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Prediction of Pelvic Tumour Coverage by Magnetic Resonance-guided 24 

High-Intensity Focused Ultrasound (MRgHIFU) from Referral 25 

Imaging  26 

BACKGROUND: Patient suitability for magnetic resonance-guided high 27 

intensity focused ultrasound (MRgHIFU) ablation of pelvic tumours is initially 28 

evaluated clinically for treatment feasibility using referral images, acquired using 29 

standard supine diagnostic imaging, followed by MR screening of potential 30 

patients lying on the MRgHIFU couch in a “best-guess” treatment position.  31 

Existing evaluation methods result in ≥40% of referred patients being screened 32 

out because of tumour non-targetability.   33 

We hypothesize that this process could be improved by development of a novel 34 

algorithm for predicting tumour coverage from referral imaging. 35 

METHODS:  The algorithm was developed from volunteer images and tested 36 

with patient data. MR images were acquired for five healthy volunteers and five 37 

patients with recurrent gynaecological cancer.  Subjects were MR imaged supine 38 

and in oblique-supine-decubitus MRgHIFU treatment positions.  Body outline 39 

and bones were segmented for all subjects, with organs-at-risk and tumours also 40 

segmented for patients.  Supine images were aligned with treatment images to 41 

simulate a treatment dataset.  Target coverage (of patient tumours and volunteer 42 

intra-pelvic soft tissue), i.e. the volume reachable by the MRgHIFU focus, was 43 

quantified.  Target coverage predicted from supine imaging was compared to that 44 

from treatment imaging. 45 

RESULTS: Mean (± standard deviation) absolute difference between supine-46 

predicted and treatment-predicted coverage for 5 volunteers was 9±6% (range:2-47 

22%) and for 4 patients, was 12±7% (range:4-21%), excluding a patient with 48 

poor acoustic coupling (coverage difference was 53%).  49 

CONCLUSION:  Prediction of MRgHIFU target coverage from referral imaging 50 

appears feasible, facilitating further development of automated evaluation of 51 

patient suitability for MRgHIFU. 52 

Keywords:  treatment planning; magnetic resonance imaging guidance, high 53 

intensity focused ultrasound; human body deformation; pelvis; referral imaging; 54 

volunteer;  55 

 56 



3 

 

1. Introduction 57 

Magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) is a non-58 

invasive, non-ionizing treatment modality which has a number of established clinical 59 

applications including the ablation of uterine fibroids and bone nerves (for pain 60 

palliation)[1], and the treatment of essential tremor [2]. In addition, MRgHIFU is being 61 

trialled in the UK for the thermal ablation of recurrent gynaecological tumours 62 

(NCT02714621) [3].   63 

MRgHIFU therapy of pelvic tumours is particularly challenging because of the 64 

depth of the tumours within the body.  MRgHIFU systems can only treat targets within 65 

the focal length constraints of their transducers, and identifying acoustic access which is 66 

free from obstruction by acoustically opaque tissues, such as gas and bone, and from 67 

organs at risk is challenging [3].  Failure to correctly identify suitable patients for 68 

MRgHIFU therapy could deprive them of their only treatment option, while failure to 69 

identify patients who cannot be treated wastes patient time and hospital resources on 70 

screening sessions.  Patients must therefore be carefully assessed prior to being accepted 71 

for treatment.  We hypothesize that an algorithm could be developed, that could 72 

accurately predict target tumour coverage by HIFU from referral imaging.   73 

Currently, the clinical evaluation process relies heavily on experience and 74 

opinion.  The process is as follows: patients are referred to the MRgHIFU clinic on the 75 

basis of supine diagnostic imaging, often follow-up imaging after unsuccessful prior 76 

treatment [3, 4] and referred to here as the ‘referral image dataset’.  If at this point 77 

treatment appears qualitatively feasible, patients progress to the screening stage.  At 78 

screening, patients are imaged with treatment conditions being mimicked as closely as 79 

possible.  Patients are asked to lie in one or two ‘best guess’ treatment positions on the 80 

MRgHIFU couch.  The ‘best guess’ positions are identified by the treatment team using 81 
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prior clinical experience and subjective judgement.  Suitable patients, those for whom a 82 

majority of the tumour can be reached or who fulfil clinical trial eligibility criteria, are 83 

invited back for treatment.  The current process is challenging.  In a previous metastatic 84 

bone pain palliation trial, 16 of 37 patients (43%) initially considered for treatment were 85 

found at screening not to satisfy eligibility criteria because of disease that could not be 86 

targeted, for reasons that include tumour accessibility and size [4].  In a pilot planning 87 

study which assessed MRgHIFU for the treatment of recurrent gynaecological tumours, 88 

9 of 20 eligible patients (45%) who underwent screening imaging were subsequently 89 

assessed as untreatable because of an eligibility criterion, namely, that >50% tumour 90 

coverage could be achieved without risk of damage to surrounding structures [3].  These 91 

two studies suggest that, for abdominal pelvic tumours, the current evaluation process 92 

may overestimate the number of patients that are suitable for MRgHIFU by more than 93 

40%.    94 

Given the relatively poor results of the current subjective method, we propose a 95 

workflow that would ultimately be suitable for the quantitative assessment of patient 96 

suitability for MRgHIFU therapy (Figure 1).  In this paper, we focus on a core aspect of 97 

that workflow, as explained below.  If the workflow were to be successfully 98 

implemented, the number of patients incorrectly denied treatment could be minimised, 99 

and the number who would benefit from a screening scan could be maximised.  In the 100 

long-term, it may even be possible to avoid the need for a screening visit, which could 101 

mean that a sick patient will no longer need to travel to the magnetic resonance (MR) 102 

imaging unit and undergo what may be a lengthy session in which optimal treatment 103 

positions are investigated, only to return days to weeks later for a treatment session.  104 

This may also reduce the load on the resources of a busy clinical MR department.  105 



5 

 

The proposed patient workflow (Figure 1) comprises three steps.  In Step 1, key 106 

anatomical components that could prevent access to targets, such as acoustic 107 

obstructions and organs at risk, are segmented from the referral images.  In Step 2, the 108 

referral imaging dataset is orientated into plausible potential treatment positions.  In 109 

Step 3, the percentage of tumour volume that can be reached by the HIFU focus (% 110 

target volume covered) is calculated at each orientation.  In Step 4, acoustic and thermal 111 

modelling are used to calculate the treatable target volume, in order to facilitate a 112 

quantitative clinical decision as to whether a patient should proceed to screening. 113 

