents a “weighting 

function” describing the amount of variation between patients at all dose levels 

on the DVH. It can be approximated by kn eigenfunctions: 

              

 

   

         

  

   

        

An estimate of the response,     can be made using (derivation in (29)): 

                            

  

   

         

where 

          
   
  

   
   

    
  

    
           

The model was fit to the data, placing penalization on the curvature (second 

derivative) of the eigenfunctions, by 
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where   is the amount of penalization, P is the vector (0, 0, 1) that defines the 

penalty matrix such that the second derivative (curvature) is penalized and y is 

the actual response data. The choice of which components to include (within the 

first 5 components) and the magnitude of the roughness penalty,   to apply 

(selected from a set of values in the range from 0 to 1350), to best estimate the 

toxicity outcomes, were determined using model selection criteria (MSC) (16) 

with the Bayesian information criterion: 

             
 

 
         

 

 

   

  
         

  
          

where   is the number of patients and    is the actual outcome (toxicity) data. 

This penalizes the model complexity to reduce overfitting. Models with different 

values of   and   were generated and the combination of values that minimized 

MSC was selected. The FPCA or FPLS components included affect the smoothness 

of the estimate of the      function as the dominant mode of variation tends to 

be smooth and roughness tends to increase for subsequent modes of variation, in 

part due to the orthogonality constraint. 

 

FPLS is similar to FPCA, but uses the response (toxicity) data in constructing the 

FPLS components (17),          
 

 in order to establish orthogonal components 

that have maximum covariance to the response. This is achieved through 

maximizing the squared covariance between       and the response, yi with the 
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constraint that all components are mutually orthogonal (30). This takes the place 

of the eigendecomposition used for FPCA, described in equation 3. The iterative 

algorithm used to compute the FPLS components is described in (32). When 

FPLS is used for dimensionality reduction of the DVH data, β(d) can be 

interpreted as a data-driven “weighting function” for the importance of each 

dose level in causing severe toxicity. It is important to consider that, as this is a 

data-driven approach, the “weighting function” is an estimate of the “true 

weighting function” over the range of available data and is influenced by the 

structure (i.e. distribution in dose-volume space) of the available data. MSC was 

performed for the FPLS analysis in the same manner as for FPCA. The FPCA and 

FPLS analysis was bootstrapped with 2000 replicates to assess the uncertainty of 

the shapes of the components. 

 

The optimal FPCA and FPLS components (those producing the lowest MSC) were 

used as basis functions as input into functional logistic regression (33, 34) 

models (FPC-LR and FPLS-LR) along with the (non-functional) clinical covariates. 

The functional logistic regression model describes the probability of patient i, 

experiencing severe toxicity P(yi  = 1), and is given by 

   
       

       
       

  

 

   

                   
  

 

   

      

  

   

         

using the substitution for the functional linear model described in equation 7, 

where   is the intercept and     
   

 
 are the non-functional covariates with 

regression coefficients        
 

. Maximum likelihood estimation of the regression 
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coefficients was performed using iteratively weighted least squares. 

 

Model comparisons 

The predictive performance and generalizability of the models (addressing aim i) 

were assessed in terms of discrimination, calibration and overall performance on 

internal validation, and additionally for the dysphagia models on external 

validation. The discriminative abilities of the models were assessed using the 

AUC. Calibration was evaluated by the slope and intercept of a logistic regression 

model of the actual toxicity against the predicted probability of severe toxicity 

(35, 36). Overall model performance was measured using the Brier score (37), 

  . It is defined as 

     
 

 
        

 

 

   

        

where    is the predicted probability,    is the actual outcome and   is the 

number of predictions. The score takes a value between 0 and 1 with lower 

values indicating better performance. 

