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Abstract

Background: Previous studies have shown that reproductive factors are differentially associated with breast cancer
(BC) risk by subtypes. The aim of this study was to investigate associations between reproductive factors and BC
subtypes, and whether these vary by age at diagnosis.

Methods: We used pooled data on tumor markers (estrogen and progesterone receptor, human epidermal
growth factor receptor-2 (HER2)) and reproductive risk factors (parity, age at first full-time pregnancy (FFTP)
and age at menarche) from 28,095 patients with invasive BC from 34 studies participating in the Breast
Cancer Association Consortium (BCAC). In a case-only analysis, we used logistic regression to assess
associations between reproductive factors and BC subtype compared to luminal A tumors as a reference. The
interaction between age and parity in BC subtype risk was also tested, across all ages and, because age was
modeled non-linearly, specifically at ages 35, 55 and 75 years.
(Continued on next page)
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Results: Parous women were more likely to be diagnosed with triple negative BC (TNBC) than with
luminal A BC, irrespective of age (OR for parity = 1.38, 95% CI 1.16–1.65, p = 0.0004; p for interaction with
age = 0.076). Parous women were also more likely to be diagnosed with luminal and non-luminal HER2-like
BCs and this effect was slightly more pronounced at an early age (p for interaction with age = 0.037 and 0.
030, respectively). For instance, women diagnosed at age 35 were 1.48 (CI 1.01–2.16) more likely to have
luminal HER2-like BC than luminal A BC, while this association was not significant at age 75 (OR = 0.72, CI 0.45–1.14).
While age at menarche was not significantly associated with BC subtype, increasing age at FFTP was non-linearly
associated with TNBC relative to luminal A BC. An age at FFTP of 25 versus 20 years lowered the risk for TNBC
(OR = 0.78, CI 0.70–0.88, p < 0.0001), but this effect was not apparent at a later FFTP.

Conclusions: Our main findings suggest that parity is associated with TNBC across all ages at BC diagnosis, whereas
the association with luminal HER2-like BC was present only for early onset BC.

Keywords: Breast cancer subtype, Age at breast cancer diagnosis, Parity, Age at first full-time pregnancy, Age at
menarche

Background
Worldwide, breast cancer (BC) is the most frequently di-
agnosed malignancy and leading cause of female cancer
death [1]. Over the past decade, it has become evident
that BC represents a heterogeneous disease, for which
different subtypes can be distinguished based on the
combination of tumor grade and the presence of hor-
mone receptors, i.e., estrogen (ER), progesterone (PR)
and human epidermal growth factor receptor-2 (HER2).
Each BC subtype, including the luminal A-like, luminal
B-like, luminal HER2-like, HER2-like and triple negative
breast cancer (TNBC), presents with different age and
risk factor distributions [2]. Analyses from the Breast
Cancer Association Consortium (BCAC) showed, for in-
stance, that nulliparity and a later age at first full-time
pregnancy (FFTP) increase the risk of ER-positive BC,
but not ER-negative BC [3].
Menarche and FFTP, and in particular their timing, may

have diverse and complex effects on BC risk. It has been
proposed that pregnancy induces the protective differ-
entiation of mammary cells in the terminal duct lobular
unit, which translates into long-term protection against
BC [4–6]. Subsequent full-term pregnancies exert a simi-
lar but quantitatively much less important effect, which is
a likely reflection of the protective differentiation of breast
cells already induced by the FFTP [7]. The protective ef-
fect of an FFTP, however, is not apparent when the FFTP
occurs after the age of 35 years [8, 9]. Although an FFTP
offers long-term protection against BC, pregnancy is also
associated with a transient increased BC risk postpartum,
which could be due to pregnancy-related stimulation of
pre-existent malignant clones [7, 10, 11]. In addition, the
protective effect of the FFTP is found to be greater later in
life [12], which according to a hypothesis by Russo et al.
can be explained by the fact that several breast tumors are
already initiated before the pregnancy, i.e., before the
FFTP can induce its protective effect [4, 5].

