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Limited epidemiological evidence suggests that the etiology of hormone receptor positive (HR1) breast cancer may differ by

levels of histologic grade and proliferation. We pooled risk factor and pathology data on 5,905 HR1 breast cancer cases and

26,281 controls from 11 epidemiological studies. Proliferation was determined by centralized automated measures of KI67 in

tissue microarrays. Odds ratios (OR), 95% confidence intervals (CI) and p-values for case–case and case–control comparisons

for risk factors in relation to levels of grade and quartiles (Q1–Q4) of KI67 were estimated using polytomous logistic regres-

sion models. Case–case comparisons showed associations between nulliparity and high KI67 [OR (95% CI) for Q4 vs.

Q151.54 (1.22, 1.95)]; obesity and high grade [grade 3 vs. 151.68 (1.31, 2.16)] and current use of combined hormone ther-

apy (HT) and low grade [grade 3 vs. 150.27 (0.16, 0.44)] tumors. In case–control comparisons, nulliparity was associated

with elevated risk of tumors with high but not low levels of proliferation [1.43 (1.14, 1.81) for KI67 Q4 vs. 0.83 (0.60, 1.14)

for KI67 Q1]; obesity among women �50 years with high but not low grade tumors [1.55 (1.17, 2.06) for grade 3 vs. 0.88

(0.66, 1.16) for grade 1] and HT with low but not high grade tumors [3.07 (2.22, 4.23) for grade 1 vs. 0.85 (0.55, 1.30) for

grade 3]. Menarcheal age and family history were similarly associated with HR1 tumors of different grade or KI67 levels.

These findings provide insights into the etiologic heterogeneity of HR1 tumors.

Introduction

Breast cancer is a heterogeneous disease at the morphological,

molecular and genomic level, defining subtypes with distinct

biological and clinical behavior.1–3 Expression of hormone

receptors (HR; i.e., estrogen receptor (ER) or progesterone

receptor (PR)) distinguishes two classes of tumors thought to

derive from different cells of origin: HR1 tumors deriving

from luminal epithelial cells and HR2 from basal/

myoepithelial cells.1 In Western populations, HR1 tumors

occur more commonly (�70% of tumors) and have a later age

at onset and better short-term prognosis than HR2 tumors.4,5

While epidemiological studies have shown that these two sub-

types may have distinct risk factor associations,6–9 little is

known about etiologic heterogeneity within HR1 tumors.10,11

Histologic grade is an important indicator of tumor

aggressiveness that reflects three features including tubule

What’s new?

Limited epidemiological evidence suggests that the etiology of hormone receptor positive (HR1) breast cancer may differ by

HR1 tumor subtypes as defined by histologic grade and proliferation level. In this report pooling risk factor data from a con-

sortium of breast cancer studies, the authors found associations between nulliparity and highly proliferative tumors; obesity

and high grade tumors; and current use of combined hormone therapy and low grade tumors. These results provide insights

into heterogeneity of HR1 tumors that may be reflective of differences in etiological pathways, and could also have implica-

tions for risk prediction of aggressive subtypes of HR1 tumors.
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formation, nuclear pleomorphism and mitotic count, which

is directly related to proliferation.12 Due to the latter feature,

it is highly correlated with KI67 (a marker of proliferation)

and both have been used to identify surrogates for two HR1

tumors identified by expression tumor profiling studies, i.e.

luminal A and luminal B subtypes.13–15 Epidemiological stud-

ies suggest that these two subtypes could have differential

associations with risk factors.10,16 However, although corre-

lated, histologic grade and KI67 reflect different biological

features of tumors that could be of etiological relevance.

Unlike grade which encompasses both differentiation and

proliferation, KI67 is expressed only during the proliferative

phases of the cell-cycle and is one of the most commonly

used markers of proliferation.17–19 Its function is not fully

understood but it is thought to mediate assembly of the peri-

chromosomal compartment in human cells.20

Accumulating epidemiological data suggest that breast

cancer risk factors may be distinctly associated with grade

and KI67.21–23 Three previous studies found associations

between high BMI and high levels of histologic grade but not

KI6721–23 whilst younger age at onset of breast cancer and

being of African-American ethnicity were reportedly associ-

ated with high levels of KI67 but not histologic grade.23

These studies were case-series with limited sample sizes

(346–668 cases), and were based on semi-quantitative visual

scores for KI67. This scoring approach is characterized by

poor inter-observer reproducibility24,25 and offers limited

opportunities for evaluating dose–response relationships.

Thus, studies with larger sample sizes and standardized quan-

titative measures of KI67 across studies are needed to evalu-

ate the relationship between breast cancer risk factors and

HR1 tumors defined by their levels of proliferation and his-

tologic grade.