The focus of this paper is Step 3, the calculation of tumour coverage.  As far as 114 

the authors are aware, no previous work has been done on predicting target tumour 115 

coverage from referral images.  A novel method has been developed to identify the 116 

tumour coverage that could be achieved in the presence of acoustic obstructions and 117 

organs at risk, and using this methodology, a feasibility study has been performed to 118 

determine whether it is possible to accurately predict tumour coverage from referral 119 

imaging by comparison with predictions made using subjects lying in treatment 120 

orientations.  For this purpose, volunteer imaging data was obtained, and used to 121 

develop novel data processing and analysis techniques for the calculation of tumour 122 

coverage.  Subsequently, the method was tested using patient data obtained in a 123 

concurrently started clinical trial. 124 

 125 

2. Methods 126 

2.1. Overview 127 

In order to evaluate the developed methodology for the calculation of tumour coverage, 128 

estimations of target (tumour) coverage from referral and treatment images obtained for 129 
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each volunteer (patient) were compared.  Here, the referral imaging dataset is the 130 

expected input into the prospective patient workflow and is used to predict target 131 

volume coverage.  We assume the treatment images depict the subject positioned in a 132 

plausible (volunteer) or actual (patient) treatment position, respectively, on the 133 

MRgHIFU bed.  The treatment imaging dataset is used to calculate the target coverage.  134 

The workflow used in this study is shown in Figure 2.  As the treatment position is 135 

known from the treatment images, the referral imaging dataset was oriented into the 136 

known treatment position to compare the predicted target coverage with the actual 137 

target coverage.  This was achieved by an affine registration of the referral imaging 138 

dataset to the treatment imaging dataset (Step 1 in Figure 2).  Segmentation of the 139 

acoustic obstructions and organs at risk (Step 2 in Figure 2) from both datasets was 140 

performed to identify tissues that could prevent target coverage.  This was followed by 141 

calculation of the target (tumour) coverage (Step 3 in Figure 2) and comparison of the 142 

results for predictions from referral imaging datasets with those from treatment imaging 143 

datasets.   144 

At the start of the project, clinical trial data were not available. The method was 145 

therefore developed using volunteer imaging data, with the goal of testing it on 146 

anticipated clinical datasets.  As a result of significant anatomical differences between 147 

volunteers and patients, some adaptation was necessary. Firstly, volunteers lacked target 148 

tumours.  This could have been addressed by the creation of dummy tumours, but in the 149 

absence of an obvious method for defining the size, shape and position of dummy 150 

tumours in an unbiased and clinically relevant way, all the soft tissue in the pelvis was 151 

defined as “target tissue”.  Secondly, while patients undergo dietary and physical bowel 152 

preparation prior to treatment in order to minimise the risk of bowel and rectal damage, 153 

volunteers were not required to do so.  These tissues were therefore not considered to be 154 
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organs-at-risk when processing volunteer data.  While these two limitations present 155 

challenges, they do not prevent like-for-like comparison between target coverage 156 

predictions from referral and treatment imaging datasets.   Datasets from 5 volunteers, 157 

comprising pseudo-referral and pseudo-treatment imaging datasets were available for 158 

the development of the method.    The methodology was subsequently tested on 5 159 

patients who had undergone ablative MRgHIFU treatment for recurrent gynaecological 160 

tumours.  161 

2.2. Input Images 162 

All subjects were scanned on a 3.0T Philips Achieva® MR scanner (Amsterdam, 163 

Netherlands), using a multi-point Dixon sequence [5] (TE1/TE2 = 1.186 (out-of-phase) 164 

/ 2.372 (in-phase) ms, TR = 3.62 ms, number of echoes = 2, flip angle = 10°).  This 165 

produced four 3D image sets for each referral and treatment imaging dataset: in-phase 166 

(`IP'), out-of-phase (`OP'), water-only (`Water') and fat-only (`Fat') image sets.  Patients 167 

were further imaged using, amongst others, a T2w Large Field-of-View (T2wLFOV) 168 

sequence.   169 

All referral imaging datasets were acquired with subjects lying supine on the 170 

standard MR bed using SENSE XL torso coils (Philips, Netherlands) wrapped around 171 

the pelvis.  Treatment imaging datasets were acquired with subjects lying oblique 172 

supine decubitus on a gel-pad, which was placed on top of an acoustically transparent 173 

membrane on the top surface of the Sonalleve® V2 MRgHIFU couch (Profound 174 

Medical, Mississauga, Canada), using two Sonalleve® coils – one integrated into the 175 

acoustic window, and an external pelvic coil.  The subject’s body weight caused the gel-176 

pads to compress and the membrane to bow.  Subjects were positioned by a 177 
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radiographer experienced in MRgHIFU. Cohort-specific imaging information for 178 

volunteers is given in Section 2.2.1, and for patients, in Section 2.2.2. 179 

Treatment angles were measured using ITK-Snap 3.6.0 software [6] (University 180 

of Pennsylvania, USA), by manually drawing a line between the axial-plane positions of 181 

the left and right ischial spines, and finding the angle between this and a horizontal line.    182 

2.2.1. Volunteers 183 

Five female volunteers (age: 28-44 years, weight: 55-72 kg, body mass index: 20.2-26.4 184 

kg/m2), were scanned (with ethics approval from The Royal Marsden and ICR 185 

Committee for Clinical Research (internal protocol CCR1406)).  In addition to the 186 

supine referral imaging dataset described above, each volunteer was scanned in two 187 

“treatment” positions deemed to be plausible from experience of treating patients with 188 

pelvic bone pain with MRgHIFU [3, 4].  These positions were nominally `steep' and 189 

`shallow', but were dependent on a subject’s size and shape, which affected how they 190 

fitted into the bore of the MR scanner.  This generated two treatment imaging datasets 191 

per volunteer.  The volunteers, wearing thin trousers, were placed with their left buttock 192 

roughly centered over the acoustic window and with their right side elevated using 193 

angled foam pads.  They were scanned from the L5-sacrum disc to the inferior-most 194 

point of the ischial tuberosity in the axial direction.  Fields-of-view were chosen to 195 

include the full body outline in the axial slices.  15 mm-thick gel-pads were used to 196 

provide acoustic coupling between the skin and the Sonalleve® acoustic window for all 197 

volunteers.  The voxel size for referral imaging and treatment imaging datasets was 198 

approximately 0.78×0.78×1.50 mm3.  Volunteer details are recorded in Table 1. 199 

2.2.2. Patients 200 

Five patient datasets were acquired after volunteer image acquisition began, as part of a 201 