Age at menarche has also been reported to influence BC
risk differently depending on age. A late age at menarche
is associated with a later onset of ovulatory cycles, and
consequently with a decreased lifetime exposure to estro-
gen [13, 14]. For instance, per one year younger age at
menarche, the associated BC risk increases by about 7% in
women aged < 45 years, whereas the increase is about 4%
in women aged 65 or older [15]. Also a short window of
susceptibility, which is defined as the time between age at
menarche and age at FFTP, lowers BC risk [16].
So far, few studies have examined how reproductive

variables may be differentially associated with the risk of
a specific BC subtype [2, 17]. The majority of these stud-
ies did not consider differential effects by age or were
typically limited to cases developing BC at young age
[18, 19], or to postmenopausal women only [20, 21].
Additional investigations involving women diagnosed
with BC in all age categories, for which data on BC sub-
types are available, are thus warranted. Therefore, we
examined the association between parity and the risk of
developing a specific BC subtype, and how this may dif-
fer according to age. Furthermore, we assessed the asso-
ciation of age at menarche (in nulliparous and parous
women) and age at FFTP with the risk of being diag-
nosed with a specific BC subtype.

Methods
BCAC cohorts, inclusion and exclusion criteria
This analysis includes data from studies which partici-
pate in the BCAC and could provide information on BC
risk factors, in particular parity (never versus ever), age
at menarche and age at FFTP, and clinic-pathological
information, in particular, grade, ER, PR and HER2 sta-
tus of the tumor. Studies not providing any of these data
were excluded. Three additional studies in the BCAC
with information on BC subtypes were also not included:
two studies included only ER-negative BC or patients
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with TNBC (SKKDKFZS, NBCS); one study included
only ER-positive/non-TNBC patients (PBCS). Overall, 34
of the 49 available studies in the BCAC provided data
justifying inclusion in our study. These were composed
of 10 population-based studies (8 case–control and 2
prospective cohort studies); 5 hospital-based case-
control studies; and 19 studies of mixed design (all other
studies). No information on previous in situ BC was
available, though some studies excluded patients with a
previous BC. Figure 1 displays the numbers of excluded
and included patients. Patients with in situ breast cancer
(N = 3932) and patients with bilateral BC (N = 2349)
were excluded, since interpretation may be difficult in
the case of coexistence of different BC phenotypes.
Patients with BC diagnosed during pregnancy (N = 23)
were excluded as well. Patients with insufficient informa-
tion for assignment to BC subtype according to the
2011 St. Gallen criteria [22] (N = 18,612) were also
excluded. Patients with BC before a first pregnancy were
classified as nulliparous. Only BC patients with an
unambiguously defined surrogate molecular BC status
(N = 11,328), and with a known parity and age at BC
diagnosis were included (Fig. 1).

Tumor marker definitions and definition of breast cancer
subtypes
Definitions of ER, PR and HER2 status were not stan-
dardized across studies since most data were extracted
from medical records (15 of 34 studies for ER and PR,
and 6 of 34 studies for HER2). The 2011 St. Gallen cri-
teria were used to define the five surrogate BC molecular

phenotypes, using grade instead of Ki67 positivity [22]:
(i) luminal A-like (ER-positive and/or PR-positive,
HER2-negative, grade 1 or 2), (ii) luminal B-like (ER-
positive and/or PR-positive, HER2-negative, grade 3),
(iii) luminal HER2-like (ER-positive and/or PR-positive
and HER2-positive), (iv) HER2-like (ER-negative and
PR-negative, HER2-positive), and TN (ER-negative, PR-
negative and HER2-negative) BC. How these inter-
nationally accepted definitions relate to other definitions
of BC subtypes, as previously also applied in other
BCAC publications, is depicted in Additional file 1:
Table S1.

Statistical methodology
To evaluate the interaction between parity and age at
BC diagnosis considering all BC subtypes simultan-
eously, a baseline-category logit model was applied to a
five-category polytomous variable consisting of the five
BC molecular subtypes, whereby luminal A-like breast
cancer was considered the reference category. Interac-
tions between parity and age at BC diagnosis in the
probability of developing a specific BC subtype were
tested by separate logistic regression models with binary
outcome (1 for the BC subtype and 0 for luminal A-like
BC as the reference subtype). For age at diagnosis, non-
linear trends were explored by means of quadratic and
cubic spline-based curves. Likelihood ratio testing was
used for model selection of nested models and akaike
information criterion (AIC) in the case of un-nested
models. The best fit was obtained when modeling age
non-linearly using cubic splines (five knots). Odds ratios