In this report, we pooled risk factor data from a consor-

tium of breast cancer studies to examine the relationship of

breast cancer risk factors with subtypes of HR1 tumors

defined by levels of histologic grade and KI67 expression,

determined by centralized automated scoring of tissue micro-

arrays (TMAs) as previously described.26

Materials and Methods

Study population

A total of 5,905 HR1 invasive breast cancer cases and 26,281

controls were pooled from 11 epidemiological case–control

studies with TMAs and risk factor information in the Breast

Cancer Association Consortium (BCAC). Study populations

were from Europe, Australia and North America. Details of

the contributing studies including designs, country of loca-

tion, method of recruitment, age range, sources and eligibility

of cases and controls are provided in Supporting Information

Table S1. In brief, this analysis comprised 11 case–control

studies (one of them (UKBGS) nested within a prospective

cohort study). Six studies (CNIO, MCBCS, ORIGO, RBCS,

SEARCH and kConFab) were of hospital-based or mixed

study designs (considered “non-population-based” studies),

whilst five studies (ESTHER, KBCP, MARIE, PBCS and

UKBGS) were population-based. All participants in each of

the study groups provided written informed consent and all

studies gained approval from local ethics committees.

Risk factors

Data on risk factors were derived from questionnaires that

were administered to participants at recruitment in each of

the participating BCAC studies. Harmonization, central que-

rying and quality checks on these data were performed by

investigators at the German Cancer Research Institute, Hei-

delberg. The current analysis included risk factors for which

there is evidence in the literature to suggest a heterogeneous

relationship with clinicopathological characteristics and for

which we had data. In this regard, five risk factors were iden-

tified – age at menarche, parity, body mass index (BMI), use

of combined hormone therapy (HT) and family history of

breast cancer. Supporting Information Table S2 shows the

number of cases and controls from each study with risk fac-

tor information.

Pathological characteristics

Data on hormone receptor status were obtained from clinical

records. Levels of histologic grade were assigned by local

study pathologists in the respective study groups. Tumors

were graded as 1 (low grade or well-differentiated), 2 (inter-

mediate grade or moderately differentiated) and 3 (high

grade or poorly differentiated). The extent of proliferation in

breast cancer tissues was determined using measures of KI67.

Scores were centrally generated at the Institute of Cancer

Research (ICR) in London by using a digital image analysis

protocol that was developed for the quantification of KI67 in

breast cancer TMAs as previously described.26 In brief, a total

of 166 TMAs were collected for evaluation from the partici-

pating BCAC studies. These were stained using a standard

protocol of (Dako, Cheshire UK) MIB-1 antibody diluted 1/

50 and visualized using the Dako REAL kit (K5001). Auto-

mated scoring was performed using the Ariol machine (Leica

Biosystems, Newcastle UK), which has functionality that

allows for the discrimination of malignant and non-

malignant nuclei using shape and size characteristics as well

as the automatic detection of KI67 positive and negative

malignant nuclei using color deconvolution. The algorithm

was used to generate quantitative (0–100% positive cells)

KI67 scores. As previously reported,26 Ariol scores showed

good agreement with standardized pathologist’s scores. Subse-

quently, automated KI67 scores were merged with other risk

factor and pathological characteristics. The majority of the

5,905 cases had complete data on KI67 (83%) or grade (76%)

and at least one risk factor (see Supporting Information

Table S3 for details). All pathology data were harmonized

and quality checked by investigators at the Netherlands Can-

cer Institute, Amsterdam.
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Statistical analysis

Participant ages at diagnosis/ages at interview were catego-

rized into five classes (<40, 40–49, 50–59, 60–69 and �70).

Age at menarche was categorized into four classes (�12, 13,

14, �15). Parity was defined as nulliparous or parous for

case–case and case–control comparisons. For BMI, three

well-defined categories were used (normal <25 kg/m2; over-

weight 25–30 kg/m2 and obese >30 kg/m2) and the case–

control analysis was conducted for groups of women strati-

fied according to age (<50 years and �50 years) as a surro-

gate for menopausal status. This was done to account for

previously reported differences in the association between

BMI and breast cancer risk by menopausal status. For the

case–case comparisons, BMI was not differentially related to

tumor grade/KI67 levels by age categories (proxy for meno-

pausal status); as a result, case–case analysis was not stratified

according to age. HT use was categorized into those who

never used HT, former users and current users. Due to very

small numbers of those who reported using estrogen only

formulations, our analysis involved only those women who

took combined estrogen and progesterone formulations.