9 

 

recurrent gynaecological tumour clinical trial (NCT02714621, REC: 15/WM/0470) [3].  202 

For treatment imaging datasets, patients were oriented into a clinically judged treatment 203 

position, with the tumour as close to the magnetic isocentre as possible.  Because pre-204 

treatment diagnostic referral imaging was not available, the earliest (Day-7) follow-up 205 

supine images were used as ‘referral’ imaging datasets.  These were chosen to minimise 206 

anatomical changes between the two imaging datasets.  15 mm-thick gel-pads were used 207 

for patients P2 to P5.  For patient P1, a 40 mm-thick gel-pad was manually cut out to 208 

provide a degassed-water-filled recess, into which the patient was lowered.  Patient 209 

details are recorded in Table 2.  Weight data had been collected from patients as part of 210 

the trial data, but height data (and therefore BMI data) had not. 211 

  Patient referral and treatment imaging datasets were acquired after gadolinium 212 

contrast injection for improved contrast, and were acquired with a Field-of-View (FoV) 213 

of 288×288×133 voxels and voxel size 0.87×0.87×1.50mm3.  As part of a separate 214 

study, patient’s tumours were segmented from patient T2-weighted Large Field-of-215 

View (T2wLFOV) datasets (TE = 90 ms, TR = 3620.4 ms, number of echoes = 16, flip 216 

angle = 90°,  FoV 672×672×40 voxels, voxel size 0.45×0.45×4.5 mm3) obtained 217 

immediately pre-treatment.  These segments were used to define the target tumour 218 

volume for each patient.  219 

2.3. Image Registration 220 

Registration of referral imaging datasets to treatment imaging datasets rotated the 221 

referral imaging dataset into the same treatment orientation as used in the treatment 222 

imaging dataset, which allowed the target coverage predicted from the registered-223 

referral imaging dataset to be compared to that calculated from the treatment imaging 224 

dataset.  Each subject’s referral imaging dataset was registered to their treatment 225 
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imaging dataset(s) by aligning 10 or more manually placed bony landmark points, 226 

distributed  throughout the pelvis, using Horos v2.4.0 (Horos Project) [7].  The software 227 

calculated the required affine transformation and applied it to the referral imaging 228 

dataset [8] to generate the registered-referral imaging dataset.   229 

To quantify the quality of this registration, the intra-observer (3 volunteer 230 

datasets) error and inter-observer (3 observers, 1 volunteer dataset) error associated with 231 

the referral-to-treatment registration was calculated.  The errors were quantified as the 232 

mean Euclidean distance between corresponding points.  233 

2.4. Image Segmentation 234 

The presence of acoustic obstructions and organs at risk in the beam path prevents safe 235 

sonication of the target, and hence they were segmented in order to identify acoustic 236 

access to the target.    The tumour defined the target volume for patients, and hence was 237 

segmented.  The body outline was segmented to assist with the other segmentation 238 

processes, and to assist in positioning the MRgHIFU system relative to the registered-239 

referral imaging dataset.  Organs at risk, bone (an acoustic obstruction) and the tumour 240 

were manually segmented from the MR datasets (as shown in Figure 2, Step 2).  The 241 

body outline and extracorporeal air (an acoustic obstruction) were segmented 242 

automatically, as described below.   243 

2.4.1. Body Outline 244 

The body outline delineates the skin surface, and, particularly for treatment imaging 245 

datasets, needs to be separated from the gel-pad the subject lies on.  An automatic 246 

process involving Otsu thresholding [9] was developed to separate the body from 247 

surrounding extracorporeal air and the gel-pad.  Connected-components labelling [10] 248 

was used to collate segments of the body, and morphological operations [11] and flood-249 
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filling [12] were employed to link disparate segments and fill holes within segments. 250 

2.4.2. Acoustic Obstructions 251 

Internal acoustic obstructions, primarily bone, were segmented by manual contouring of 252 

axial slices using OsiriX Lite v10.0.4 [13] (Pixmeo, Geneva, Switzerland) and Horos.  253 

For volunteers, pelvic bones were manually segmented from referral imaging datasets.  254 

The registered referral imaging dataset pelvic bone segments were applied to the 255 

corresponding treatment imaging dataset in order to reduce the burden of manual 256 

contouring.  Femora were manually segmented separately from referral and treatment 257 

imaging datasets, because of the likelihood of different articulation between datasets 258 

(unlike the more rigid pelvis).  For patients, the treatment region was considerably 259 

smaller and therefore pelvic bones as well as femora close to the target (tumour) could 260 

be manually segmented in a realistic time.  However, contouring was restricted to ±10 261 

axial slices from the edges of the tumour to reduce the time burden of manual 262 

segmentation.  The pelvic bones at the greater sciatic notch were always segmented, 263 

because the notch defines the superior edge of the sciatic foramen through which the 264 

acoustic beam is expected to sonicate the tumour.   265 

Air gaps between the patient and the gel-pad act as acoustic obstructions.  266 

Extracorporeal air in volunteer treatment imaging datasets was not segmented, because 267 

the trousers worn by volunteers during image acquisition prevented skin-to-gel-pad 268 

acoustic coupling.  Instead, volunteer acoustic coupling limits in the left-right direction 269 

were manually identified, as shown in Figure 4.  For volunteers, it was assumed that the 270 

intergluteal cleft would be filled with acoustic-coupling gel as part of clinical 271 

preparations, and hence, they were not treated as acoustic obstructions.  Extracorporeal 272 

air in the patient treatment imaging datasets was segmented to define the limits of 273 
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acoustic coupling , using an automatic segmentation algorithm inspired by Kullberg et 274 

al. [14].  In some cases, the intergluteal cleft was seen to contain air, and was therefore 275 

manually contoured and included as part of the extracorporeal air segment.   276 

2.4.3. Target Volume  277 

As part of a separate study, patient tumours had been contoured by an experienced 278 

radiographer (SG) using in-house software (Adept v0.2, The Institute of Cancer 279 

Research, UK) [3] on referral and treatment imaging T2wLFOV images, where the slice 280 

thickness was 10 times that of the in-plane voxel dimensions.  Segmented tumours were 281 

registered to align with the Dixon imaging datasets using the same procedures described 282 

above in order to obtain tumour outlines in the Dixon images.  Since healthy volunteers 283 

had no tumours, all soft tissue within the pelvic region was designated as the target.    284 

