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Purpose: MRI biomarkers of tumor response to treatment are typically obtained from 
parameters derived from a model applied to pre-treatment and post-treatment data. 
However, as tumors are spatially and temporally heterogeneous, different models may 
be necessary in different tumor regions, and model suitability may change over time. 
This work evaluates how the suitability of two diffusion-weighted (DW) MRI mod-
els varies spatially within tumors at the voxel level and in response to radiotherapy, 
potentially allowing inference of qualitatively different tumor microenvironments.
Methods: DW-MRI data were acquired in CT26 subcutaneous allografts before and after 
radiotherapy. Restricted and time-independent diffusion models were compared, with re-
gions well-described by the former hypothesized to reflect cellular tissue, and those well-
described by the latter expected to reflect necrosis or oedema. Technical and biological 
validation of the percentage of tissue described by the restricted diffusion microstructural 
model (termed %MM) was performed through simulations and histological comparison.
Results: Spatial and radiotherapy-related variation in model suitability was observed. 
%MM decreased from a mean of 64% at baseline to 44% 6 days post-radiotherapy in 
the treated group. %MM correlated negatively with the percentage of necrosis from 
histology, but overestimated it due to noise. Within MM regions, microstructural 
parameters were sensitive to radiotherapy-induced changes.
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1  |   INTRODUCTION

Quantitative MR biomarkers can provide a non-invasive as-
sessment of tumor response to treatment, potentially serving as 
useful tools in the development of novel therapies, or enabling 
tracking of patient response and guiding clinical decisions re-
garding therapy options.1,2 In order to fulfil this potential and 
become robust tools in research or clinical settings, biomark-
ers require both technical validation, for example, evaluating 
their accuracy and precision, and biological validation, to un-
derstand their relationship to biological processes.2

An important consideration in assessing biomarker accu-
racy and precision is the validity of the model from which the 
biomarker is obtained. Typically, MRI biomarkers of tumor re-
sponse to treatment are obtained by calculating changes in sum-
mary statistics of parameters derived from a model that is applied 
to pre-treatment and post-treatment data. However, tissue within 
tumors is known to be heterogeneous,3,4 with this intra-tumor 
heterogeneity potentially varying over the course of treatment. 
Single summary statistics, such as parameter means or medi-
ans, do not capture such heterogeneity, and, moreover, do not 
provide information about the suitability of the applied model. 
For example, different models may be necessary in different  
regions, and model suitability may change over time, confound-
ing the interpretation of biomarkers obtained from a single model 
applied to all tumor voxels at all time points. Understanding the 
applicability of different models may provide information about 
qualitative differences in the structure or function of tumor 
sub-regions, and may enhance the utility of model parameters 
themselves, for example, by allowing the rejection of values in 
regions where the model is not appropriate. Such analyses also 
have the potential to yield new biomarkers based on the classifi-
cation of tissue according to model suitability.

Model comparison techniques have been applied to a 
number of models used to obtain biomarkers from quantita-
tive MRI data. For example, model selection in dynamic con-
trast-enhanced MRI5 has been used to evaluate the suitability 
of different models for describing average whole-tumor signal 
time courses in cervical tumors,6 and voxel-wise model com-
parison has shown that different models tend to be favored 
in liver metastases compared with the surrounding liver.7 In 

diffusion-weighted (DW) MRI, a technique which has seen 
extensive use in evaluating treatment response,8,9 model com-
parison has shown that non-monoexponential representations 
(intra-voxel incoherent motion (IVIM), the stretched exponen-
tial, and the statistical model) tend to be preferred over the 
monoexponential apparent diffusion coefficient (ADC) before 
and after androgen deprivation therapy in patients with bone 
metastases from prostate cancer.10 Model comparison has also 
been used to show that a microstructural model comprising 
restricted intracellular diffusion, hindered extracellular diffu-
sion and intravascular pseudo-diffusion describes whole-tu-
mor DW-MRI data better than ADC or IVIM, in two untreated 
models of colorectal cancer.11 Recently, a comparison between 
a microstructural model and ADC has been used to distinguish 
viable tissue in gliomas from necrotic or oedematous regions, 
and from surrounding brain tissue.12

This work evaluates how the relative suitability of two DW-
MRI models varies spatially within tumors at the voxel level 
and in response to radiotherapy, potentially allowing inference 
of qualitatively different tumor microenvironments. Models of 
restricted and time-independent diffusion were compared, with 
regions well-described by the former hypothesized to reflect 
cellular tissue, and those well-described by the latter expected 
to reflect necrotic, cystic, or oedematous regions. Biological and 
technical validation of this methodology was performed using in 
vivo experiments and simulations.13

2  |   METHODS

2.1  |  Mice and cell lines

Animal experiments were approved by a local ethics com-
mittee and performed under a United Kingdom Home Office 
license, in compliance with UK National Cancer Research 
Institute guidelines for the welfare of animals in cancer re-
search,14 and with the ARRIVE (Animals in Research: 
Reporting In Vivo Experiments) guidelines.15 All experi-
ments were performed with a syngeneic mouse model, where 
CT26 murine colon carcinoma cells were implanted in an 
immunocompetent BALB/c mouse host. Mice were obtained 

Conclusions: There is spatial and radiotherapy-related variation in different models’ 
suitability for describing diffusion in tumor tissue, suggesting the presence of differ-
ent and changing tumor sub-regions. The biological and technical validation of the 
proposed %MM cancer imaging biomarker suggests it correlates with, but overesti-
mates, the percentage of necrosis.
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from Harlan (Bicester, UK), and were housed under specific 
pathogen-free conditions in individually ventilated cages 
holding a maximum of 6 animals, with appropriate bedding, 
nesting material, and a cardboard tunnel. Mice were housed 
on a 12 h/12 h light/dark cycle and were given filtered water 
and fed an appropriate rodent diet. CT26 cells (ATCC) were 
maintained in Dulbecco’s modified eagle medium (DMEM), 
supplemented with 10% fetal calf serum (FCS) and 1% 
L-glutamine (Invitrogen), and cultured to limited passage for 
1-2 weeks prior to implantation, with regular re-screening for 
mycoplasma contamination. Mice were inoculated subcuta-
neously in the supraspinal position with 1 × 106 CT26 cells in 
100 μL of phosphate-buffered saline, and were treated when 
tumors were 250-300 mm3, as measured with callipers.