Family history of breast cancer in a first-degree relative was

categorized as yes (if present) or no (if absent). Frequency

tables were used to assess the distribution of the risk factors

among cases and controls stratified by study design. To test

for differences in the distribution of risk factors for cases and

controls by study design, we created a dummy variable for

design and modeled this as the outcome with the different

risk factors as predictors. Box plots and nonparametric Krus-

kal–Wallis equality of median test were used to assess the

distribution of KI67 across categories of histologic grade,

overall and by study.

We constructed a polytomous unconditional logistic regres-

sion model for each risk factor variable, and performed case–

case and case–control comparisons within the same model. For

case–case comparisons, odds ratios (OR), 95% confidence

intervals and p-values for the associations between breast can-

cer risk factors [menarche (�12 vs. �15 years); parity (nullipa-

rous vs. parous); BMI (25–30 kg/m2 and >30 kg/m2 vs.

<25 kg/m2, respectively); HT (former and current vs. never,

respectively); family history (yes vs. no)] and quartiles of KI67

[Q1 (base category), <25th percentile (0–1.49%); Q2, 25–50th

percentile (1.50–4.29%); Q3, >50–75th percentile (4.30–

10.40%); Q4, >75th percentile (>10.40%)] and histologic

grade [grades 1 (base category), 2, 3] were estimated. For case–

control comparisons, an interaction term between study design

(population-based vs. non-population-based) and the risk fac-

tor of interest was included to obtain estimates of association

by study design. Because of previously reported biases in case–

control ORs estimated from non-population-based studies,9

only case–control ORs from population-based studies are pre-

sented in tables. However, ORs for case–case comparisons and

corresponding tests are based on data from all cases (i.e., from

both population-based and non-population-based studies).

Meta-analyses of study-specific case–case and case–control

ORs were performed to test for between-study heterogeneity in

the OR estimates.

We examined dose–response relationships between risk fac-

tors and levels of KI67, by using the median % positive cells in

each quartile of KI67 as constraints in an ordered polytomous

logistic regression model.27 To determine if the relationships

between nulliparity, obesity and current use of combined HT

are distinct with respect to grade and KI67, we applied a 2-

stage meta-regression model.28 In the first stage of the 2-stage

meta-regression model, we performed a polytomous logistic

regression analyses for subtypes of HR1 breast cancer defined

by cross-classification of levels (Q1–Q4) of KI67 and histologic

grade (low (grade1) and high (grades 2 and 3)). In the second

stage, we modeled the subtype-specific log odds ratios and

standard errors using KI67 and grade. This approach allowed

us to evaluate if the risk factor-subtype associations are differ-

ent across subtypes defined by KI67 whilst controlling for

grade, and vice versa. Also, by including an interaction term

between KI67 and grade we were able to examine if the rela-

tionship between risk factors and subtypes defined by levels of

KI67 were modified by grade or vice versa.

Analysis on each risk factor was limited to studies that

provided information on that risk factor. Missing values were

addressed by creating indicators for missing values in our

models. As sensitivity analysis, all risk factors were mutually

adjusted for in a multivariate model comprising data from

three studies with information on the five risk factors that

were evaluated. All analyses, including case–case and case–

control comparisons, were adjusted for age and study. All

statistical tests were two-sided and performed using Stata

statistical software version 13.1.

Results

Table 1 shows a description of the characteristics of the study

participants based on population-based (N5 5 studies) and

non-population-based (N5 6 studies) designs. While the dis-

tribution of most risk factors in cases was similar by study

design, most risk factors showed different distributions in

population and non-population-based studies.

Overall, the median and mean positive cells stained for

KI67 was 4.2% and 8.2%, respectively. Most tumors were of

intermediate grade (52%), followed by low grade (26%) and

high grade (22%) tumors. As expected, grade 1 tumors had

lower KI67 scores compared to grades 2 and 3 tumors

[median and mean5 3% and 6.3%; 4.3% and 8%; 7% and

11% for grades 1, 2 and 3 tumors, respectively]. A similar

pattern of association between KI67 and histologic grade was

seen across studies (Supporting Information Fig. S1).

Case–case comparisons for the associations between

breast cancer risk factors and HR1 tumors defined by

levels of histologic grade and KI67

As shown in Table 2, we observed that compared to their

normal weight counterparts, tumors occurring amongst
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overweight and obese women were more likely to be of

higher (grades 2 and 3) than lower (grade 1) grade. Specifi-

cally, we observed overweight women to have 33% (95%

CI5 1.13, 1.58) and 23% (95% CI5 1.00, 1.52) increased

odds of developing grades 2 and 3 than grade 1 tumors,

respectively. Similarly, high grade tumors were more likely to

occur amongst obese than normal weight women [vs. grade

1, OR (95% CI)5 1.67 (1.13, 2.05); p-value5 0.001 for grade

2 and 1.68 (1.31, 2.16); p-value5<0.001 for grade 3 tumors].