2.4.4. Organs at Risk 285 

Organs at risk, namely the uterus, rectum, bladder, and intestines were manually 286 

segmented for patients.  Some patients had previously undergone pelvic exenteration 287 

surgery resulting in the removal of most pelvic organs.   288 

2.4.5. Evaluation of automated segmentation quality  289 

Automatic segmentation quality for the body outline and for extracorporeal air was 290 

assessed by comparing randomly selected image slices with corresponding manually 291 

segmented slices (body: five slices per dataset, from three ‘steep’ treatment imaging 292 

datasets and two ‘steep’ registered-referral imaging datasets originating from three 293 

volunteers; air: five slices per dataset from three patient treatment datasets).  In order to 294 

determine the ability of the segmentation to determine acoustic coupling between 295 

patient and transducer, only the extracorporeal air segments around the body/gel-pad 296 
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interface were assessed.   297 

The assumption that the manually-segmented pelvic bone in volunteer 298 

registered-referral datasets could be used to automatically segment the pelvic bones in 299 

the treatment imaging dataset was similarly tested against manual contouring performed 300 

on the treatment imaging dataset (five slices per treatment dataset, four treatment 301 

datasets originating from three volunteers).  The segmentation quality of the volunteer 302 

bony pelvis and femora was taken to be indicative of the segmentation quality for all 303 

manually segmented tissues.  Quality metrics were Dice Similarity Coefficient (DSC) 304 

and mean contour-to-contour distance [15, 16].   305 

2.5. Prediction of Target Volume Coverage 306 

2.5.1. Overview 307 

To calculate the target volume that can be covered, an MRgHIFU transducer was 308 

simulated.  Positioning of the MRgHIFU transducer was known for the treatment 309 

imaging datasets, but had to be derived for the registered-referral imaging datasets.  In 310 

the process of positioning the virtual transducer/referral imaging dataset, patient-311 

induced compression of the gel-pad and bowing of the oil-bath membrane had to be 312 

taken into account. To reduce the computational time required, additional practical and 313 

clinically-relevant restrictions were placed on transducer translation, as described in 314 

greater detail below.  The target volume covered by treatment cells was calculated for 315 

corresponding pairs of registered-referral and treatment datasets, and then, for each 316 

subject, the two volumes were compared.  The details of these procedures are presented 317 

below.  318 
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2.5.2. MRgHIFU System Characteristics 319 

The simulated transducer was modelled on The Royal Marsden Hospital’s MRgHIFU 320 

system, the Sonalleve® V2.  The system replaces the imaging couch in the bore of the 321 

MR scanner for treatment.  The 256-element phased-array transducer (130 mm 322 

diameter, focal length 140 mm, source frequency 1.22 MHz) is mounted on a robotic 323 

positioner with 3 linear and 2 rotational motion capabilities in an oil bath, and faces the 324 

patient through a thin (50 µm thick) acoustically transparent membrane.  The 325 

transducer’s home position (black cross in Figure 3) always lies 140 mm below the 326 

magnetic isocentre, and the undeformed membrane-to-isocentre distance is 72.5 mm.  327 

Acoustic coupling is achieved using a degassed-water wetted gel-pad (either 15 or 40 328 

mm thick).  When a subject is in place, the gel-pad is compressed and the acoustic 329 

membrane bowed under their weight.  From its home position, the transducer can 330 

translate in 50 µm steps up to: 72.5 mm left or right and inferior or superior, and 34 mm 331 

towards the patient (anterior) and 33 mm away (posterior).  The transducer can be 332 

angled up to 10° away from the perpendicular in the left-right and inferior-superior 333 

directions.  334 

The transducer was simulated in MATLAB R2018b. It consisted of 256 points 335 

that represented the centre of each transducer element.  Ultrasound rays traced from 336 

each element on the transducer surface to the transducer focal point were used to 337 

represent the acoustic beam.  The transducer was restricted to being able to tilt ±10° in 338 

2.5° steps in the left-right direction only, in order to avoid incomplete registered-referral 339 

dataset image slices resulting from registration, but otherwise possessed the 340 

translational extents of the clinical device as described above.  The transducer is 341 

assumed to produce a perfect 8 mm treatment cell, i.e. an 8mm x 21.84 mm ellipsoid 342 

[17, 18] centred at the focal point with its long-axis aligned to the beam axis. 343 
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2.5.3. Practical and Clinically-relevant Restrictions on Transducer 344 

Translation 345 

In order to improve computational efficiency of target coverage prediction, transducer 346 

translation in the left-right and inferior-superior axes was restricted to the left-right and 347 

inferior-superior extents of the targets.  For patients, practical restrictions on left-right 348 

and inferior-superior translation were calculated from the left-right and inferior-superior 349 

extents of the tumour.  For volunteers, the target is all soft tissue within the pelvic 350 

region.  Hence, practical and clinically-relevant limits were manually identified (see 351 

Figure 4) and implemented.  The left-right limits represent the extents of acoustic 352 

coupling.  The inferior-superior limits represent the inferior-superior extents of the 353 

registered-referral imaging dataset containing complete body outlines and pelvic bone.  354 

 355 

2.5.4. Estimated Patient Deformation Resulting from Reorientation into 356 

the Treatment Position 357 

In this study, the treatment position was known from the treatment imaging dataset.  In 358 

treatment imaging datasets, the isocentre, and hence the transducer’s home position 359 

(Section 2.5.2), was known.  In the registered-referral imaging dataset, because the 360 

treatment position is the same, the transducer’s home position left-right and inferior-361 

superior coordinates were taken from the treatment imaging dataset.  However, to 362 

mimic the prospective workflow, the anterior-posterior coordinate had to be estimated 363 

from data within the registered-referral imaging dataset.  The method of doing so is 364 

shown in Figure 5. Briefly, it was assumed that: i) the gel-pad would be most 365 

compressed and the membrane most bowed at the isocentre line, and ii) after soft tissue 366 

deformation resulting from the reorientation into the treatment position, the isocentre-367 

to-skin point distance would remain the same.  The membrane bowing distance and gel-368 
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pad thickness for patients was assumed to be that calculated for volunteers.  These 369 

quantities were obtained by determining the average gel-pad thickness and membrane 370 

bowing distance close to the isocentre line, using ITK-Snap, in the 7/10 volunteer 371 

treatment imaging datasets in which measurement was possible.  From this, the position 372 

of the undeformed membrane, and hence the transducer anterior-posterior home 373 

position, was estimated (see Figure 3).  Patient P1 had been treated on a customised gel-374 

pad, the thickness of which was independently measured and used for positioning.  For 375 

comparison, the actual patient gel-pad thicknesses and membrane bowing distances 376 

were measured and compared to the volunteer-derived averages.  377 

 378 

2.5.5. Calculation of Target Coverage 379 

For volunteers, a regular grid of target points, one per image voxel, was created in the 380 

soft tissue (see Figure 6); for patients, this grid was created solely within the tumour 381 