Fig. 1 Consolidated Standards of Reporting Trials (CONSORT) diagram showing the flow of patients throughout the study. BCAC, Breast Cancer
Association Consortium; HER2, human epidermal growth factor receptor-2 ; ER estrogen receptor; PR progesterone receptor; TNBC, triple negative
breast cancer
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(OR) with 95% confidence intervals were estimated
across all ages and, since age at diagnosis was modeled
non-linearly, extrapolated from the non-linear fit at
three different ages: 35 years (premenopausal age),
55 years (early postmenopausal age) and 75 years (late
postmenopausal age). Hence, odds ratios for parity at se-
lected ages are deducted from the curves generated for
all patients at all ages, and are not based on subgroups
of patients at selected ages.
To follow up on a significant interaction between age

at diagnosis (continuous) and parity in luminal HER2-
like and HER2-like BC, which only differ in their ER/PR
status, we tested whether this interaction varied by com-
bined ER/PR status (ER+/PR+, ER-/PR+, ER+/PR- = 1,
ER-/PR- = 0) by means of a three-way interaction test
(age at diagnosis × parity × ER/PR status). The test was
conducted using a binary logistic regression model
(HER2 status negative/positive) with HER2-negative as
the reference group. Additionally, we assessed the asso-
ciation between parity and HER2-positive BC by age at
diagnosis, using luminal A-like BC as the reference
subtype.
Associations of age at menarche (in parous and nul-

liparous women) and FFTP (in parous women only) with
BC subtypes were evaluated using logistic regression
models. Again, luminal A-like BC was used as the refer-
ence subtype. Age at BC diagnosis was included in these
models to correct for possible confounding. In parous
women, age at FFTP was modelled according to the best
fit, i.e., as a linear function for luminal B-like, luminal
HER2-like and HER2-like BC, but as a quadratic func-
tion for TNBC.
To account for clustering of patients by study, a multi-

level (or random-effects) model was used to provide un-
biased standard errors and p values [23]. All tests were
two-sided and p values smaller than 0.05 were consid-
ered significant. The analyses were performed using SAS
software, version 9.2.

Results
Descriptive statistics for age at BC diagnosis, meno-
pausal status, parity, age at menarche and age at FFTP
stratified by molecular subtype are presented in Table 1.
Additional information about these variables per individ-
ual study and for tumor size, nodal status, tumor grade
and PR status can be found in Additional file 1: Tables
S2-S4.
First, we assessed the association between parity and

BC subtype compared to luminal A BC as a reference.
This was done across all ages modeled non-linearly
using cubic splines (see “Methods”), and because of the
non-linear fit also extrapolated to specific ages. Table 2
includes specific estimates at 35, 55 and 75 years of age
corresponding to premenopausal, early postmenopausal

and late postmenopausal ages, whereas Additional file 1:
Table S5 highlights estimates at 40, 50 and 60 years of
age. A frequency table showing parity by BC subtype
and specific age groups is provided as Additional file 1:
Table S6. Parous women were more likely to develop
TNBC compared to luminal A tumors (OR = 1.38, CI
1.16–1.65, p = 0.0004, Table 2), but this association did
not vary significantly by age (p for interaction = 0.076).
Graphical representation of these associations (Fig. 2a-d)
nevertheless suggested that parous women were more
likely to develop TNBC around age 55 years (Fig. 2d).
Compared to luminal A tumors, we did not observe