 

For the internal validation the performance metrics were “corrected for 

optimism” using bootstrapping with 2000 replicates (38). The optimism-

corrected performance metrics,            were calculated by 
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where           is the performance metric, for example AUC, calculated using all 

of the training data to, both, fit the model and evaluate its performance, and the 

optimism,   is given by  

     
 

 
                  

 

   

       

where   is the number of bootstrap replicates,         is the performance metric 

calculated using the bootstrap dataset   to, both, fit and evaluate model 

performance, and         is the performance of the model fit using the bootstrap 

dataset   evaluated on the original dataset. This provides an unbiased estimate 

of internal validity, penalizing for overfitting. Model hyper-parameter tuning, 

such as the selection of the amount of penalization for the PLR models and the 

selection of components and penalization for the FDA models, was performed for 

each bootstrap replicate. This prevents any “data leakage” from the training data 

into the internal validation data. The dysphagia models were used to predict 

severe dysphagia probability for the external validation cohort. Those 

predictions were compared to the actual PEG-dependence data for the cohort 

and the same performance metrics calculated. The uncertainties of the odds 

ratios (addressing aim ii) were assessed by calculating bootstrapped 95 

percentile confidence intervals with 2000 replicates. Statistical analysis was 

performed using the statistical computing R language version 3.2.4 (39) and the 

fda.usc version 1.2.2 (40), glmnet version 2.0 (41), rms version 4.5 (42) and 

val.prob.ci.2 (43)  packages. 
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Results 

For FPCA, the variances in the DVH data explained by the first five FPCA 

components were 80.8%, 12.5% and 3.7%, 1.2% and 0.6% for mucositis and 

70.8%, 14.5%, 5.6%, 4.4% and 1.6% for dysphagia. For FPLS, the variances 

explained by the first five FPLS components were 78.1%, 16.9%, 2.0%, 2.5% and 

0.6% for mucositis and 76.2%, 8.6%, 11.2%, 2.7% and 1.3% for dysphagia. The 

model selection resulted in the first two components being selected for the FPCA 

and FPLS mucositis models and only the first component selected in both of the 

dysphagia FDA models. Penalization of 1342 was chosen by the model selection 

for the mucositis FPCA model, 0 for the mucositis FPLS model and 1350 for both 

of the dysphagia FDA models. 

 

Figure 1 shows the first FPCA and FPLS components for the mucositis and 

dysphagia models, respectively. Bootstrapping the FPCA and FPLS indicated that 

the shapes of the first FPCA and FPLS components were very similar irrespective 

of the random sample of patients selected. There was a general trend that the 

FPCA and FPLS loadings increased with increasing dose and sharply decreased to 

0 at the maximum dose. The FPCA components indicate that the variation, 

between patients, in the volume of OAR irradiated to a certain dose level 

increased with increasing dose level. The same trend in the FPLS components 

indicates that higher doses were more strongly associated with severe toxicity. 

The decrease in the first FPCA and FPLS component loadings at around 1.8 Gy 

(figure 1) for the dysphagia training data is indicative of reduced variation in this 

region of the DVHs between patients. This is likely to be due to the fact that most 

of the variation in the pharyngeal mucosa dose distribution between patients is 
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related to the variation in volume of overlap of the two different planning target 

volumes (whose prescription dose levels correspond to the positions of the two 

peaks in the FPCA and FPLS components) with the pharyngeal mucosa. 

 

For the PLR, FPC-LR and FPLS-LR modeling, oropharynx/oral cavity and no 

concurrent chemotherapy were removed as covariates to prevent perfect 

collinearity (correlation matrices are shown in appendix D). Odds ratios for 

other primary disease sites are thus relative to oropharynx/oral cavity and odds 

ratios for concurrent chemotherapy are relative to no concurrent chemotherapy. 

 

In regards to aim i, the predictive performance of the three different mucositis 

and dysphagia models, as assessed by internal and external (for dysphagia) 

validation, is displayed in table 1. The mucositis models had modest (PLR and 

FPLS-LR) or modest-to-good (FPC-LR) discriminative ability (using the 

interpretation in (44)) on internal validation. The discriminative abilities and 

overall performances of the FPC-LR and FPLS-LR models were marginally better 

than the PLR model. Calibration was relatively poor for all of the models, with 

the FPC-LR and FPLS-LR models overfitting the data (calibration slope less than 

1) and the PLR model underfitting the data (calibration slope greater than 1). 