[19].  The transducer acoustic beam had been discretised into 256 rays, linking the 382 

centre of a transducer element to the focus.  Each ray was discretised into regularly 383 

spaced (0.2 mm) points along its length, and each was tested for intersection with 384 

acoustic obstructions or organs at risk.  If no point intersected these, an 8-mm treatment 385 

cell was drawn around the focal point, and all grid points within this were marked as 386 

covered (Figure 6).  This was repeated as the transducer was exhaustively translated and 387 

tilted.  The number of grid points covered, multiplied by the image voxel volume, was 388 

used to quantify the target volume covered.  For volunteers, the transducer was 389 

translated in 4 mm steps, whereas for patients, 2 mm steps were used in order to ensure 390 

coverage of the smaller tumour volume.   391 
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For volunteers, the accuracy of the methodology was quantified by calculating 392 

how much of the soft tissue volume coverage calculated from the treatment imaging 393 

dataset was predicted to be covered from the registered-referral imaging dataset, as 394 

described in equation (1).  In effect, the treatment imaging dataset covered soft tissue 395 

volume becomes the target volume for the registered-referral imaging dataset, allowing 396 

calculation of the percentage target volume covered (TVCvol).  397 

𝑇𝑉𝐶𝑣𝑜𝑙 = 100% ×
𝐶𝑉𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑𝑅𝑒𝑓𝑒𝑟𝑟𝑎𝑙 ∩ 𝐶𝑉𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝐶𝑉𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
 

(1) 

where CV is the covered target volume. 398 

For patients, the accuracy of the methodology was quantified using the 399 

difference between the percentage target (tumour) volumes covered (TVCpat), calculated 400 

from treatment imaging dataset and that calculated from registered-referral imaging 401 

dataset.  TVCpat is given by: 402 

𝑇𝑉𝐶𝑝𝑎𝑡 = 100% ×
𝐶𝑉

𝑇𝑉
 

(2) 

where CV is the covered tumour volume and TV is the total tumour volume. 403 

3. Results  404 

3.1. Subjects  405 

Details for the volunteers involved in the study are recorded in Table 1, and those for 406 

patients in Table 2, as are the (pseudo-)treatment angle(s), compressed gel-pad 407 

thickness and membrane bowing distance for each subject.  For volunteers, 15 mm gel-408 

pads were compressed to an average of 9.8 ± 0.3 (mean ± standard deviation, with 409 

range: 9.3 to 10.2) mm, and the average membrane bowing distance close to the 410 
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isocentre line was 10.0 ± 1.3 (range: 7.8 to 11.7) mm.  The weight ranges of volunteers 411 

and patients (patients: 59 ± 11 kg vs volunteers: 63 ± 6 kg) were similar.  The range of 412 

patient treatment angles (6-33°) slightly exceeded the range of volunteer angles (8-29°). 413 

3.2. Image Registration Quality 414 

Between three observers, the mean distance between corresponding points for the 415 

referral imaging dataset for one volunteer, registered to one of their treatment imaging 416 

datasets, was on average 1.2±0.2 mm.  For one observer, the mean distance between 417 

corresponding points for the referral imaging datasets for three volunteers, each 418 

registered to one of their corresponding treatment imaging datasets, was on average 419 

1.3±0.2 mm.  These distances are less than the axial slice thickness of the Dixon image 420 

datasets and less than double the in-plane image resolution. 421 

3.3. Segmentation Quality 422 

3.3.1. Automatic Segmentation Quality  423 

Automatically segmented body outlines agreed with validation slices with a mean DSC 424 

of 0.991 ± 0.003 and an average mean contour-to-contour distance of 0.9 ± 0.4 mm.  425 

Automatic extracorporeal air segmentation of patient data agreed with validation slices 426 

with a mean DSC of 0.89 ± 0.06 and an average mean contour-to-contour distance of 427 

0.25 ± 0.16 mm. 428 

3.3.2. Manual Segmentation Quality 429 

Volunteer treatment image pelvic bone segmentation agreed with the validation slices, 430 

with mean DSC of 0.93 ± 0.01 and an average mean contour-to-contour distance of 0.76 431 

± 0.10 mm.  Volunteer femur segmentation agreed with the validation slices with mean 432 



19 

 

DSC of 0.96 ± 0.01 and an average mean contour-to-contour distance of 0.53 ± 0.11 433 

mm. 434 

3.4. Prediction of Target Volume Coverage 435 

The TVCvol for each volunteer in each of their two treatment positions is shown in 436 

Figure 7(a).  For volunteers, the registered-referral imaging dataset predicted target 437 

volume coverage of 91 ± 6% (range: 78 to 98%) of that calculated from the 438 

corresponding treatment imaging dataset.  The TVCpat for each patient’s treatment 439 

imaging and referral imaging are shown in Figure 7(b).  Patient P4 appears to be an 440 

outlier.  Excluding their data, for patients, registered-referral TVCpat predicted the 441 

treatment TVCpat to within an average of 12 ± 7% (range: 4 to 21%).  Representative 442 

images of the target volumes covered for volunteers and patients are shown in Figure 443 

7(c) and (d), respectively. 444 

 445 

4. Discussion 446 

The aim of this study was to develop a novel method to calculate tumour coverage and 447 

assess the feasibility of predicting tumour coverage from (supine) referral imaging, as 448 

part of a wider study into automating the evaluation of patient suitability for MRgHIFU 449 

therapy. 450 

4.1. Subjects 451 

Although patient mean age was nearly double that of the volunteers, their weights were 452 

similar.  Compressed gel-pad thickness and membrane bowing for volunteers varied 453 

minimally (mean ± standard deviation being 9.8 ± 0.3 mm and 10.0 ± 1.3 mm 454 
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respectively), suggesting that use of mean values for the prediction of patient tumour 455 

coverage should be acceptable.  Minimum and maximum patient tilt angles exceeded 456 

those of volunteer by at most 4° despite acquiring the volunteer imaging before the 457 

patient data was available. 458 

4.2. Image Registration 459 

Mean post-registration misalignment between referral and treatment images was found 460 

to be less than the axial slice thickness of the Dixon MR imaging, in line with results 461 

from literature [20].   462 

4.3. Image Segmentation 463 

Automatic and manual segmentation of acoustic obstructions, organs at risk and the 464 

body outline resulted in mean DSCs ≥ 0.89 and mean contour-to-contour distances that 465 

were less than the axial slice thickness (1.5 mm).  A mean contour-to-contour distance 466 

of 2.81 mm has been deemed acceptable for breast-air boundary segmentation from MR 467 

imaging (voxel size: isotropic 2.5 mm) [21].  The DSC for extracorporeal air 468 

segmentation (patient treatment imaging datasets only) was less than that for body 469 

outline segmentation (volunteers and patients, treatment and registered-referral datasets) 470 

while the mean contour-to-contour distance was better than that for body outline 471 

segmentation.  This was probably due to the smaller size of the air segments around the 472 

patient/gel-pad interface, causing a misidentified voxel to have a greater effect than for 473 

the larger body outline.  From the DSC (0.96) and mean contour-to-contour distance 474 