a significant association between parity and luminal
B-like BC across all ages (OR= 0.90, CI 0.77–1.05, p = 0.18),
nor at selected ages (Table 2 and Fig. 2a). For luminal
HER2-like BC, there was also no significant associ-
ation with parity across all ages (OR = 1.04, CI 0.88–
1.24, p = 0.62). We did detect, however, a weak but
significant interaction between parity and age (p for
interaction = 0.037). Indeed, although confidence inter-
vals were wide, parous women were slightly more
likely to develop luminal HER2-like BC at age 35
(OR = 1.48, CI 1.01–2.16, p = 0.046). This association
was not significant in women aged 55 (OR = 1.35, CI
0.92–1.99, p = 0.13) and was almost opposite in
women aged 75 (OR = 0.72, CI 0.45–1.14, p = 0.16,
Table 2 and Fig. 2b). Associations between parity and
HER2-like breast tumors were similar to those
observed for luminal HER2-like BC (Table 2 and
Fig. 2c). There was indeed a significant interaction
between parity and age (p for interaction = 0.030), but
at specific ages ORs were not significant. Next, we
combined luminal HER2-like and HER2-like BC and
investigated whether parity may be associated with
the likelihood of developing HER2+ BC (Table 3). A
two-way interaction test between parity and age for
HER2+ BC relative to luminal A BC was significant
(p for interaction = 0.003), but a three-way interaction
test between parity, age and ER/PR status revealed
that the interaction between parity and age does not
differ by ER/PR status (p for interaction = 0.49).
Compared to luminal A BC, parous women were
more likely to develop HER2+ BC at age 35 and 55
(OR = 1.44, CI 1.02–2.03, p = 0.037 and OR = 1.42, CI
1.04–1.96, p = 0.029, respectively), while an inverse
association was observed at age 75 (OR = 0.67, CI
0.67–0.98, P = 0.041, Table 3). Figure 3 visualizes how
the association between parity and HER2+ BC differs
by age.
Next, we assessed whether age at menarche affected

the likelihood of being diagnosed with a specific BC
subtype, while considering luminal A BC as the refer-
ence. The results when parity was considered a dichot-
omous variable are presented in Table 4, while the data
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for parity as a continuous variable are presented in
Additional file 1: Table S7. For both analyses, we found
that in parous and nulliparous women, age at menarche
was not significantly associated with any of the subtypes
investigated, relative to luminal A BC.
Similar analyses were performed for age at FFTP.

Increasing age at FFTP was non-linearly associated with
the odds of being diagnosed with TNBC relative to
luminal A BC. A FFTP at age 25 compared to age
20 years was associated with an OR of 0.78 (CI 0.70–
0.88, p < 0.0001, Table 4). This association was not
apparent for later ages of FFTP. Indeed, patients with a
FFTP at age 35 compared to 30 years did not have

reduced odds of being diagnosed with TNBC compared
to luminal A BC (OR = 1.11, CI 0.96–1.28, p = 0.15),
whereas TNBC patients with a FFTP at age 30 versus
25 years exhibited an intermediate association (OR =
0.93, CI = 0.86–1.01, p = 0.07). For the other BC sub-
types, we observed no association with age at FFTP
(Table 4). Notably, similar effects were observed when
including body mass index (BMI) as a potential con-
founder in these analyses (Additional file 1: Table S8).
Finally, we also performed a joint analysis to simultan-

eously assess the association of age at menarche and age
at FFTP with BC subtypes (Table 4). Overall, associa-
tions were very similar to the associations observed
when evaluating age at menarche and age at FFTP
separately.

Discussion
Our analyses in pooled data on 11,328 patients with
invasive BC showed that parity is associated with TNBC
relative to luminal A disease, irrespective of age at diag-
nosis. A weak association between parity and luminal
HER2-like BC on the other hand could only be observed
when assessed at different ages. Furthermore, age at
FFTP was non-linearly associated with TNBC.
In an earlier case-only study using BCAC data [3], we

reported that parity is associated with a greater probabil-
ity of being diagnosed with TNBC compared to ER
+/HER- or PR+/HER- tumors. In the current analysis,
this was confirmed, but relative to luminal A tumors.
We did not observe that this association differed signifi-
cantly according to age (p = 0.076), although the effects
appeared slightly stronger with older age.
Also in line with previous results reported by the

BCAC [3], parity was not associated with HER2-positive
BC (both luminal HER2-like and HER2-like BC), while
using luminal A-like (HER2-negative) BC as the refer-
ence. However, we did observe for the first time that this
association differed significantly by age. Parous women
diagnosed at 35 years of age were more likely to present
with luminal HER2-like or HER2-like rather than
luminal A BC (OR = 1.44), whereas parous women diag-
nosed after the menopause, at 75 years of age, were not
(OR = 0.67). We hypothesize that pregnancy may pro-
mote HER2 positivity in BCs that are already sub-
clinically present during pregnancy, but only become
clinically apparent in the years following pregnancy.
With older age, we found that parous women are less
likely to have HER2-positive BC. Here, pregnancy could
induce a protective effect against HER2-positive BCs.
Phipps et al. also reported an association between late
age at FFTP and increased risk of HER2-like BC, sug-
gesting that there may only be a protective effect of
pregnancy against HER2-positive BC when pregnancy
precedes carcinogenesis [24].