The underfitting exhibited by the PLR models was likely due to over shrinkage of 

the regression coefficients by the LASSO penalization caused by high 

multicollinearity. It should be noted that the “correction for optimism” may have 

improved the calibration of the PLR models, as they underfit the data. 
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The discrimination and calibration of the dysphagia models were better than the 

mucositis models. All three dysphagia models had good discriminative ability on 

internal validation. The discriminative abilities of all three models increased on 

external validation, with the PLR model demonstrating good-to-excellent 

discrimination and the FPC-LR and FPLS-LR models showing excellent 

discrimination. The overall performance of all of the models was similar, both on 

internal and external validation. Calibration of all of the models on internal 

validation was modest, with the PLR model underfitting the data and the FDA 

models overfitting the data. The FPC-LR and FPLS-LR models had substantially 

better calibration than the PLR model on external calibration. The FPLS-LR 

model had marginally better calibration than the FPC-LR model on external 

calibration. A logistic calibration curve for the external validation of this model is 

shown in figure 2. The curve lies close to the identity line indicating good model 

calibration on external validation. 

 

Concerning aim ii, the results of the bootstrapped penalized and functional 

logistic regression odds ratios are shown in tables 2 – 4. The odds ratios for the 

covariates in the PLR models were often set to 1 by the LASSO penalization. In 

the mucositis and dysphagia PLR models none of the covariates was significantly 

associated with severe toxicity. Conversely, there was a significant association 

between the first FPLS component and severe toxicity in the mucositis and 

dysphagia FPLS-LR models. The first FPCA components were not significantly 

associated with severe mucositis or dysphagia. Compared with the first FPLS 

components, slightly less weight was given to the higher doses. It should be 

noted that the sign of the FPCA component loadings is arbitrary so the fact that 
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the odds ratios are less than 1 does not indicate that there is an inverse 

correlation between RT dose and severe toxicity. 

 

None of the clinical covariates was significantly associated with toxicity in the 

mucositis models. Concurrent cisplatin was significantly associated with severe 

acute dysphagia in the FPC-LR and FPLS-LR models, but not the PLR model. None 

of the clinical covariates was significantly associated with severe toxicity in 

either of the PLR models. 

 

Discussion 

Our results demonstrate that FPC-LR and FPLS-LR produced models with 

marginally better discrimination and overall performance than PLR and superior 

calibration (aim i). They also show that FPCA and FPLS are appropriate methods 

to provide robust estimates of dose-response associations, to inform RT 

planning, in the presence of highly correlated DVH data (aim ii). We, therefore, 

encourage the use of FDA methods in future NTCP modeling studies. We suggest 

that our externally validated dysphagia FPLS-LR model is suitable for clinical 

decision-support. To the best of our knowledge, it represents the severe acute 

dysphagia model with the best predictive performance to date. Previous models 

of severe dysphagia during or shortly following RT that measured discrimination 

had AUC values of 0.62 (45) and 0.74 (46). These studies did not perform 

external validation. The mucositis FPC-LR model should be externally validated 

to determine its potential to aid clinical decision-making. Both models are 

available at https://github.com/XXXX. 
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The shapes of the first FPLS components indicate that both severe mucositis and 

dysphagia are most strongly associated with the volume of the oral cavity or 

pharyngeal mucosa receiving high and intermediate fractional doses (greater 

than approximately 1.0 Gy). Therefore, RT planning interventions aiming to 

minimize the incidence of severe acute mucositis and dysphagia should minimize 

the volumes of oral cavity and pharyngeal mucosa receiving high and 

intermediate fractional doses, without compromising other aspects of the plan, 

such as target coverage. Whilst this is intuitively unsurprising, many RT planning 

protocols, such as RTOG 0912, RTOG 0920 and RTOG 1216, set planning 

objectives based on OAR mean doses, which give equal importance to low doses 

and high doses. This suboptimal approach is likely taken due to the common use 

of mean dose, to achieve dimensionality reduction, in studies aiming to elucidate 