(0.53 mm) values, the assumption that pelvic bone segments identified on treatment 475 

images were identical to post-registration, manually outlined referral image segments 476 

appears to be valid (Section 3.3.2).   477 
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Since tumours were manually segmented by an expert, any segmentation 478 

imprecision or inaccuracy was ignored.  Tumours were segmented on datasets with slice 479 

thickness (4.5 mm) 10 times the in-plane resolution (0.45 mm), and thus rotation during 480 

registration could introduce relatively large discrepancies between the interpolated and 481 

actual tumour outlines, thus increasing uncertainty in the TVCpat predicted from referral 482 

imaging datasets.   483 

 484 

4.4. Target Coverage 485 

4.4.1. Volunteer Study 486 

The volunteer’s results show an average target coverage agreement between treatment 487 

and registered-referral imaging datasets of 91% (range: 78 - 98%), corresponding to a 488 

mean difference of 9%.  This suggests that the techniques used for positioning the 489 

transducer in the registered-referral imaging datasets were sufficient to proceed to 490 

testing with patient data. The worst agreement (78%, for Volunteer 2 tilted at a 12° 491 

treatment angle) was attributed to inaccurate placement of the transducer’s home 492 

position, caused by the skin point directly below the isocentre (see Figure 5) not 493 

remaining at constant position between the registered-referral and treatment datasets, as 494 

had been assumed.  Consequently, the HIFU focus was predicted to reach 12 mm 495 

deeper into the volunteer than it could.  The next worst agreements, (88% for Volunteer 496 

2 tilted at 19° and Volunteer 3 tilted at 17° and 8°) were due to the same cause, resulting 497 

in overestimation of the focal depth by 6 mm.     498 

For a single volunteer, the difference between target coverage predicted from 499 

registered-referral datasets and that from treatment datasets results from differing femur 500 

segments and differing transducer home positions.  Since angulation was restricted to 501 
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tilting left-right only, and the transducer was restricted to prevent translation beyond the 502 

inferior-superior extents of the pelvis, differences in femur segmentations were judged 503 

to have only a small effect.  Refinement of the transducer positioning technique, by 504 

sampling within a 15 x 15 mm region around the isocentre line (see Figure 5) instead of 505 

using a single skin position to predict the anterior-posterior position, provided no 506 

statistically significant improvement (data not presented). 507 

4.4.2. Patient Study 508 

The goal of this study was to develop and test a method for quantitatively assessing 509 

tumour coverage from referral imaging, as opposed to the current clinical practice of 510 

qualitative assessment, and to assess the feasibility of the new methodology.  From the 511 

results, quantitative prediction of tumour coverage from referral imaging appears 512 

feasible.  Despite the simplicity of the technique used to account for the expected body 513 

deformation resulting from reorientation from supine into a treatment position, the 514 

TVCpat predicted from the registered referral and the treatment imaging datasets had a 515 

mean difference of 12% (range: 4-21%), excluding an outlier for whom the difference 516 

was 53% (see below).  In the literature, a median difference of 21% in automatic 517 

segmentation had been judged as acceptable [22].  In the context of the current clinical 518 

practice, where ≥40% of referred patients fail screening, these results are encouraging 519 

[3, 4].  The small cohort involved in this study (5 volunteers, 5 patients) represents 520 

lower than expected patient recruitment for the clinical trial.  However, other published 521 

studies have also involved small patient cohorts, e.g. a transcranial simulation study 522 

involved 5 patients [23], a simulation study for kidney ablation examined 4 patients 523 

[24], and in various therapeutic feasibility studies, between 10 and 13 patients were 524 

considered [25, 26, 27].  In addition, an automatic geometric optimisation technique for 525 
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the packing of HIFU treatment cells demonstrated its capabilities using test objects and 526 

the publicly available dataset of a single volunteer [28].  Results from these small-527 

cohort feasibility studies also demonstrate high variance in results.  For example, in the 528 

transcranial simulation study, simulation results differed from measured data by up to 529 

40±13% [23].  The results here indicate a step towards the long-term objective of 530 

widespread quantitative analysis of patient suitability for MRgHIFU therapy, with the 531 

aim of improving clinical decision-making and minimising the impact on patient and 532 

hospital time and resources. 533 

The outlier referred to above was patient P4, whose poor results were due to the 534 

assumption of perfect acoustic coupling between patient and gel-pad when calculating 535 

TVCpat for the registered-referral imaging dataset.  In practice, treatment imaging 536 

showed that the tumour periphery was obstructed by air between the patient and gel-537 

pad.  This highlights a possible advantage of the proposed workflow.  Having 538 

established that a greater tumour coverage could have been achieved at the referral 539 

stage, clinicians may have been able to improve the clinical preparations, and increase 540 

tumour coverage.  541 

In general, the marginally poorer results for patients compared to volunteers 542 

(excluding the outlier patient) may be partially due to volunteer target volumes being 543 

over 10 times larger (~300,000 ± 100,000 mm3) than patient targets (~20,000 ± 10,000 544 

mm3).  A missed voxel has a larger proportional effect for smaller target volumes. 545 

A source of error for the patient cohort may arise from the differences in the 546 

actual gel-pad thickness and membrane bowing (Table 2) compared to the mean values 547 

determined from the volunteer cohort which were used in the predictive calculations.  548 

Membrane bowing differences from the average of 10.0 mm ranged from 0.9 mm to 4.7 549 

mm for patients, and from 0.4 mm to 2.2 mm for volunteers.  Gel-pad thickness 550 
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differences from the average of 9.8 mm ranged from 1.1 to 2.5 mm for patients who 551 

were treated on 15 mm gel-pads, and from 0.0 to 0.7 mm for volunteers.  To evaluate 552 

the effect of this, the TVC was recalculated with the actual gel-pad thickness and 553 

membrane bowing distance for all patients. The maximum difference in TVCpat Registered-554 