2.2  |  Tumor radiotherapy and MR 
scan schedule

Mice received either sham therapy (control group, C; n = 10), 
or a single dose of 10 Gy delivered bilaterally (radiotherapy 
group, RT; n = 9). While formal sample size calculations were 
not performed, these group sizes are similar to those used previ-
ously to detect significant cohort-level changes in ADC.16 MR 
scanning was performed ∼2-4  hours before sham/treatment 
(day 0) and at up to three post-treatment time points (days 3, 
6, and 10). Specifically, 3 animals (2 C, 1 RT) were scanned at 
days 0 and 3; 7 (4 C, 3 RT) at days 0, 3, and 6; and 9 (4 C, 5 RT) 
at days 0, 3, 6, and 10. These time points were chosen based 
on previous observations of CT26 tumor growth inhibition and 
size reductions in response to 10 Gy radiotherapy.17 Animals 
were randomized to control and treatment groups following the 
day 0 scan. The timing of control and treated scans was not 
formally randomized, but animals from both groups had scans 
distributed throughout the morning and early afternoon.

2.3  |  Histology

Animals were euthanized immediately after their last scan, 
allowing tumors at a range of time points to be harvested for 
histological analysis. Tumors were excised whole and bi-
sected along the imaging plane, taking for histology the half 
of the tumor which was closest to the body. These halves 
were then fixed in 4% neutral buffered formalin for 24 hours, 
transferred to 70% ethanol, processed and then embedded 
in paraffin. Sections 5 μm thick were cut, floated out on a 
water bath, collected on charged slides and then dried at 37◦C 
overnight. Sections were stained with hematoxylin and eosin 
(H&E) to allow identification of viable and necrotic tumor, 
and whole-field images were obtained using a SCN 400 
Leica scanner at 40× magnification. Tumors were segmented 
semi-automatically into viable and necrotic tissue, and the 

percentage area of necrosis, % necrosis, was calculated on 
a single H&E slice for each tumor; this single slice came 
from the cut face of the tumor half, which approximately 
corresponds to the tumor center. Pathology image analysis 
was performed using the Composer module in Tissue Studio 
Portal version 4.4, Definiens Developer XD version 2.7 
(Definiens AG, Munich, Germany).

2.4  |  MR protocol

All scans were performed on a 7 T horizontal bore magnet 
(Magnex Scientific Ltd., Abingdon, UK) interfaced to a Bruker 
Avance III console running ParaVision 6.0.1 (Bruker BioSpin, 
Ettlingen, Germany). All data were acquired using a transmit-
only volume coil for excitation, with a receive-only surface 
coil placed over the tumor, with animals in the prone position. 
Anaesthesia was induced, and was maintained throughout scan-
ning using 2% isoflurane in oxygen, delivered at 2 L/minutes; 
respiratory rate and core body temperature were monitored, 
with temperature maintained at 37◦C using warm air.

A T2-weighted rapid acquisition with relaxation enhance-
ment sequence was performed for tumor localization, and for 
subsequent region of interest (ROI) definition; effective TE = 
33 ms, TR = 2500 ms, matrix = 256 × 256. For conventional 
ADC mapping, pulsed gradient spin echo (PGSE) data were ac-
quired with δ = 4.65 ms, Δ = 9.86 ms, G = 113, 207, 293 mT/m, 
b = 150, 500, 1000 s∕mm2, TE  =  20.4  ms, TR  =  2550  ms, 
matrix = 128 × 128; this is referred to as the single diffusion 
time dataset. For microstructural modelling and model com-
parison, PGSE data were acquired with δ = 4.65 ms, Δ = 9.86, 
40.0 ms, G = 0, 113, 207, 293 mT/m, b = 0, 150, 500, 1000, 
0, 689, 2296, 4592 s∕mm2, TE = 50.1 ms, TR = 2550 ms, ma-
trix = 64 × 64; this is referred to as the two diffusion time 
dataset. Note that gradient duration, gradient strength, TE, and 
TR were the same for both diffusion times in the two diffusion 
time dataset. The gradient rise time was 0.245 ms for all PGSE 
scans, and imaging volumes were identical for all scans, pro-
viding full tumor coverage with field of view  = 32 mm ×  
32 mm, slice thickness  = 0.6 mm, and 20 coronal slices.