As shown in Supporting Information Table S4, these associa-

tions were similar following stratification by tumor size (p-

value for interaction (p_interaction)5 0.52).

Compared to women who never took HT, tumors occur-

ring amongst current users of combined HT were less likely

to be high than low grade [vs. grade 1: OR (95% CI)5 0.45

(0.32, 0.63); p-value5<0.001 for grade 2 and 0.27 (0.16,

0.44); p-value5<0.001 for grade 3 tumors]. When we tested

the associations between tumor grade, KI67 and morphology

Table 1. Characteristics of cases and controls in population and non-population based studies

Population-based Non-population-based

Characteristic Controls (no.) % Cases (no.) % Controls (no.) % Cases (no.) %

Age, years

<40 252 2.2 42 2.1 590 4.7 249 6.7

40–49 1,247 10.9 293 14.4 2,135 17.0 905 24.3

50–59 3,999 34.9 682 33.6 4,696 37.4 1,456 39.1

60–69 4,720 41.1 708 34.9 3,662 29.2 882 23.7

�70 1,256 10.9 303 14.9 1,464 11.7 233 6.3

Age at menarche, years

�12 2,140 26.2 522 27.8 3,491 40.5 1,123 42.9

13 1,838 22.5 431 22.9 2,263 26.3 640 24.4

14 2,034 24.9 498 26.5 1,617 18.8 471 18.0

�15 2,168 26.5 427 22.7 1,245 14.4 385 14.7

Parity

None 1,221 13.5 310 15.6 1,437 16.4 396 14.3

1–2 5,941 65.6 1,331 66.9 4,495 51.3 1,484 53.5

3–4 1,726 19.0 312 15.7 2,460 28.1 798 28.8

�5 175 1.9 37 1.9 363 4.1 94 3.4

BMI, kg/m2

Among women <50 years

<25 542 44.4 194 51.1 672 49.7 461 52.3

25–30 431 35.3 144 37.9 387 28.6 273 31.0

>30 249 20.4 42 11.1 292 21.6 147 16.7

Among women�50 years

<25 2,775 35.6 472 29.5 1,998 34.5 646 37.4

25–30 3,028 38.9 641 40.1 2,366 40.9 679 39.3

>30 2,005 25.7 486 30.4 1,419 24.5 401 23.2

Combined HT Use

Never 4,836 70.7 1,000 73.4 1,070 74.9 196 75.1

Former 849 12.4 117 8.6 238 16.7 29 11.1

Current 1,154 16.9 245 18.0 120 8.4 36 13.8

Family history

No 8,023 90.2 1,707 87.4 7,778 88.6 1,997 76.9

Yes 874 9.8 247 12.6 1,004 11.4 599 23.1

The study population comprised 11 studies participating in the Breast Cancer Association Consortium (see Supporting Information Table S1 for
details of the individual studies) with population (ESTHER, KBCP, MARIE, PBCS, UKBGS) and non-population (CNIO, kConFab, MCBCS, ORIGO, RBCS,
SEARCH) based designs. In a model with study design as the outcome: for controls, the distribution of all the risk factors differed by design (p-value
<0.05); for cases, only menarche and family history were different by design.

C
an

ce
r
E
p
id
em

io
lo
g
y

Abubakar et al. 5

Int. J. Cancer: 00, 00–00 (2018) VC 2018 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC



(ductal vs. lobular) in relation to HT use, all three tumor fea-

tures were associated with HT use in univariate models at p-

value <0.05. However, following mutual adjustment for all

three features in a multivariable model, only histologic grade

remained associated with HT use (OR (95% CI)5 0.45 (0.27,

0.76); p-value5 0.003 for grades 2 vs. 1 and 0.25 (0.11, 0.57);

p-value5 0.001 for grades 3 vs. 1). Furthermore, as shown in

Supporting Information Table S4, HT use remained associ-

ated with low grade tumors regardless of tumor size (p_inter-

action5 0.78). Age at menarche, nulliparity and family history

of breast cancer in a first-degree relative were not differen-

tially related to HR1 tumors defined by levels of histologic

grade.

As shown in Table 3, compared to tumors occurring

among parous women, those occurring among nulliparous

women were more likely to have higher KI67 expression and

a statistically significant gradient was observed in this rela-

tionship [OR (95% CI) vs. KI67 Q15 1.14 (1.06, 1.23) for

KI67 Q2; 1.22 (1.09, 1.37) for KI67 Q3 and 1.50 (1.20, 1.88)

for KI67 Q4; p-value for trend 0.001]. There was weaker or

no evidence for associations with KI67 levels for age at

menarche, BMI, HT and family history of breast cancer in a

first-degree relative.