Referral that resulted from using the average membrane bowing and gel-pad thickness, 555 

rather than the actual measured values, was 0.3% (patient P1).  As more data from 556 

clinical studies becomes available, modelling the relationship between membrane 557 

bowing distance, or compressed gel-pad thickness, and patient weight and orientation 558 

may generate more accurate predictions of the transducer home position from referral 559 

imaging.  560 

Deformation and translation of organs at risk, due to reorientation from referral 561 

to treatment position, clinical preparation such as pre-treatment dieting and bowel-562 

preparation, and the time between referral and treatment (1 week), may explain why the 563 

patient results show worse agreement overall than the volunteer results.  In clinical 564 

experience, organs at risk such as the rectum are known to vary substantially and 565 

unpredictably in shape, position and volume [29, 30].  The overall accuracy of the 566 

proposed patient workflow is expected to be limited by the patient-specific soft tissue 567 

deformation and coupling to the gel-pad.  At the very least, the methodology presented 568 

here allows quantitative assessment of tumour coverage prior to the screening stage, 569 

reducing the need for clinical experience, and the influence of subjective opinion, on 570 

patient suitability for progression through the treatment pathway.   571 

4.5. Limitations of the Study 572 

One of the major limitations is the small volunteer and patient cohort, which restricts 573 

the statistical certainty of the results.  This study is also limited to predicting pelvic 574 
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tumour coverage.  However, the proposed patient workflow may be adaptable for other 575 

tumour sites.  Assessment of the tumour volume that can be successfully ablated will 576 

require acoustic propagation and thermal bioeffects modelling.  This is the subject of 577 

extensive ongoing work.  Patient deformation resulting from orientation into the 578 

treatment position was only accounted for using the simple assumption that the 579 

isocentre-to-skin point distance would remain constant.  This produced acceptable 580 

results for tumour coverage.  However, accurate acousto-thermal modelling requires an 581 

accurate description of the medium of propagation, which may require simulation of 582 

soft tissues deformation between the gel-pad and the target.   583 

Only reorientations from supine to oblique supine decubitus positions were 584 

tested in this study.  While the results of this study are only applicable to the specific 585 

diagnostic MR bed and MRgHIFU couch used, the core principles are expected to be 586 

applicable to other HIFU devices, and referral datasets obtained from X-ray 587 

tomographic imaging.  Furthermore, since the patient mean age was almost twice that of 588 

the volunteers, patient soft tissue could have different elastic properties than that of 589 

volunteers and therefore exhibit different deformation behaviour.  This could have 590 

affected the developed methodology. 591 

5. Conclusion 592 

Novel methodology for predicting the MRgHIFU target coverage from supine (MR) 593 

referral imaging was developed using 10 volunteer datasets and was retrospectively 594 

applied to 5 patient datasets.  The difference between the target coverage computed 595 

using referral and treatment image datasets was within 12% on average (range: 4-21%), 596 

after one patient, with inadequate acoustic coupling during treatment, was excluded 597 

from analysis.  Despite the relatively small cohort size, the focus on pelvic tumours, and 598 
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the limited range of patient positions and MRgHIFU equipment on which the 599 

methodology was devised and tested, these results suggest quantitative, automated 600 

screening and treatment planning should be feasible, eventually obviating the need for 601 

patient suitability to be assessed using qualitative clinical judgement based on operator 602 

experience. 603 
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 737 

Appendices 738 

Appendix 1: Registration Standard Operating Procedure 739 

1. Open Horos™ on Mac OS X.  Make sure the pyOsiriX plugin is installed. 740 

2. Import the in-phase MRI datasets that are to be registered.  Double click 741 

them to bring them up together. 742 

3. Select a dataset.  Then, at the top menu 2D Viewer  Sort By… Slice 743 

Location Ascending. 744 

4. Below the menu bar, in a section titled “Mouse button function”, select the 745 

point function.  Use the point function to mark an anatomical feature on one 746 

dataset and the same anatomical feature on the other.  The same point names, 747 

e.g. “Point 1”, must correspond to the same anatomical features in both 748 

datasets.  Repeat this for the list of anatomical features mentioned below.  If 749 

the same anatomical feature cannot be found in one or both of the datasets, 750 

ignore that anatomical feature and continue down the list.  At least 10 751 

https://doi.org/10.1016/j.jacep.2017.12.013
https://doi.org/10.1016/j.compbiomed.2018.02.014
https://doi.org/10.1016/0360-3016(95)00225-1


30 

 

features should be marked by the end.  752 

Anatomical Features: 753 

a. Femur/pelvis landmark marks where the two bones meet in the head-754 

most direction (Right and Left) 755 

b. ischial spine (Right and Left) 756 

c. Superior-most or inferior-most of ischial tuberosity (Right and Left) 757 

d. Pubic arch/top of pubic arch connection 758 

e. Anterior-facing spur in axial plane where pelvis first encloses femur 759 

head (Right and Left) 760 

f. Sacral nerve bundle (S1 and S2) when just-enclosed by bone (Right 761 

and Left) 762 

g. Spinal nerves splitting from spinal cord (Right and Left) 763 

h. Sacrum/L5 disc border 764 

i. Coccyx 765 

5. Open the pyOsiriX console within Horos.  A Python script can be used to 766 

extract point data from a dataset in Horos and save it in a format that can be 767 

processed in an external Python environment.  Do this for both datasets. 768 

 769 

  770 
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Table 1: Details of volunteers participating in this study 

Volunteer 1 2 3 4 5 Mean ± 

Standard 

Deviation 

Age (years) 28 44 29 27 36 33 ± 6 

Body Mass Index 

(kg/m2) 

20.2 26.4 23.5 23.8 20.9 23 ± 2 

Height (cm) 165 165 170 160 168 166 ± 3 

Weight (kg) 55 72 68 61 59 63 ± 6 

Pelvic tilt from supine 

(°) 

Steep,  

Shallow 

 

23, 

17 

 

19, 

12 

 

17, 

8 

 

24, 

13 

 

29, 

16 

 

22 ± 4,  

13 ± 3  

Gel-pad Thickness 

(mm) 

Steep,  

Shallow 

 

10.2, 

9.8 

 

N/A, 

N/A 

 

9.8,  

9.8 

 

9.7,  

9.3 

 

N/A, 

10.0 

 