2.5  |  MR analysis

For conventional ADC mapping using the single diffusion 
time dataset, voxel-wise signals, S, were normalized to the 
b = 150 s∕mm2 signal to minimize the potential influence of 
capillary blood flow, and fitted to S∕Sb150 = exp (−bADC).  
For microstructural modelling and model comparison, two 
models were separately fitted to the two diffusion time dataset. 
First, a two-compartment microstructural model (MM) of dif-
fusion restricted within impermeable spheres and hindered in 
the extracellular space18 was fitted to signals normalized to 
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G = 0 mT/m, estimating cell radius, R, intra-cellular and extra-
cellular diffusivities, Di and De, and intracellular signal frac-
tion, fi. Second, a monoexponential decay with b-value was 
fitted to the same data, yielding a single diffusivity, here re-
ferred to as D′. As data from two diffusion times were included 
in this fit, the monoexponential decay in this case is only ap-
propriate where diffusion is time-independent, with the signal 
depending only on b-value; this is referred to as the time-inde-
pendent diffusion (TID) model. Note that this differs from the 
conventional ADC mapping described above, which only uses 
a single diffusion time. Potential noise bias was mitigated by 
discarding signals lower than 2Snoise, where Snoise is the mean 
signal in a noise ROI,19 and each voxel-wise fit was performed 
for 100 starting values, with the final parameter estimates taken 
as those resulting in the lowest value of the objective function. 
Diffusion gradient rise times were included in all models,20 
and parameters were constrained to be within plausible lim-
its: 0.1  ≤  R  ≤  25  μm, 0.1 ≤ ADC, Di, De, D� ≤ 3 μm2/ms,  
0.01 ≤ fi ≤ 1. All analyses were carried out in MATLAB 
2017a (The MathWorks, Inc., Natick, Massachusetts), with 
least squares fitting performed using a Nelder-Mead simplex 
algorithm (fminsearchbnd in MATLAB).

In addition to the method of fitting the MM described 
above, a second approach was investigated as a means of 
improving fit stability. As a compromise between the direct 
fitting of Di described above, and the approach taken else-
where of fixing diffusivities to single a priori values,11,21 
fitting was repeated effectively using a look-up table for Di

. Specifically, in separate fits Di was fixed to five different 
values, Di = 0.5, 1.0, 1.5, 2.0, 2.5 μm2/ms; these five fits 
were then compared, with voxel-wise parameter values taken 
from the fit with the highest R2 (see Supporting Information 
Figure S1). This resulted in Di maps which were discretized 
(voxels were one of five possible values), while R, fi, and 
De were continuous; all four parameters could vary spatially. 
The original method and this second approach are referred to 
as fit-Di and discrete-Di, respectively.

Both approaches were investigated in simulations (see 
Section 2.7), with MM fits for fit-Di and discrete-Di com-
pared to evaluate the effects on fit stability of fixing Di. This 
evaluation considered the extent to which fits returned pa-
rameters with extreme values, taken as at least one parameter 
being within 1% of the fit constraints. On the basis of this 
evaluation, the preferred approach (fit-Di or discrete-Di) was 
chosen for subsequent analysis.

MM fits from the chosen approach were then compared 
with TID fits on a voxel-wise basis using the corrected 
Akaike Information Criterion (AICc), taking the fit with the 
lower AICc as the preferred model in a given voxel (Figure 1).  
In AICc calculations, the MM model had four fitted pa-
rameters, while TID had one. Within whole-tumor ROIs, 
the percentage of voxels with AICcMM < AICcTID was cal-
culated to assess the proportion of tumor tissue in which 

MM was preferred; this is referred to as %MM. To test 
the hypothesis that regions well-described by MM reflect 
cellular tissue while those well-described by TID reflect non- 
viable tissue, %MM from subjects’ final scan was compared 
with % necrosis obtained from histology (see Section 2.3). 
Only %MM data from the central slice of the tumor was used 
for this correlation, as this corresponded approximately to the 
region used for histology (see Section 2.3). The link between 
conventional ADC and histology was also investigated, again 
only using data from the central slice of the tumor, firstly  
by comparing median ADC with % necrosis, and secondly  
by using an ADC threshold to classify necrotic and non-necrotic  
voxels. Here, a range of ADC thresholds were applied to 
central-slice ADC datasets from subjects’ final scan, in each 
case calculating the percentage of voxels with ADC below 
the given threshold, potentially providing a metric analogous 
to %MM. For each threshold, this metric was compared with 
% necrosis, to determine an ADCcut-off which yields the stron-
gest correlation. All MR image analysis and histology image 
analysis were performed independently, with each analysis 
blinded to the results of the other.

MM parameter distributions were then obtained from 
voxels where MM was preferred, after excluding fits with 
extreme values (where at least one parameter was within 1% 
of the fit constraints). Distributions of conventional ADC 
measurements were obtained from all voxels in a ROI.

2.6  |  Statistical analysis

Median values from distributions for ADC, R, De, and fi, 
along with values for %MM, were analysed in a mixed-effects 
model, with scan day as a fixed effect, and subject as a random 
effect. Parameters were modelled as a quadratic function of 
scan day, to capture the non-linear trends observed for most 
parameters. Two models, one without and one with a group/
time interaction (with group referring to control or treated ani-
mals, and time referring to scan day), were fitted and compared 
using a likelihood-ratio test. This procedure was performed 
for each parameter, with P <  .05 in the likelihood-ratio test 
taken to indicate a statistically significant difference between 
groups for a given parameter. Mixed-effects modelling was 
carried out in R version 3.5.122 using the nlme package.23

2.7  |  Fitting simulations

Simulations were used to investigate the discrete-Di approach 
described above (see Section 2.5). Simulated MM signals 
were generated for 96 different microstructures (all combina-
tions of R  =  5,  10  μm, Di, De = 0.2, 1.1, 2.0, 2.9 μm2/ms, 
fi = 0.25, 0.50, 0.75), using the experimental acquisition pro-
tocol (see Section 2.4). One thousand and five hundred noisy 
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synthetic signals were generated for each microstructure, with 
noise added such that the signals were Rician distributed with 
a signal-to-noise ratio (SNR) at b = 0 s∕mm2 of 54, matching 
the mean SNR in the experimental data; SNR was calculated 
by dividing b = 0 s∕mm2 signals by the Rician noise standard 
deviation, derived from the mean signal in a background ROI.24 
MM was then fit to the signals using the fit-Di and discrete-Di 
approaches, following the fitting procedure described above 
(see Section 2.5). The accuracy of model parameter estimates 
was then evaluated, along with the extent to which the two fit-
ting approaches yielded estimates with extreme values, taken 
as at least one parameter being within 1% of the fit constraints.