Case–control comparisons for the associations between

nulliparity, BMI, HT use and HR1 tumors defined by levels

of KI67 and histologic grade

Case–control comparisons in population-based studies

showed an elevated risk of HR1 tumors with high levels of

tumor proliferation among nulliparous women (Fig. 1 and in

Supporting Information Table S5; p-value for between-study

heterogeneity5 0.78). Furthermore, as shown in Figure 1 and

in Supporting Information Table S6, obesity amongst women

older than 50 years of age was associated with elevated risks

of high but not low grade tumors (p-value for between-study

heterogeneity5 0.76). Among women younger than 50 years

of age (Supporting Information Table S7), we observed obe-

sity to be associated with reduced risk of breast cancer across

all levels of histologic grade, this association was however

weaker for grades 2 and 3 than grade 1 tumors (p-value for

between-study heterogeneity5 0.72). Current use of com-

bined HT was associated with an elevated risk of low but not

Table 2. Case–case odds ratios and 95% CI for the associations between breast cancer risk factors and subtypes of HR1 tumors defined by
levels of histologic grade

Histologic grade*

Grade 1
(comparison group)

Grade 2 Grade 3

Risk factor N N OR (95% CI) p-Value N OR (95% CI) p-Value

Menarche

�15 years 183 417 1.00 (referent) 157 1.00 (referent)

14 years 218 497 1.01 (0.80, 1.28) 0.93 186 0.99 (0.74, 1.33) 0.97

13 years 266 529 0.96 (0.76, 1.20) 0.71 192 0.89 (0.67, 1.18) 0.42

�12 years 363 836 1.09 (0.87, 1.35) 0.46 299 0.96 (0.73, 1.26) 0.77

Parity

Parous 902 2,089 1.00 (referent) 745 1.00 (referent)

Nulliparous 165 322 0.86 (0.70, 1.06) 0.16 157 1.09 (0.86, 1.40) 0.46

BMI

<25 kg/m2 454 832 1.00 (referent) 332 1.00 (referent)

25–30 kg/m2 385 929 1.33 (1.13, 1.58) 0.001 326 1.23 (1.00, 1.52) 0.05

>30 kg/m2 202 596 1.67 (1.13, 2.05) <0.0001 212 1.68 (1.31, 2.16) <0.0001

Combined HT use

Never 169 545 1.00 (referent) 156 1.00 (referent)

Former 33 76 0.71 (0.45, 1.12) 0.15 17 0.47 (0.25, 0.89) 0.02

Current 84 134 0.45 (0.32, 0.63) <0.0001 29 0.27 (0.16, 0.44) <0.0001

Family history

No 844 1,918 1.00 (referent) 399 1.00 (referent)

Yes 183 399 1.03 (0.83, 1.28) 0.78 173 1.07 (0.82, 1.40) 0.61

*Histologic grade (15 low/well-differentiated; 25 intermediate/moderately differentiated; 35high/poorly differentiated). ORs and corresponding
tests are based on data from all cases i.e. both population and non-population-based. All models were adjusted for age and study and no evidence
was observed of between-study heterogeneity in study-specific OR estimates for BMI (p-value50.96) and HRT (p-value50.95).
Statistically significant p-values are indicated in bold.
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Table 3. Case–case odds ratios and 95% CI for the associations between breast cancer risk factors and subtypes of HR1 tumors defined by levels of tumor proliferation indicated by KI67

KI67*

Q1 (comparison
group) Q2 Q3 Q4

Risk factor N N OR (95% CI) P-Value N OR (95% CI) p-Value N OR (95% CI) p-Value p_trend

Menarche

�15 years 206 209 1.00 (referent) 196 1.00 (referent) 201 1.00 (referent)

14 years 236 263 1.11 (0.85, 1.14) 0.45 244 1.07 (0.82, 1.41) 0.60 226 0.96 (0.73, 1.26) 0.76 0.49

13 years 302 253 0.85 (0.65, 1.10) 0.22 262 0.96 (0.74, 1.25) 0.75 254 0.94 (0.72, 1.22) 0.65 0.99

�12 years 450 401 0.96 (0.75, 1.22) 0.75 384 1.01 (0.78, 1.29) 0.96 410 1.10 (0.86, 1.41) 0.44 0.30

Parity

Parous 1,119 1,011 1.00 (referent) 976 1.00 (referent) 950 1.00 (referent)

Nulliparous 158 183 1.29 (1.03, 1.64) 0.03 175 1.30 (1.03, 1.65) 0.03 190 1.54 (1.22, 1.95) <0.0001 0.001