Table 2 Association between parity (ever versus never) and BC
subtypes for age overall and for specific ages (35, 55 and
75 years)

Age at BC
diagnosis

Odds ratio
(95% CI)

P value P value
interaction
parity × age

Luminal
A-like

All ages 1.00 (Ref.)

Luminal
B-like

All ages 0.90 (0.77–1.05) 0.18

Luminal
HER2-like

All ages 1.04 (0.88–1.24) 0.62

HER2-like All ages 1.04 (0.83–1.29) 0.73

TNBC All ages 1.38 (1.16–1.65) 0.0004

Luminal
A-like

At 35 years 1.00 (Ref.)

At 55 years 1.00 (Ref.)

At 75 years 1.00 (Ref.)

Luminal
B-like

At 35 years 0.95 (0.64–1.43) 0.82

At 55 years 0.91 (0.65–1.26) 0.55

At 75 years 0.89 (0.64–1.24) 0.48 0.99

Luminal
HER2-
like

At 35 years 1.48 (1.01–2.16) 0.046

At 55 years 1.35 (0.92–1.99) 0.13

At 75 years 0.72 (0.45–1.14) 0.16 0.037

HER2-like At 35 years 1.38 (0.86–2.20) 0.18

At 55 years 1.56 (0.98–2.47) 0.06

At 75 years 0.59 (0.33–1.05) 0.07 0.030

TNBC At 35 years 1.40 (0.98–2.00) 0.06

At 55 years 1.80 (1.24–2.63) 0.002

At 75 years 1.67 1.01–2.76) 0.046 0.076

A baseline-category logits model was fitted with breast cancer (BC) subtype as e
esponse variable taking luminal A BC as a reference category, and parity and age
at diagnosis (as a continuous variable) as explanatory variables. Age was modeled
non-linearly using cubic splines (five knots). The p value was 0.0149 for interaction
effect between parity and age. A random intercept was introduced to account for
clustering by study. Interactions between parity and age at BC diagnosis in the
probability of developing a specific BC subtype were tested by logistic regression
models with binary outcome (1 for the BC subtype and 0 for luminal A-like BC as
the reference subtype). The interaction between age and parity in BC subtype risk
was tested across all ages and, because age was modeled non-linearly, also
specifically at age 35, 55 and 75 years. BC breast cancer, HER2 human epidermal
growth factor receptor-2, TNBC triple negative breast cancer
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Fig. 2 Association between parity and luminal B-like, luminal human epidermal growth factor receptor-2 (HER2)-like, HER2-like and triple-negative
breast cancer by age at diagnosis. A binary logistic regression model was fitted considering every molecular subtype as the response variable,
while considering luminal A-like breast cancer as a reference category, and parity and age as explanatory continuous variables. Age was modeled
non-linearly using cubic splines (5 knots). Blue lines represent probabilities for parous women, green lines probabilities for nulliparous women. a
Probability of luminal B-like subtype by parity. b Probability of Luminal HER2-like subtype by parity. c Probability of HER2-like subtype by parity. d
Probability of triple negative breast cancer (TNBC) subtype by parity

Table 3 Association between parity (ever versus never) and
HER2+ BC at specific ages (age 35, 55 and 75 years)

Age at BC diagnosis
Odds ratio (95% CI)

P value P value interaction
parity × age

Luminal A-
like

At 35 years 1.00 (Ref.)

At 55 years 1.00 (Ref.)

At 75 years 1.00 (Ref.)