2.8  |  %MM simulations

Simulations were also performed to evaluate the accuracy 
and precision of %MM measurements. DW signals were 
simulated from MM and TID models using the experimen-
tal acquisition protocol, generating different ‘synthetic tumor 
datasets’ with ground truth %MM values from 10% to 90%. 
For each ground truth, 2000 signals were generated using 
model parameters sampled at random from those obtained 
in the experimental data; these signals were then split into 
groups of 200, giving 10 datasets for each ground truth. 
Noiseless and noisy datasets were generated, with the latter 

F I G U R E  1   Model selection procedure. The microstructural model (MM) and time-independent diffusion (TID) model were fitted voxel-wise 
to signals normalized to b = 0 s∕mm

2, with the model resulting in the lowest AICc taken as the preferred model for that voxel. Fits for two example 
voxels, A and B (red and blue boxes on b = 0 s∕mm

2 image, respectively) within the tumor ROI (black outline) are shown, with the red dashed line 
in the plots representing noise floors below which signals are excluded from the fits. The MM model was preferred in voxel A, and TID preferred 
in voxel B. All voxels in the ROI were then colour coded according to the preferred model, yielding model preference maps (right)
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reflecting the SNR properties of the experimental data. All 
datasets were then analysed with the same pipeline used for 
the experimental data, that is, fitting MM and TID models, 
and then performing the AICc analysis. %MM bias was eval-
uated by comparing calculated values for each dataset with 
the ground truth, and precision was evaluated by assessing 
the variability over individual datasets. As a binary classifi-
cation underlies the calculation of %MM, standard summary 
statistics of accuracy, sensitivity, and specificity were de-
rived from the confusion matrix to evaluate the technical per-
formance of %MM measurements.25 Analysis code will be 
made available at https​://gitlab.com/manch​ester_qbi/manch​
ester_qbi_publi​c/diffu​sion_model_compa​rison​.

3  |   RESULTS

3.1  |  Fitting simulations

Figure 2A compares the accuracy of model parameter estimates 
from fit-Di and discrete-Di fits, for four ground truth Di values. 
The accuracy metric was taken as the median absolute percent-
age difference between each fit result and the ground truth, with 
the boxplots in each panel representing the distribution over 24 
ground truth microstructures with different R, De, and fi, for 
the given ground truth Di; taken together, the plots present re-
sults for all 96 microstructures generated. The discrete-Di fits 
tend to have slightly narrower distributions, with fewer large 

errors, except for Di = 0.2 μm2/ms where discrete-Di would 
be expected to perform poorly as Di here cannot be lower than 
0.5 μm2/ms (due to the discretization). Although there is not 
a dramatic improvement in accuracy with discrete-Di, it does 
tend to result in fewer fits with extreme values, as shown in 
Figure 2B, where the boxplots show the percentage of ac-
cepted fits (that is, where no parameter is within 1% of the fit 
constraints), as a distribution over 24 microstructures for four 
ground truth Di values. It should be emphasized that there is a 
wide variation in parameter accuracy and precision, depending 
on the ground truth microstructure, and that Di in general tends 
to be estimated poorly (see Supporting Information Figure S2). 
Given the improvement in fit stability suggested by Figure 2B, 
discrete-Di was used for the in vivo analysis.

3.2  |  %MM simulations

Figure 3A plots estimated %MM values (mean ± standard 
deviation (SD) over datasets) as a function of the ground 
truth, for noiseless and noisy cases. The infinite SNR case 
performs as expected, with estimated values matching the 
ground truth. With noisy signals, however, %MM tends to 
be underestimated, with the magnitude of the bias increasing 
with the ground truth value. The degree of underestimation 
suggests that, for this SNR, estimated %MM values cannot 
exceed ∼70%, even if the ground truth is higher. Coefficients 
of variation for %MM are <10% across the ground truth 

F I G U R E  2   Fitting simulations. A, Boxplots of median percentage error in model parameters for fit-Di (white) and discrete-Di (gray) fitting, 
for four ground truth Di values. B, Boxplots of the percentage of accepted fits (ie, where no parameter is within 1% of the fit constraints), for fit-Di 
(white) and discrete-Di (gray) fitting, for four ground truth Di values. In A and B boxplots in each panel represent distributions over the 24 different 
ground truth microstructures for the given ground truth Di, together presenting results for all 96 microstructures generated

https://gitlab.com/manchester_qbi/manchester_qbi_public/diffusion_model_comparison
https://gitlab.com/manchester_qbi/manchester_qbi_public/diffusion_model_comparison
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values, indicating good precision, and an insensitivity to dif-
ferent model parameters and noise instances. For the noisy 
data, Figure 3B plots summary statistics of the classification’s 
confusion matrix, showing high specificity (≥95%), but lower 
sensitivity (≥60%), with accuracy dropping from a mean of 
96% to 73% as ground truth %MM increases from 10% to 90%.