BMI

<25 kg/m2 483 477 1.00 (referent) 411 1.00 (referent) 412 1.00 (referent)

25–30 kg/m2 504 418 0.79 (0.65, 0.95) 0.01 408 0.87 (0.72, 1.05) 0.16 419 0.86 (0.72, 1.05) 0.14 0.53

>30 kg/m2 256 250 0.86 (0.69, 1.07) 0.18 288 1.05 (0.85, 1.31) 0.64 285 0.99 (0.79, 1.24) 0.93 0.67

Combined HT use

Never 151 192 1.00 (referent) 269 1.00 (referent) 273 1.00 (referent)

Former 37 34 0.96 (0.57, 1.62) 0.88 35 0.81 (0.48, 1.36) 0.43 23 0.65 (0.37, 1.16) 0.14 0.12

Current 72 78 1.11 (0.74, 1.66) 0.60 56 0.66 (0.43, 1.00) 0.05 51 0.68 (0.44, 1.05) 0.09 0.03

Family history

No 907 923 1.00 (referent) 940 1.00 (referent) 959 1.00 (referent)

Yes 266 226 0.95 (0.76, 1.21) 0.71 182 0.89 (0.70, 1.14) 0.37 172 0.99 (0.78, 1.27) 0.98 0.97

*Quartiles (Q) of KI67 (Q1, <25 percentile (0–1.49%); Q2, 25–50th percentile (1.50–4.29%); Q3, >50–75th percentile (4.30–10.40%); Q4, >75th percentile (>10.40%)) were derived from the distri-
bution of KI67 scores. ORs and corresponding tests are based on data from all cases i.e. both population and non-population-based. All models were adjusted for age and study and no evidence
was observed of between-study heterogeneity in study-specific OR estimates for nulliparity (p-value5 0.85).
Statistically significant p-values are indicated in bold.
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high grade tumors (Fig. 1 and in Supporting Information

Table S8; p-value for between-study heterogeneity5 0.15). In

multivariate analyses with mutual adjustment for the five risk

factors that were evaluated in addition to age and study

group, nulliparity remained significantly associated with high

but not low KI67 expressing tumors [OR (95% CI)5 1.33

(1.02, 1.74); p-value5 0.03 for KI67 Q4 and 0.85 (0.57, 1.25);

p-value5 0.40 for KI67 Q1]. Obesity among women �50

Figure 1. Case–control odds ratios (OR) and 95% confidence intervals (CI) for the associations between parity, BMI, use of combined HT

and risk of HR1 tumors defined by levels of histologic grade and tumor proliferation, indicated by KI67. Levels of KI67 defined by quartiles

of expression (Q1, <25th percentile (0–1.49%); Q2, 25–50th percentile (1.50–4.29%); Q3, 50–75th percentile (4.30–10.40%); Q4, >75th

percentile (>10.40%)). Histologic grade defined as: 15well-differentiated; 25moderately differentiated and 35poorly differentiated. All

models were adjusted for age and study. No evidence was observed of between-study heterogeneity in study-specific OR estimates (p-val-

ue>0.05). For more details see Supporting Information Tables S5, S6 and S8.
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years of age remained significantly associated with high but

not low grade tumors [OR (95% CI)5 1.50 (1.04, 2.18); p-

value5 0.03 for grade 3 and 0.82 (0.58, 1.15); p-value5 0.26

for grade 1]. Current use of combined HT remained signifi-

cantly associated with low but not high grade tumors [3.04

(2.19, 4.21); p-value <0.001 for grade 1 and 0.89 (0.58, 1.38);

p-value5 0.61 for grade 3].

When we examined the associations between nulliparity,

obesity, HT use and subtypes of HR1 tumors defined by

cross-classification of levels of KI67 and histologic grade

(Table 4), we observed nulliparity to be more strongly associ-

ated with tumors expressing higher levels of KI67 and this

association remained significant after accounting for grade

(p-value5 0.04) and was not modified by grade (p_inter-

action5 0.37). Grade was determined to be the primary tumor

characteristic associated with obesity (p-value5 0.03) and

this was regardless of KI67 levels (p_interaction5 0.59). Fur-

thermore, HT use was more strongly associated with subtypes

characterized by being low grade. We observed grade, not

KI67, to be the primary tumor characteristic associated with

HT use (p-value5 0.008) and there was no evidence to sug-

gest that this association is dependent on levels of KI67 in

the tumor (p_interaction5 0.48).