dose-response relationships. The first FPCA components, which are 

unsupervised, had similar shapes to the first FPLS components, which are 

supervised, suggesting that, for this dataset, the variation in severity of toxicities 

is related to the variations in the DVHs. This suggestion is further supported by 

the fact that the MSC for FPCA selected the first FPCA component (the one 

describing the most variation in the DVH data). This will not necessarily be the 

case for all datasets. The 95% confidence intervals of the first FPLS components 

are slightly wider than the first FPCA components (figure 1) due to the presence 

of patients who did not follow the general dose-response trend (i.e. received 

lower doses, but experienced severe toxicity and vice versa). The substantial 

penalization of the PLR odds ratios (many often being set to 1) demonstrate the 
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limitations of using PLR models to infer associations between correlated 

dosimetric covariates and toxicity and, hence, we do not recommend its use in 

this context. Unlike the FDA models, the PLR models were unable to identify that 

high doses, greater than approximately 1.0 Gy per fraction, had higher 

correlations with toxicity than low doses, as would be intuitively expected. 

 

The FDA models were also able to identify an association between concurrent 

cisplatin and severe acute dysphagia. The associations between cisplatin and 

dysphagia in the PLR model was not significant. This may be due to the fact that 

concurrent chemotherapy was correlated with the DVH metrics due to patients 

with parotid gland primary tumors (who receive unilateral, rather than bilateral, 

irradiation and, hence, lower pharyngeal mucosa doses) not receiving 

concurrent chemotherapy. The number of patients receiving concurrent 

carboplatin or a combination of cisplatin and carboplatin was low (appendix C), 

leading to large uncertainties in the odds ratios for those covariates. The FDA 

models featured large uncertainties for the odds ratios of clinical covariates that 

were highly correlated with other covariates or which applied to small numbers 

of patients. It should be noted that the regression coefficients of the clinical 

covariates were not penalized in the FDA models. 

 

There have been very few previous attempts to apply FDA to NTCP modeling (15, 

47, 48). These have used either spline basis functions or FPCA (15). To the best 

of our knowledge, this study represents the first application of FPLS to NTCP 

modeling. Many previous NTCP modeling studies have not addressed the 
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problem of the high uncertainties of the model regression coefficients caused by 

multicollinearity. Investigators who have recognized this limitation have avoided 

the multicollinearity problem by reducing the data describing heterogeneous 

dose distributions to simple summary metrics, such as mean or maximum dose. 

However, this leads to suboptimal recommendations for RT planning. For 

example, using mean dose to optimize or assess RT plans gives equal weight to 

all dose levels, whereas preferentially minimizing the volume of an OAR 

receiving high doses rather low doses is, in fact, likely to result in a lower toxicity 

incidence. 

 

A limitation of our approach is that, as the technique is an empirical data-driven 

method, there are decreases in the regression coefficient with increasing dose, 

which does not have a biophysical rationale. This should be carefully considered 

when interpreting dose-response associations from these components. This 

limitation could be overcome through adopting a Bayesian approach whereby 

prior knowledge is provided to the model dictating that with increasing dose 

level the regression coefficient can only remain constant or increase, and not 

decrease. Mathematically, this would take the form of a monotonically increasing 

prior function (47). The slight difference in the dysphagia scoring systems 

between the training and external validation cohorts may have reduced the 

performances of the models on external validation. However, the models 

performed at least as well on external validation as internal validation. The 

relatively small size of the external validation cohort should also be considered 

as a potential limitation. 
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In the future, FPCA or FPLS could be applied to the 3D dose distribution (rather 

than the DVH) (15), either to a single OAR or the entire dose grid, encompassing 

multiple OARs. This would allow associations between spatial aspects of the dose 

distribution and toxicity to be explored. This would require accurate mapping of 

the 3D dose distributions onto a common reference. 