3.3  |  Conventional ADC

Figure 4A plots median conventional ADC values for all tu-
mors at all time points, with group-level trends compared in 
Figure 4B. Note that these conventional ADC values were 
obtained from whole-tumor ROIs, irrespective of MM and 
TID fits. Significant differences in ADC were observed be-
tween groups (P  <  .0001), with day 0 and day 10 values 
(mean ± SD) of 0.62 ± 0.08 μm2/ms and 0.70 ± 0.04 μm2/ms 
for controls, and 0.62 ± 0.06 μm2/ms and 0.8 ± 0.2 μm2/ms 
for treated. Median ADC from subjects’ final scan showed a 
positive correlation with % necrosis determined from histol-
ogy (Pearson’s correlation coefficient, ρ = 0.56, 95% confi-
dence interval (CI) = 0.13 to 0.81, P = .016; see Supporting 
Information Figure S3). An ADCcut-off of 1.07 μm2/ms provided 
the strongest negative correlation between the percentage of 

voxels below that value and % necrosis (Pearson’s correlation 
coefficient, ρ = −0.65, 95% CI = −0.86 to −0.26, P = .003; 
see Supporting Information Figure S4).

3.4  |  Diffusion model comparison

3.4.1  |  Model preference relates to histology 
measurement of necrosis

Both MM-favored and TID-favored voxels were observed in 
all tumors at all time points, with %MM values ranging from 
29% to 76%. At day 0, mean ± SD (over all tumors) was 
61 ± 7%. Figure 5A plots %MM against percentage necro-
sis determined from histology. As with the ADC correlation 
described above, the %MM values come from subjects’ final 
scan, that is, the time point closest to the histological analy-
sis. Using data from control and treated tumors, there is a 
significant negative correlation between %MM and % necro-
sis (Pearson’s correlation coefficient, ρ = −0.64, 95% CI = 
−0.85 to −0.24, P = .004). Figure 5B shows example H&E 
images from control and treated tumors with low and high 
levels of necrosis, illustrating the staining and segmentation 
used to determine % necrosis.

F I G U R E  3   %MM technical validation 
simulations. A, Estimated %MM values 
(mean ± standard deviation) plotted against 
ground truth, for noiseless (circles) and 
noisy (crosses) datasets. The dashed line is 
the line of identity. B, Accuracy, sensitivity, 
and specificity (mean ± standard deviation) 
plotted against ground truth, for the noisy 
datasets
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F I G U R E  4   Conventional ADC over time. A, Whole-tumor median ADC values plotted as a function of time, for control (left) and 
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3.4.2  |  Model preference is sensitive to 
radiotherapy-induced changes

Figure 6 plots %MM as a function of time, showing a sig-
nificant difference between control and treated groups 
(P = .0014). %MM decreased from a mean of 64% at baseline 
to 44% 6 days post-radiotherapy in the treated group, with 3 
out of 5 tumors then showing an increase from day 6 to day 10.  
These were the same three tumors that showed a decrease 

in ADC from day 6 to 10 (Figure 4A). Over the same time 
period, %MM in the control group decreased from a mean of 
59% to 54%.

3.4.3  |  Microstructural parameters exhibit 
spatial heterogeneity

MM and TID parameter maps generally showed heteroge-
neity within tumors, with clear contrast in R, fi, Di, and De 
between regions in which each model was preferred. An ex-
ample is shown in Figure 7, where a central region of high D′ 
favors the TID model. In this region, MM returns high and 
low R, low Di and fi, and high De. Around the rim, where 
MM is favored, D′ is lower than in the center, corresponding 
to lower R and De estimates, and higher fi and Di estimates. 
Conventional ADC values are similar to D′ in regions where 
TID is preferred (comparing bottom left and top right panels 
of Figure 7), while ADC is consistently higher than D′ in re-
gions preferred by MM. This results from the inability of a 
single diffusivity to describe MM regions, with D′ reflecting 
an average of high and low diffusivities at short and long 
diffusion times, respectively, along with the fact that ADC 
was measured at the short diffusion time only. Voxel-wise 
correlations between D′ and ADC are shown in Supporting 
Information Figure S5, illustrating the tendency for ADC to 
be higher than D′ when both parameters are low, but similar 
to D′ when both parameters are high.

3.4.4  |  Microstructural parameters are 
sensitive to radiotherapy-induced changes

Figure 8 plots median MM parameters, from voxels where 
MM was preferred over TID, as a function of time. At 
day 0, mean ± SD values (over all tumors) of median 
MM parameters were R  =  10  ±  1  μm, fi = 0.41 ± 0.03,  
and De = 0.6 ± 0.1 μm2/ms. Comparing parameter medians  

F I G U R E  5   %MM and % necrosis. A, %MM plotted against 
percentage necrosis for control (circles) and radiotherapy (RT, crosses) 
groups. Using all data points, there is a significant negative correlation 
(Pearson’s correlation coefficient, ρ = −0.64, P = .004). B, Example 
H&E images for two control and two RT tumors, illustrating the 
staining and segmentation used to determine % necrosis. Orange and 
blue regions in the segmentation correspond to tumor and necrosis, 
respectively

F I G U R E  6   %MM over time. A, Percentage of voxels where the microstructural model (MM) was favored over TID, plotted as a function of 
time for control (left) and radiotherapy (RT, right) groups. Individual data points are values for a given tumor, and lines connect the same tumor at 
different time points. B, Same data as (A), plotted as mean ± standard error over subjects, for control (solid line) and treated (dashed line) groups
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between groups showed a non-significant difference in 
R (P  =  .064), while fi and De were significantly different 
(P < .0001 and P = .0002). There were slight increases in fi 
in the controls and decreases in the treated group, while De 
tended to increase in the treated group.