Discussion

Findings from analyses including almost 6,000 cases with

HR1 tumors provide evidence for heterogeneity within these

tumors by histologic grade and level of proliferation. Nulli-

parity was primarily associated with risk of HR1 tumors

with high levels of proliferation defined by KI67; whilst BMI

and HT were associated with risk of high and low grade

HR1 tumors, respectively.

Epidemiological studies have shown that nulliparity is more

consistently associated with increased risk for HR1 than HR2

breast cancer.7,9,29,30 Our analyses indicate that nulliparity is

primarily associated with an elevated risk of HR1 tumors with

high levels of proliferation, which is consistent with findings

from a previous prospective study.31 These findings could

reflect parity-related mechanisms influencing the proliferative

potential of mammary epithelial cells via the induction of ter-

minal differentiation.32 This is in keeping with animal studies

that show pregnancy-mediated persistent increase in the differ-

entiated state of the mammary gland, in addition to reduction

in epithelial cell proliferation mediated, at least in part, by the

downregulation of growth factors and the upregulation of

growth-inhibitory molecules.33

Postmenopausal obesity is associated with an elevated risk

of breast cancer that is more consistent for the HR1 sub-

type.34 Consistent with our findings, previous studies have

reported a higher frequency of high grade21–23 and large35

tumors amongst obese women; however, it is unclear whether

these reported observations are driven by grade, tumor size

or proliferation since these features are correlated but seldom

studied simultaneously. Our analyses indicate that grade is

the primary tumor characteristics related to obesity. Several

biological pathways involving estrogen metabolism,36,37 insu-

lin resistance, inflammation and altered adipokine and cyto-

kine production, have been proposed to mediate the obesity-

cancer link.38 It is plausible that obesity-induced systemic

and/or intra-tumoral inflammation may contribute to the

emergence, via cancer immunoediting39 and/or noncellular

Table 4. Odds ratios (OR) and 95% CI for the associations between parity, obesity, HT and subtypes of HR1 tumors defined by cross-
classification of levels (Q1–Q4) of KI67 and histologic grade

Parity Obesity Combined HT

Nulliparous vs. parous Obese vs. normal Current vs. never

Subtype N KI67 Grade OR (95% CI) p-Value OR (95% CI) p-Value OR (95% CI) p-Value

Controls 11,475 1.00 (referent) 1.00 (referent) 1.00 (referent)

1 102 Q1 Low 0.74 (0.38, 1.44) 0.38 0.98 (0.53, 1.80) 0.94 3.88 (2.14, 7.04) <0.0001

2 155 Q2 Low 1.56 (1.03, 2.42) 0.03 0.75 (0.46, 1.21) 0.24 2.91 (1.72, 4.92) <0.0001

3 123 Q3 Low 1.68 (1.05, 2.69) 0.03 0.88 (0.52, 1.49) 0.63 2.08 (1.14, 3.80) 0.02

4 79 Q4 Low 2.16 (1.24, 3.74) 0.006 0.93 (0.49, 1.77) 0.83 2.77 (1.41, 5.44) 0.003

5 300 Q1 High 0.84 (0.57, 1.14) 0.35 1.14 (0.83, 1.58) 0.41 1.13 (0.74, 1.73) 0.56

6 370 Q2 High 1.19 (0.88, 1.62) 0.25 1.30 (0.97, 1.76) 0.08 1.69 (1.19, 2.42) 0.004

7 451 Q3 High 1.28 (0.97, 1.69) 0.08 1.80 (1.35, 2.39) <0.0001 1.20 (0.84, 1.72) 0.29

8 553 Q4 High 1.37 (1.07, 1.76) 0.01 1.48 (1.14, 1.93) 0.003 1.26 (0.91, 1.77) 0.16

KI671 1.19 (1.01, 1.39) 0.04 1.09 (0.93, 1.27) 0.22 0.95 (0.79, 1.15) 0.51

Grade2 0.75 (0.51, 1.11) 0.12 1.63 (1.08, 2.46) 0.03 0.47 (0.30, 0.74) 0.008

Subtypes were defined by cross-classification of levels (Q1–Q4) of KI67 and histologic grade (low5 grade 1 and high5 grades 2 and 3).
p_interaction5 0.37 for parity, 0.59 for obesity and 0.49 for HT.
1Association between KI67 (high vs. low) and parity, obesity and HT after accounting for histologic grade.
2Association between grade (high vs. low) and parity, obesity and HT after accounting for KI67.
Statistically significant p-values are indicated in bold.
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mechanisms,40 of aggressive forms of breast tumors. Further

studies will be required to unravel the mechanisms underpin-

ning the relationship between BMI and breast cancer histo-

pathological characteristics.