 

Conclusions 

FPC-LR and FPLS-LR models of severe acute mucositis had marginally better 

discrimination than PLR on internal validation. FDA models of dysphagia had 

marginally improved discrimination and substantially superior calibration than 

PLR on external validation indicating potential advantages for clinical decision-

support. FPCA and FPLS enable robust estimates of dose-response associations 

in the context of correlated dose data. This permits understanding of the most 

beneficial dose levels to spare in RT planning. Minimizing the volumes of the oral 

cavity and pharyngeal mucosa receiving high and intermediate doses is expected 

to reduce the incidence of severe acute mucositis and dysphagia. We recommend 

that FDA methods be applied to future NTCP modeling studies. 
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Figure and Table Captions 

Figure 1: First functional principal component (left column) and first functional 

partial least squares component (right column) for mucositis training (top row), 

dysphagia training (middle row) and dysphagia external validation (bottom row) 

data bootstrapped with 2000 replicates. Each line represents one bootstrap 

sample. The functional principal components show the variance in the patient 

DVHs over the range of dose levels. The functional partial least squares 

components show the covariance between the patient DVHs and toxicity 

outcomes over the range of dose levels. 

 

Figure 2: Logistic calibration curve of the FPLS-LR dysphagia model predictions 

against actual toxicity outcome for the external validation data. The relative 
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frequency distribution of the raw predicted probabilities along with the actual 

outcome (0 = non-severe dysphagia, 1 = severe dysphagia) are displayed at the 

bottom of the figure. 

 

Table 1: Predictive performance of the mucositis and dysphagia models on 

internal validation (corrected for optimism by bootstrapping with 2000 

replicates) and external validation (for the dysphagia models). For the dysphagia 

models the metrics of predictive performance are given as internal 

validation/external validation. AUC – area under receiver operating 

characteristic curve; PLR – penalized logistic regression; FPC-LR – functional 

principal component-logistic regression; FPLS-LR – functional partial least 

squares-logistic regression. 

 

Table 2: Odds ratios for penalized logistic regression models. 95% CI – 95 

percentile confidence intervals calculated by bootstrapping the model fitting 

with 2000 replicates; definitiveRT – definitive radiotherapy; indChemo – 

induction chemotherapy; cisCarbo – one cycle of cisplatin followed by one cycle 

of carboplatin; Vx – volume of organ receiving x cGy of radiation per fraction. 

 

Table 3: Odds ratios for functional principal component-logistic regression 

models. 95% CI – 95 percentile confidence intervals calculated by bootstrapping 

the model fitting with 2000 replicates; * - statistically significant at the α = 0.05 

level; definitiveRT – definitive radiotherapy; indChemo – induction 
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chemotherapy; cisCarbo – one cycle of cisplatin followed by one cycle of 

carboplatin; DVH FPCx – functional principal component x of dose-volume 

histogram data. The sign of the FPC loadings is arbitrary so the fact that the odds 

ratios are less than 1 does not indicate that there is an inverse correlation 

between RT dose and severe toxicity. 

 

Table 4: Odds ratios for functional partial least squares-logistic regression 

models. 95% CI – 95 percentile confidence intervals calculated by bootstrapping 

the model fitting with 2000 replicates; * - statistically significant at the α = 0.05 

level; definitiveRT – definitive radiotherapy; indChemo – induction 

chemotherapy; cisCarbo – one cycle of cisplatin followed by one cycle of 

carboplatin; DVH FPLSx – functional partial least squares component x of dose-

volume histogram data. 

 

 
 



Table 1: Predictive performance of the mucositis and dysphagia models on internal validation 
(corrected for optimism by bootstrapping with 2000 replicates) and external validation (for the 
dysphagia models). 