4  |   DISCUSSION

Biomarkers derived from DW-MRI, including ADC and 
parameters from microstructural models, are being investi-
gated as potential markers of treatment response in oncol-
ogy.8,9,11,12,26 ADC is relatively straightforward to measure 
and has been shown to have sensitivity to therapy-induced 
changes. However, it lacks specificity as it can be influenced 
by various cellular-level features, without being able to char-
acterize these features directly. This has motivated the use 
of more complex models, which potentially yield more spe-
cific biomarkers and may help resolve ambiguities in con-
ventional ADC measurements.11,27,28 For any model-derived 
biomarker, understanding the spatial and temporal validity of 
the model is an important part of biomarker validation. The 
present work’s evaluation of model suitability provides two 
insights into tumor microstructure and treatment response. 
First, there is spatial and radiotherapy-related variation in 
different models’ suitability for describing water diffusion in 
tumor tissue, potentially reflecting different and changing mi-
croenvironments. Second, within restricted diffusion regions, 
microstructural parameters are sensitive to radiotherapy- 
induced changes, and potentially provide more specific micro-
structural information than conventional DW-MRI-derived 

biomarkers. Finally, the work provides important informa-
tion on the technical and biological validity of the proposed 
%MM biomarker.

The observed increase in conventional ADC in the 
treated group is consistent with the majority of preclinical 
studies investigating ADC in response to single-fraction 
radiotherapy, with increases reported in models of fibro-
sarcoma,29 glioma,12,30 non-Hodgkin’s lymphoma,31 and 
colorectal cancer.16 Such increases have been hypothesized 
to reflect decreases in cellularity,29,30 and have been asso-
ciated with histologically observed apoptosis.31 A previous 
study investigating the same cell line and mouse strain as 
that used in the present work reported an initial decrease in 
ADC less than one day following 10 Gy radiotherapy given 
in 2 fractions32; the present work would not capture such a 
change given its first time point of 3 days. However, even at 
time points up to 7 days post-treatment, ADC in treated tu-
mors tended to be similar to or lower than baseline values,32 
in contrast to the increases observed in the present study. 
This difference may be due to the exclusion of necrotic re-
gions in the study of Zhang et al,32 with the present study 
including such regions in ADC analyses. If these regions 
are excluded, by calculating median ADC values from only 
those voxels favored by MM, changes relative to baseline 
in the treated group are reduced. For example, when all 
tumor voxels are included, group-mean ADC in the treated 
group increases by 11%, 23%, and 26% at days 3, 6, and 
10, relative to baseline; when including only MM-favored 
voxels, these values drop to 8%, 9% and 5%, respectively. 
ADC differences between control and treated groups are 
also reduced when including only MM-favored voxels. For 

F I G U R E  7   Example b = 0 s∕mm
2 image at day 6 (top left, with ROI in black) and corresponding conventional ADC map (bottom left). 

Parameter maps for MM (central four panels) and TID (top right) are also shown, along with the model preference map (bottom right, overlaid on 
b = 0 s∕mm

2 image for voxels in the ROI). The TID model was preferred in the central region of high b = 0 s∕mm
2 image signal, while MM tended 

to be preferred around the rim and throughout the smaller component of the bilobular tumor
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example, when all tumor voxels are included, there is an 
18% difference in group-mean ADCs between controls and 
treated at day 6; when including only MM-favored vox-
els, this drops to 7%. Such effects highlight how the link 
between ROI definition and tumor heterogeneity can af-
fect analyses. In the present study, whole-tumor ADC was 
found to correlate with % necrosis from histology, while 
Zhang et al observed correlations between ADC in via-
ble regions and apoptotic markers,32 suggesting that ADC 
measurements are sensitive to multiple forms of cell death.

By directly modelling cellular-level features, micro-
structural models have the potential to provide a more spe-
cific interpretation of changes in the DW-MRI signal. The 
microstructural modelling in the present study suggests 
that radiotherapy results in a decrease in intracellular signal 
fraction, and an increase in extracellular diffusivity, imply-
ing that these are the underlying microstructural changes 
which lead to the observed increase in ADC. Although 
these microstructural changes cannot be quantitatively 

validated with the present data, a decrease in fi is consis-
tent with a loss of cells due to radiotherapy-induced cell 
death, and is consistent with DW-MRI measurements in 
9L gliomas treated with radiotherapy.12 It should also be 
noted that the absolute intracellular signal fractions in the 
present study (∼0.4) were higher than those estimated in 
gliomas (∼0.112), qualitatively consistent with separate re-
ports of relatively high extracellular spaces in gliomas.33,34 
However, the values reported in the present study are lower 
than those reported for other colorectal cancer models using 
similar DW-MRI methods (∼0.68-0.8411). The changes and 
heterogeneity in De suggest that it is neither a static nor 
uniform parameter, as implicitly assumed when fixing it 
to a single value in fitting routines. Although further work 
is needed to understand its relationship with tumor micro-
structure, De may itself be a useful biomarker, with the 
observed increase suggesting that radiotherapy has an in-
fluence on the extracellular space. Single and fractionated 
radiotherapy doses have previously been shown to affect 

F I G U R E  8   MM parameters over time. A, Median values for MM parameters, from regions where MM is favored over TID, plotted as a 
function of time for control (first row) and radiotherapy (RT, second row) groups. Individual data points are median values for a given tumor, and 
lines connect the same tumor at different time points. B, Same data as (A), with each parameter plotted as mean ± standard error over subjects, for 
control (solid lines) and treated (dashed lines) groups
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the extracellular matrix, causing a reduction in collagen 
matrix stiffness.35 This reduction in stiffness, however, was 
not associated with a change in the collagen architecture, 
a microstructural property that De may be hypothesized to 
have sensitivity to. Validation of De as a biomarker there-
fore requires further experiments, in which the extracellu-
lar matrix is modulated in a controlled way.