HER2+ BC At 35 years 1.44 (1.02–2.03) 0.037

At 55 years 1.42 (1.04–1.96) 0.029

At 75 years 0.67 (0.67–0.98) 0.041 0.003

We combined luminal human epidermal growth factor receptor-2 (HER2)-like and
HER2-like breast cancer (BC), and investigated whether parity may be associated
with the risk of developing HER2+ BC. Interactions between parity and age at BC
diagnosis on the probability to develop a specific BC subtype were tested by
logistic regression models with binary outcome (1 for HER2+ BC and 0 for luminal
A-like BC as the reference subtype) considering parity and age at diagnosis (as a
continuous variable) as explanatory variables. A random intercept was introduced
to account for clustering by study. The interaction between age and parity on
HER2+ BC risk was tested, across all ages and, because age was modeled
non-linearly, also specifically at age 35, 55 and 75 years

Fig. 3 Association between parity and human epidermal growth
factor receptor-2 (HER2) + breast cancer by age at diagnosis. A binary
logistic regression model was fitted, considering HER2+ breast
cancer as the response variable with luminal A-like breast cancer as
the reference category. Age was modeled non-linearly using cubic
splines (5 knots). Blue lines represent probabilities for parous women,
green lines probabilities for nulliparous women
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Several studies already also reported that BC risk var-
ies in the function of the time window between age at
menarche and age at FFTP, with most studies suggesting
that a short time interval is significantly and inversely
associated with ER-positive BC [16, 18, 25, 26]. In the
current study, we were able to provide a more detailed
analysis of this effect. With respect to age at FFTP, we
found that with an older age at FFTP, women were less
likely to be diagnosed specifically with TNBC. Interest-
ingly, this association seemed to be stronger for younger
ages at FFTP (20–25 years) than for older ages at FFTP
(30–35 years). On the other hand, age at menarche was
not differentially associated with BC subtypes.
These findings should now be confirmed in large

population-based studies. Indeed, the design of our case-
only study, in which we calculated odds ratios using lu-
minal A BC as a reference, does not allow us to estimate
absolute BC subtype risk. So far, most population-based
studies observed a significant inverse association be-
tween parity and hormone receptor-positive BC,
although none of these studies took age into account [2,
17]. One recent study investigated whether associations

between reproductive factors and premenopausal BC dif-
fered before and after age 40 years. The inverse associ-
ation between parity and hormone receptor-positive BC
was only observed in women aged > 40 years [27]. Most
studies have not identified a statistically significant rela-
tionship between parity and the risk of TNBC [2],
although one study in women aged between 20 and
44 years observed that a short time interval between me-
narche and FFTP was associated with an increased risk
of TNBC [18]. Again, it should be noted that these stud-
ies did not assess differential effects by age or were
focused on specific ages of diagnosis, and were often also
hampered by the low prevalence of TNBC compared to
hormone receptor-positive BC. Possibly, our findings
may be explained by Russo’s hypothesis, which suggests
that some BCs develop at a younger age (i.e., prior to
the pregnancy) [4, 5]. Protection against hormone
receptor-positive BC due to a pregnancy may thus result
in a relative increase in TNBC at a later age, especially
around 55 years, as suggested in this study.
The strength of this study is its large sample size with

comprehensive data on molecular markers and other

Table 4 Associations between age at menarche, age at FFTP and breast cancer subtypes

Luminal B-like Odds
ratio (95% CI)a

P value Luminal HER2-like
Odds ratio (95% CI)a

P value HER2-like Odds
ratio (95% CI)a

P value TNBC Odds
ratio (95% CI)a

P value

Nulliparous women

Age at menarche Linear model Linear model Linear model Linear model

+ 5 years 1.06 (0.65–1.72) 0.82 1.03 (0.59–1.78) 0.92 1.19 (0.60–2.36) 0.62 1.03 (0.59–1.80) 0.92

Parous women

Age at menarche Linear model Linear model Linear model Linear model

Menarche
(+5 years)

1.04 (0.84–1.28) 0.74 0.99 (0.78–1.25) 0.92 1.16 (0.87–1.56) 0.31 0.99 (0.80–1.23) 0.95

Age at FFTP Linear model
(+5 years)

Linear model
(+5 years)

Linear model
(+5 years)

Quadratic
model

25 versus 20 years 0.78 (0.70–0.88) <0.0001

30 versus 25 years 1.08 (1.00–1.16) 0.049 1.01 (0.93–1.10) 0.85 1.06 (0.95–1.17) 0.28 0.93 (0.86–1.01) 0.07

35 versus 30 years 1.11 (0.96–1.28) 0.15

Joint analysis age at menarche and age at FFTP

Age at menarche Linear model Linear model Linear model Linear model

Menarche
(+5 years)