9.8 ± 0.3 

Membrane Bowing 

(mm) 

 

10.4, 

 

N/A, 

 

8.6,  

 

10.9, 

 

N/A, 

 

10.0 ± 1.3 
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Steep,  

Shallow 

11.7 N/A 9.4 10.9 7.8 

 771 

  772 
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Table 2: Details of patients participating in this study 

Patient P1 P2 P3 P4 P5 Mean ± 

Standard 

Deviation 

Age (years) 64 53 72 74 59 64 ± 8 

Weight (kg) 42 76 57 61 61 59 ± 11 

Treatment 

Angle (°) 

6 33 16 9 24 18 ± 10 

Gel Pad 

Thickness (mm, 

mean ± SD) 

(Nominal) 

5.3±0.5 

(40) 

10.9±0.6 

(15) 

8.6±0.4 

(15) 

12.3±0.4 

(15) 

8.0±0.4 

(15) 

10 ± 2 

(15) 

Membrane 

Bowing (mm, 

mean ± SD) 

4.1±0.2 10.0±0.5 9.0±0.5 5.0±0.2 10.0±0.1 7.6 ± 2.8 

 773 

  774 
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Figure captions 775 

Figure 1. Schematic of proposed patient workflow. Workflow designed to assess the 776 

potentially MRgHIFU-treatable percentage of a patient’s target tumour.  Using a supine 777 

referral image dataset, step 1 involves segmentation of important structures: organs at 778 

risk, acoustic obstructions, and the target tumour.  Step 2 rotates the referral imaging 779 

dataset into possible treatment positions, with the tumour centroid lying, by idealised 780 

design, along a vertical line through the magnetic isocentre and, by system design, the 781 

transducer’s home position.  In step 3, target coverage (i.e. percentage of target volume 782 

coverable by an 8 mm treatment cell) is calculated.  Cycling through steps 2 & 3 783 

identifies the patient orientation with the maximum target volume coverage.  In step 4, 784 

the treatable percentage of the target volume is quantified, using acoustic and thermal 785 

modelling of MRgHIFU treatment.  This allows a clinical decision of whether to 786 

progress to treatment to be made.  787 

 788 

Figure 2. Schematic of developmental methodology used in this study.  The 789 

accuracy of the methodology to calculate target coverage from referral imaging was 790 

assessed using this workflow.  The target volume coverage by MRgHIFU was 791 

calculated from a subject’s treatment image dataset, acquired with the subject placed in 792 

a plausible or actual treatment position (bottom row) for volunteers or patients, 793 

respectively.  Comparison with the target volume coverage predicted from a supine 794 

referral image dataset allowed assessment of the methodology.  Step 1: the referral 795 

imaging dataset is rotated into the same orientation as the treatment imaging dataset 796 

using affine registration both to allow comparison with the treatment imaging dataset.  797 

Step 2: segmentation of acoustic obstructions (e.g. bones, shown), organs at risk 798 

(patients only) and the target tumours (patients only) was performed to identify tissues 799 

that impede target coverage.  Step 3: Target volume coverage was calculated for the 800 

registered-referral imaging dataset and the treatment imaging dataset, and finally, the 801 

two quantities were compared to assess the predictive capacity of the methodology.  802 

 803 
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Figure 3.  Schematic of the Sonalleve® V2 MRgHIFU system:  LEFT - a subject 804 

lying on the MR bed will compress the acoustic-coupling gel-pad and bow the acoustic 805 

membrane, which seals the oil bath.  Ideally, target tissue would be centred directly 806 

above the transducer’s home position and the centre of the membrane/gel pad and below 807 

the magnetic isocentre.  RIGHT- a coronal view of the MRgHIFU couch showing the 808 

transducer’s home position below the centre of the membrane.  809 

 810 

Figure 4. Transducer translation restrictions for volunteer data. Practical 811 

restrictions applied to the transducer’s translation capabilities (solid red lines) for 812 

volunteer datasets only.  (a) For a treatment imaging dataset, the left-right translation 813 

was limited by the extent of acoustic coupling between the volunteer’s skin and the gel 814 

pad.  The corresponding registered-referral imaging dataset shared these left-right 815 

restrictions.  (b) For a registered-referral imaging dataset, the transducer’s inferior-816 

superior translation was restricted by the extent of pelvic bone and the requirement for a 817 

full body outline within the image.  The corresponding treatment imaging dataset shared 818 

these inferior-superior restrictions. 819 

 820 

Figure 5. Method used to predict transducer’s anterior-posterior home position in 821 

a registered-referral imaging dataset. The treatment dataset magnetic isocentre is 822 

known because the registered-referral imaging dataset had been registered to the 823 

treatment imaging dataset.  A line was drawn downwards from the treatment dataset 824 

isocentre and intersected the skin at the skin point.  From this skin point, the home 825 

position was calculated using the average compressed gel-pad thickness, the average 826 

membrane bowing distance, and the calibrated distance between undeformed membrane 827 

and home position of 67.5 mm (see Figure 3).  828 

 829 

Figure 6. Method for quantifying target volume covered within a dataset 830 

(volunteer treatment imaging dataset in this example).  A regular 3D grid of 831 

potentially accessible points was created (blue crosses) within the target: soft tissue 832 

(volunteers) or tumour (patients).  For each transducer position and tilt identified in 833 
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Figure 4, the acoustic beam was checked for intersection with any acoustic obstructions 834 

(green contours) or organs at risk.  If no obstruction exists, an 8 mm treatment cell was 835 

created around the focus (yellow ellipse).  Grid points within a treatment cell were 836 

marked as ‘accessible' (red crosses).  837 

 838 

Figure 7. Percentage of target volume covered.  (a) For volunteers, the agreement 839 

between the referral and treatment covered volumes is shown, where the treatment 840 

covered volume is the ground-truth.  (b) For patients, the percentage of the registered-841 

referral tumour (red) and the treatment tumour (blue) that was covered is shown.  The 842 

numbers on top of each set of bars represent the difference in % Tumour Volume 843 

Covered predicted from the registered-referral dataset, and that calculated from 844 

treatment dataset.  Representative examples of target coverage for volunteers (c) and 845 

tumour coverage for patients (d) are shown, with a scale bar in (d).  The anatomy is 846 

shaded purple in the registered-referral dataset, and green in the treatment dataset. 847 

 848 
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Figure 1 850 
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Figure 2 853 
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Figure 3 857 
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Figure 4 861 
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Figure 5 864 
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Figure 6 869 
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Figure 7 880 
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