Use of combined HT has been shown in epidemiological

studies to be consistently associated with tumors with favor-

able biological profile including HR1, lobular or tubular

morphology, small and low grade tumors.35,41–44 In line with

these reports, we found an association between HT and

HR1 low grade tumors, that is independent of KI67. The

current analysis includes data from a previously published

study (PBCS) where we reported an association with low

grade but did not measure KI67.35 HT use is known to be

more strongly associated with the invasive lobular cancers,

typically low grade and low proliferating,45,46 than with no-

special-type (NST) invasive ductal carcinomas, which repre-

sent 50–70% of all invasive cancers. However, our analyses

indicated that HT use predisposes similarly to low grade

tumors, independently of morphology. More active screening

among HT users may lead to detection of tumors with more

favorable features including being low grade. Due to lack of

information on screening history and mode of detection, we

were unable to directly examine the impact of screening on

our findings. We did this indirectly, by using tumor size as

proxy for mode of detection and observed HT to be associ-

ated with low grade tumors regardless of tumor size (p-value

for heterogeneity5 0.78). Thus, our findings could reflect a

biological role for HT in influencing tumor behavior; how-

ever, further studies directly accounting for screening history

and mode of detection will be needed to clarify relationships.

Postmenopausal obesity has been shown to increase the risk

of breast cancer only among women who do not take

HT.47,48 We stratified our case–case analyses by HT use and

our results remained essentially the same even though num-

bers of cases were small.

An important strength of this analysis is that we centrally

generated continuous measures of tumor proliferation using

automated digital-pathology algorithms to score KI67. As we

previously showed, this provides standardized, highly repro-

ducible measures of KI67 with good agreements with pathol-

ogists’ quantitative and semi-quantitative scores.26 This

allowed us to evaluate dose–response relationships using

quartiles, rather than arbitrary dichotomous categories of

tumor proliferation. In addition, data on other pathology

markers enabled us to evaluate breast cancer risk factors in

relation to both KI67 and grade in the context of tumor size

and morphology.

KI67 scores were obtained from TMAs that are generally

lower than those obtained on whole sections.49 In addition,

we used an automated system to generate KI67 scores that

are usually lower than visual scores, regardless of whether

measurement was made on TMAs or whole sections.26,50

Thus, our scores for proliferation were lower than what is

typically obtained for whole sections or following visual scor-

ing on TMAs. Nonetheless, measurements from different

sources are generally well correlated and unlikely to substan-

tially affect the ranking of cases in relation to levels of KI67

used in our analyses. Measurement error is a notable limita-

tion for KI67 but automated methods are highly reproducible

and show adequate accuracy in relation to standardized path-

ologists’ scores.26,51 Furthermore, measurement error is

unlikely to be differential with respect to risk factors, and

therefore it would tend to under-rather than over-estimate

odds ratios. Histologic grade tends to have low reproducibil-

ity within and between pathologists,52 however, this error is

also likely to be non-differential with respect to risk factors.

Moreover, the consistency of our results with those of others

who have assessed breast cancer risk factors in relation to

KI67 and grade together,21–23,31 suggest that measurement

error is unlikely to explain our findings.

Our analyses comprised multiple studies with different

study designs, including population and non-population-

based studies: non-population-based studies are particularly

prone to biases in case–control measures of association since

the distribution of exposures amongst controls often does not

reflect that in the source population for the cases. To address

this, we limited case–control comparisons to population-

based studies only. Tests of heterogeneity of associations by

study revealed no evidence of heterogeneity of effect esti-

mates for both case–control and case–case comparisons.

Missing data on risk factors were another limitation in our

study, particularly for case–control comparisons. To address

this, we limited the analysis for each risk factor to studies

with data on that risk factor in both cases and controls and

used the conventional approach of creating indicators for

missing values on each risk factor in our regression models.

As sensitivity analyses, we performed multivariate analyses

with mutual adjustment for all five risk factors in three stud-

ies with complete information on all covariates and our

results remained essentially the same.

In conclusion, our findings indicate that the associations

between parity, BMI, use of combined HT and risk of HR1

tumors are heterogeneous depending on the levels of histo-

logic grade and proliferation, indicated by KI67. Although

correlated, histologic grade and KI67 appear to be distinctly

related to breast cancer risk factors. These results provide

insights into heterogeneity of HR1 tumors that may be

reflective of differences in etiological pathways; however,

other factors not evaluated in our study, such as screening,

could play a role. Given that grade and proliferation are

important prognostic factors in HR1 breast cancer, these

findings could have implications for risk prediction of aggres-

sive forms of HR1 tumors. Further studies accounting for

multiple correlated tumor characteristics and screening are

needed to enable better understanding of these relationships.
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was reviewed and approved by local and the US National

Cancer Institute (NCI) IRBs. The RBCS study was approved
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