Taking the ADC and model comparison data together, 
shows consistency between the gradual ADC increase in the 
controls and the gradual decrease in %MM, suggesting that 
tumor growth due to the lack of treatment is accompanied 
by necrosis. In non-necrotic regions, there is a trend for in-
creasing fi and little change in R, consistent with cell density 
increasing as tumors grow. The larger ADC increase in the 
treated group is consistent with the larger %MM decrease, 
with the fi and De changes suggesting that radiotherapy af-
fects properties of the non-necrotic regions, as well as chang-
ing the proportion of necrotic tissue.

As shown with the fitting simulations, the increased 
specificity offered by microstructural models has associated 
drawbacks in terms of model parameter accuracy and preci-
sion, and the need to fix parameters is a clear limitation of 
the approach. The present work’s approach of using a range 
of fixed Di values was chosen as a compromise between fit-
ting it directly, which results in unstable fits, and fixing it to 
a single a priori value for all voxels at all time points, which 
may bias other parameter estimates. Even with this approach, 
Di tends to be estimated poorly, showing the difficulty in 
robustly characterizing diffusion within cells. The lack of 
sensitivity to intracellular diffusion with PGSE acquisitions 
has been demonstrated previously,36 and may be overcome 
using oscillating gradient sequences to reach shorter diffu-
sion times.12 More generally, parameter degeneracy is a rec-
ognized problem with this type of model,37 and future work 
could investigate if tumor microstructural estimates can be 
improved with alternative acquisition strategies, following 
examples in white matter models.38,39

Using model comparison to identify sub-regions shares 
similarities with previous efforts to characterize intra-tumor 
heterogeneity using clustering29,40,41 or probabilistic classi-
fication42 of multi-contrast MR data. While it is beyond the 
scope of the present work to compare model comparison and 
multi-contrast approaches to identifying sub-regions, the in-
clusion of additional data beyond DWI would be expected to 
aid the characterization. For example, including T2 alongside 
time-dependent diffusion measurements may prove useful, 
building on the diffusion and relaxation classification devel-
oped by Xing et al.42

The model comparison procedure considered in the pres-
ent work also shares similarities with the approach used 
recently by Jiang et al,12 in that both utilize diffusion time 
dependence to distinguish between qualitatively differ-
ent tumor sub-regions. Jiang et al acquired pulsed-gradient 

and oscillating-gradient diffusion data over a range of dif-
fusion times, and used a model selection process to deter-
mine whether a time-independent diffusivity model or their 
IMPULSED (Imaging Microstructural Parameters Using 
Limited Spectrally Edited Diffusion) model was preferred 
on a voxel-wise basis, with the aim of differentiating via-
ble regions from late-stage apoptotic or necrotic regions in 
9L gliomas.12 While conceptually similar, the present work 
complements this approach by showing that a similar frame-
work can be employed with a narrower range of diffusion 
times from only pulsed-gradient acquisitions, and that the 
approach can be applied to tumors outside the brain. In ad-
dition, the present work’s inclusion of day 6 and day 10 time 
points allows longer term post-radiotherapy changes to be 
investigated, extending the 4 day range covered by Jiang et 
al.12 Perhaps most importantly, the present work not only 
used model comparison to determine the voxels from which 
to extract model parameters, but also used it to obtain a novel 
quantitative biomarker, %MM, whose technical and biologi-
cal validity were evaluated through in silico simulations, and 
comparison with histology, respectively.

The in silico simulations provide important information 
about the technical performance of %MM estimates. The 
high specificity shows that true TID voxels are rarely mis-
classified as MM, while the lower sensitivity shows that true 
MM voxels have a tendency to be misclassified as TID. This 
is a clear limitation of the technique, hypothesized to be re-
lated to the difference in complexity of the two models being 
compared; with noisy data, the TID model with one parame-
ter can appear more favorable than the MM model with four 
parameters, resulting in a noise-dependent underestimation 
of the proposed biomarker. While the existence and magni-
tude of such a bias will depend on the specific nature of the 
models being compared, as well as the SNR of the data, we 
suggest that methods seeking to identify and quantify sub- 
regions with model comparison should be tested with valida-
tion simulations, so that bias and precision can be evaluated; 
this should form part of the technical validation of derived 
biomarkers.2 The in vivo results provide evidence for the abil-
ity of model comparison techniques to identify qualitatively 
different tumor sub-regions, and to assess changes in these 
regions in response to treatment. Specifically, the changes in 
%MM suggest that both groups had a reduction in the amount 
of tissue characterized by restricted diffusion, with a larger 
and earlier decrease in the treated tumors, consistent with ra-
diotherapy-induced cell death. Note that longitudinal changes 
in %MM assess the relative proportions of tumor sub-regions 
over time; this methodology does not attempt to directly com-
pare the same voxel at different time points, in contrast to 
approaches such as the functional diffusion map.26 Applying 
such methods to track changes in individual voxels in the cur-
rent study would be challenging, due to the lack of normal an-
atomical structure to guide registration, and the difficulty in 
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establishing voxel-wise correspondence in tumors which are 
changing shape and size. The negative correlation between 
%MM and histology-derived % necrosis provides support 
for the hypothesis that regions favored by TID correspond 
to necrotic or oedematous regions, although the histologi-
cal analysis did not quantify oedema. A further limitation of 
the biological validation is that histology results come from 
only a single slice, whose location can only approximately be 
matched to an imaging slice. Spatial correspondence between 
histology and imaging is also hindered by shrinkage and dis-
tortion of histological samples due to fixation and sectioning. 
Improved methods for comparison of histology and imaging, 
such as the use of tumor-specific moulds and image regis-
tration,41 would provide a more comprehensive biological 
validation. Taken together, the in vivo and in silico results 
suggest that %MM is related to tumor necrosis, although ac-
tual necrotic fractions will be lower than %MM suggests.