Model AUC Brier score Calibration 
slope 

Calibration 
intercept 

Mucositis 
PLR 0.65 0.21 1.6 -0.67 
FPC-LR 0.69 0.19 0.45 0.47 
FPLS-LR 0.67 0.20 0.40 0.49 

Dysphagia 
PLR 0.74/0.81 0.20/0.18 1.2/2.5 -0.15/-0.96 
FPC-LR 0.76/0.83 0.19/0.18 0.59/0.79 0.21/-0.04 
FPLS-LR 0.75/0.83 0.20/0.18 0.56/0.79 0.22/0.00 

For the dysphagia models the metrics of predictive performance are given as 
internal validation/external validation. AUC – area under receiver operating 
characteristic curve; PLR – penalized multivariable logistic regression; FPC-LR – 
functional principal component-logistic regression; FPLS-LR – functional partial 
least squares-logistic regression. 
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Table 2: Odds ratios for the penalized multivariable logistic regression models. 

95% CI – 95 percentile confidence intervals calculated by bootstrapping the 
model fitting with 2000 replicates; definitiveRT – definitive radiotherapy; 
indChemo – induction chemotherapy; cisCarbo – one cycle of cisplatin followed 
by one cycle of carboplatin; Vx – volume of organ receiving x cGy of radiation per 
fraction. 
 
 

 

 

 

 
 

Covariate Mucositis model Dysphagia model 

Odds 
ratio 

95% CI Odds 
ratio 

95% CI 

intercept 2.512 0.016 – 12.43 0.360 0.007 – 2.583 
male 1.000 1.000 – 2.554 1.000 1.000 – 1.945 
age 1.000 0.971 – 1.006 1.000 0.980 – 1.000 
definitiveRT 1.000 0.110 – 1.000 1.000 0.544 – 1.000 
indChemo 1.000 0.410 – 1.166 1.000 1.000 – 2.089 
cisplatin 1.000 1.000 – 3.464 1.277 1.000 – 3.230 
carboplatin 1.000 0.361 – 4.015 1.000 1.000 – 4.278 
cisCarbo 1.000 0.136 – 1.769 1.000 0.989 – 2.930 
hypopharynxLarynx 1.000 1.000 – 14.71 1.000 1.000 – 2.203 
nasopharynxNasalCa
vity 

1.000 0.905 – 6.190 1.000 0.247 – 1.000 

unknownPrimary 1.000 0.022 – 1.000 1.000 0.945 – 1.210 
parotid 0.814 0.231– 2.546 0.600 0.208 – 1.000 
V020 1.000 1.000 – 1.119 1.000 1.000 – 1.031 
V040 1.000 0.891 – 1.000 1.000 1.000 – 1.014 
V060 1.000 1.000 – 1.032 1.000 1.000 – 1.003 
V080 1.000 1.000 – 1.050 1.000 1.000 – 1.023 
V100 1.000 0.934 – 1.000 1.000 1.000 – 1.029 
V120 1.000 1.000 – 1.084 1.019 1.000 – 1.044 
V140 1.000 0.917 – 1.000 1.000 1.000 – 1.019 
V160 1.000 1.000 – 1.038 1.000 1.000 – 1.011 

V180 1.002 1.000 – 1.085 1.000 0.997 – 1.009 

V200 1.000 0.949 – 1.007 1.000 1.000 – 1.019 
V220 1.000 1.000 – 1.098 1.008 1.000 – 1.031 

V240 1.000 0.616 – 1.154 1.000 1.000 – 1.025 
V260 1.000 1.000 – 1.000 1.000 1.000 – 1.000 



 
Table 3: Odds ratios for the functional principal component-logistic regression models. 

 
 

95% CI – 95 percentile confidence intervals calculated by bootstrapping the 
model fitting with 2000 replicates; * - statistically significant at the α = 0.05 level; 
definitiveRT – definitive radiotherapy; indChemo – induction chemotherapy; 
cisCarbo – one cycle of cisplatin followed by one cycle of carboplatin; DVH FPCx – 
functional principal component x of the dose-volume histogram data. The sign of 
the FPC loadings is arbitrary so the fact that the odds ratios are less than 1 does 
not indicate that there is an inverse correlation between RT dose and severe 
toxicity. 
 