1.01 (0.79–1.29) 0.92 0.84 (0.64–1.09) 0.19 1.06 (0.76–1.49) 0.71 1.02 (0.80–1.29) 0.90

Age at FFTP Linear model
(+5 years)

Linear model
(+5 years)

Linear model
(+5 years)

Quadratic
model

25 versus 20 years 0.78 (0.69–0.88) <0.0001

30 versus 25 years 1.07 (0.99–1.16) 0.10 0.99 (0.91–1.09) 0.91 1.03 (0.92–1.15) 0.62 0.92 (0.85–1.00) 0.045

35 versus 30 years 1.09 (0.94–1.26) 0.27

The results of logistic regression models are reported for each breast cancer (BC) subtype while considering luminal A BC as a reference (the binary response takes
values 0 for luminal A or 1 for the subtype that is considered), age at menarche or age at first full-term pregnancy (FFTP) are considered explanatory variables. A random
intercept was introduced to account for clustering by study. All analyses reported in this section were performed with correction for age at diagnosis as a continuous
variable). Age at menarche or age at FFTP were modeled linearly (for age at menarche), whereas linear and quadratic functions were considered for age at FFTP. The
best fit was tested (as described in “Methods”) and are reported here
HER2 human epidermal growth factor receptor-2, TNBC triple negative breast cancer, CI confidence interval, FFTP first full-term pregnancy
aAdjusted for age at diagnosis
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detailed data derived from pathology reports. As such,
we were able to derive BC molecular subtypes, which
are known to differ in their prognosis, for all included
patients. Importantly, we also used clinical criteria based
on the 2011 St. Gallen report to refine the definition of
the molecular subtypes. We failed, however, to detect
obvious differences between luminal B and luminal
HER2+ BC with the reproductive factors under study,
suggesting that both groups in fact behaved similarly.
Our sample size was slightly smaller compared to the
previous BCAC study by Yang et al. [3], due to the fact
that information on grade had to be available in addition
to ER, PR and HER2 status to define subtypes according
to the 12th St. Gallen International Breast Cancer
Conference Expert Panel [22]. A potential limitation of
this study is that data were derived from studies with
various designs and methods to obtain risk factor and
marker data. Furthermore, a relatively large proportion
of patients were diagnosed at a young age, because some
participating studies oversampled younger patients with
BC and patients with a familial history of BC. In the
future, since several new studies have joined BCAC and
are in the process of providing more detailed reproduct-
ive risk factor data, we plan to take the effect of other
variables such as body mass index, age at last pregnancy
and breastfeeding into account. However, as we con-
ducted case-case analyses by including a random effect
for study in all models and also adjusted for age at diag-
nosis whenever applicable, it is unlikely that this may
have affected our results.

Conclusion
We report that parity is differentially associated with BC
subtypes and that the association for HER2-positive BC
(relative to luminal A BC) depends on the patient’s age,
but not on ER/PR status. Later age at FFTP was also
inversely associated with TNBC, which suggests that an
early pregnancy may increase the likelihood of developing
TNBC relative to luminal A BC. Our results have to be
confirmed in large population-based studies. However,
they provide further support for different etiology between
BC subtypes and suggest that models used to predict BC
risk should take this into account.

Additional file

Additional file 1: Table S1. Definitions of breast cancer subtypes that
have been applied in previous BCAC manuscripts. Table S2 Number of
breast cancer patients with reproductive risk factor data in the 34 BCAC
studies assessed in this study. Table S3 Number of breast cancer case
patients with tumor marker data in the 34 BCAC studies assessed in this
study. Table S4 Distribution of tumor characteristics according to breast
cancer subtypes. Table S5 Association between parity (ever versus never)
and BC subtypes for age overall and for specific ages (40, 50 and
60 years). Table S6 Frequency table showing parity by subtype and age

group. Table S7 Associations between age at menarche, age at FFTP and
breast cancer subtypes. The same analysis as in Table 4 is performed but
here parity is considered a continuous variable. Table S8 Effect of parity
(ever versus never) on BC subtype risk across all ages at BC diagnosis and
corrected for BMI. Associations between age at menarche, age at FFTP
and breast cancer subtype risk. (DOCX 60 kb)
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