The model comparison provides similar information 
to the alternative classification using an ADC thresh-
old, in that both approaches yield metrics that negatively 
correlate with % necrosis. However, as ADC values will 
vary depending on the acquisition protocol (eg, sequences 
with different diffusion times), it is unlikely that a single 
ADCcut-off will apply across different studies, limiting the 
utility of this classification approach. Moreover, relying 
solely on ADC does not provide the more specific mi-
crostructural information that inherently comes with the 
%MM approach.

These results provide an initial step in the validation of 
%MM. Further technical and biological validation is required 
if it is to become a robust tool in research or clinical settings. 
While the technical performance here is acceptable, further 
work is needed to understand how the acquisition protocol af-
fects sensitivity and specificity; this is especially important for 
clinical applications where gradient strength will typically be 
lower. The impact of diffusion time should also be explored, 
given its critical role in distinguishing time-dependent and 
time-independent diffusion regimes. As with all biomarkers 
seeking to detect treatment-induced changes, the magnitude 
of expected biological changes needs to be compared with 
parameter accuracy and precision.28 Further biological val-
idation would involve other tumor types and interventions, 
along with improved histology-imaging comparisons.

5  |   CONCLUSIONS

The diffusion model comparison presented here provides 
two insights into tumor microstructure and treatment re-
sponse. First, there is spatial and radiotherapy-related vari-
ation in different models’ suitability for describing water 
diffusion in tumor tissue, potentially reflecting different 
and changing microenvironments. Second, within restricted 

diffusion regions, microstructural parameters are sensitive to 
radiotherapy-induced changes, and potentially provide more 
specific microstructural information than conventional DW-
MRI-derived biomarkers.

These results suggest that tumor heterogeneity should 
be considered when applying models to pre-treatment and 
post-treatment DW-MRI data. More generally, models de-
scribing any quantitative imaging data may need to account 
for spatial and treatment-related changes in model suitability. 
This ensures appropriate use of models and potentially yields 
novel biomarkers of treatment response based on physiolog-
ical differences between tumor sub-regions. The biological 
and technical validation of the proposed %MM biomarker 
suggests it correlates with, but, due to the effects of noise, 
overestimates, % necrosis.
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FIGURE S1 Model selection procedure with discrete-Di fit-
ting. The microstructural model (MM) was fitted voxel-wise 
to signals normalized to b = 0 s∕mm

2, with separate fits for 
Di fixed to 0.5, 1.0, 1.5, 2.0, 2.5 μm

2/ms. Fits for one example 
voxel, A (red box on b = 0 s∕mm

2 image), within the tumor 
ROI (black outline) are shown. The fit with the highest R2 
was accepted, and was then compared with the time-inde-
pendent diffusion (TID) model, as described in the main text 
and in Figure 1
FIGURE S2 Violin plots of parameter distributions from 
fitting simulations. A-D, show results for ground truth 
Di = 0.2, 1.1, 2.0, and 2.9 μm

2/ms, respectively. In each 
case, distributions show results from 1500 fits for fit-Di and 
discrete-Di, for 24 microstructures with different ground 
truths, identified by the black horizontal lines. For exam-
ple, microstructure 1 in (A) has a ground truth of R = 5 μm, 
Di = 0.2 μm

2/ms, De = 0.2 μm
2/ms, and fi = 0.25. The red 

square represents the median of each distribution. For exam-
ple, a parameter estimated with high accuracy and precision 
would have a narrow gray band and red square both centered 
on the black line
FIGURE S3 Median conventional ADC and % necro-
sis. Whole-tumor median ADC is plotted against percent-
age necrosis for control (circles) and radiotherapy (RT, 
crosses) groups. Using all data points, there is a signifi-
cant positive correlation (Pearson’s correlation coefficient, 
ρ = 0.56, P = .016)
FIGURE S4 Conventional ADC threshold and % necrosis. 
A, A range of ADC thresholds, ADC

thresh
 = 0.1-3 μm

2/ms, 

were applied to all central-slice conventional ADC datasets; 
for each threshold and dataset, the percentage of voxels with 
ADC below the given threshold was calculated. Curves show 
this percentage as a function of threshold for all tumors at all 
time points; for example, no voxels have ADC < 0.1 μm

2/ms, 
and all voxels have ADC ≤ 3 μm

2/ms. B, For each threshold, 
the corresponding percentage of voxels below the threshold 
was correlated with % necrosis from histology; this only used 
ADC data from subjects’ final scan. Pearson’s correlation 
coefficient, ρ, is plotted as a function of ADC

thresh
, showing 

that the maximum absolute ρ is obtained with a threshold 
of 1.07 μm

2/ms, termed the ADCcut-off. C, The correlation for 
this maximum absolute ρ is shown, for control (circles) and 
radiotherapy (RT, crosses) groups (ρ = −0.65, P = .003)
FIGURE S5 Bivariate histograms of whole-tumor voxel- 
wise D′ and ADC values, for control (top) and radiotherapy- 
treated (bottom) tumors. In each case, plots are shown for all 
subjects (columns) at all time points (rows). The black line in 
each plot represents D� = ADC; the colour scale represents 
the normalized bin count and is the same for each plot. When 
both parameters are low, the tendency is for ADC to be higher 
than D′ (points are above the black line), while when both 
parameters are high, ADC and D′ are similar (points lie closer 
to the black line). This trend is expected as D

′ is obtained 
from short and long diffusion times, and reflects an average 
of high and low diffusivities when diffusion is time depen-
dent, while ADC is measured only at the short diffusion 
time where the diffusivity will be higher; the two parameters 
are equivalent when diffusion is time-independent, which 
here tends to be at higher diffusivities. Note that these plots  
include D

′ values from all tumor voxels, including those 
where the MM model is preferred over the TID model, that 
is, where diffusion is time dependent
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