 
 

 

 

 

 

 

 

 

 

Covariate Mucositis model Dysphagia model 

Odds 
ratio 

95% CI Odds 
ratio 

95% CI 

intercept 12.89 1.035 – 1.734 x 109* 1.616 0.142 – 77.46 
male 1.535 0.637 – 4.088 1.675 0.533 – 4.880 
age 0.991 0.951 – 1.029 0.988 0.943 – 1.027 
definitiveRT 0.254 2.679 x 10-9 – 1.773 0.997 0.080 – 7.541 
indChemo 0.487 0.070 – 1.960 1.100 0.210 – 7.670 
cisplatin 2.251 0.745 – 9.540 4.255 1.077 – 19.86* 
carboplatin 1.320 0.142 – 7.314 x 107 4.429 0.685 – 8.332 x 107 
cisCarbo 0.311 7.815 x 10-9– 2.531 x 107 2.238 0.319 – 4.587 x 107 
hypopharynxLarynx 4.371 0.512 – 143.9 1.723 0.193 – 1.881 x 107 
nasopharynxNasalCa
vity 

2.370 0.308 – 1.096 x 108 0.263 0.026 – 1.223 

unknownPrimary 0.136 3.042 x 10-9 – 3.707 0.859 0.077 – 3.876 x 106 

parotid 1.387 0.103 – 40.37 1.135 0.068 – 18.72 
DVH FPC1 0.997 0.993 – 1.007 0.996 0.990 – 1.008 
DVH FPC2 1.003 0.992 – 1.009 - 0.992 – 1.003 
DVH FPC3 - 0.996 – 1.003 - 0.995 – 1.000 
DVH FPC4 - 0.987 – 1.010 - 0.991 – 1.006 
DVH FPC5 - 0.971 – 1.033 - 0.991 – 1.006 



Table 4: Odds ratios for the functional partial least squares-logistic regression models. 

 
 

95% CI – 95 percentile confidence intervals calculated by bootstrapping the 
model fitting with 2000 replicates; * - statistically significant at the α = 0.05 level; 
definitiveRT – definitive radiotherapy; indChemo – induction chemotherapy; 
cisCarbo – one cycle of cisplatin followed by one cycle of carboplatin; DVH FPLSx 
– functional partial least squares component x of the dose-volume histogram 
data. 
 

Covariate Mucositis model Dysphagia model 

Odds 
ratio 

95% CI Odds 
ratio 

95% CI 

intercept 12.90 0.961 – 2.424 x 1010 1.634 0.128 – 104.4 
male 1.539 0.620 – 4.757 1.661 0.472 – 4.719 
age 0.991 0.947 – 1.033 0.988 0.942 – 1.029 
definitiveRT 0.260 7.707 x 10-11 – 1.245 0.975 0.046 – 7.831 
indChemo 0.484 0.064 – 2.442 1.100 0.222 – 7.866 
cisplatin 2.246 0.728 – 11.33 4.235 1.083 – 20.88* 
carboplatin 1.315 0.110 – 1.051 x 108 4.393 0.580 – 8.424 x 107 
cisCarbo 0.313 8.668 x 10-9 – 3.303 x 107 2.245 0.324 – 4.247 x 107 
hypopharynxLarynx 4.169 0.506 – 484.8 1.677 0.168 – 1.998 x 107 
nasopharynxNasalC
avity 

2.336 0.350 – 1.457 x 108 0.266 0.028 – 1.250 

unknownPrimary 0.132 2.020 x 10-9 – 95.47 0.903 0.092 – 2.895 x 106 
parotid 1.408 0.097 – 56.81 1.196 0.071 – 27.80 
DVH FPLS1 1.004 1.002 – 1.017* 1.005 1.001 – 1.016* 
DVH FPLS2 1.002 1.000 – 1.047 - 1.000 – 1.041 
DVH FPLS3 - 1.000 – 1.110 - 1.000 – 1.009 
DVH FPLS4 - 1.000 – 1.107 - 1.000 – 1.009 
DVH FPLS5 - 1.000 – 1.085 - 1.000 – 1.009 
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