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 24 

ABSTRACT 25 

Genome-wide association studies (GWAS) have identified approximately 100 breast cancer risk loci.  26 

Translating these findings into a greater understanding of the mechanisms that influence disease risk 27 

requires identification of the genes or non-coding RNAs that mediate these associations. We used 28 

Capture Hi-C (CHi-C) to annotate 63 loci; we identified 110 putative target genes at 33 loci. All CHi-C 29 

interaction peaks can be viewed at bit.ly/CHiC-BC. To assess the support for these target genes in 30 

other data sources we tested for associations between levels of expression and SNP genotype 31 

(eQTLs), disease-specific survival (DSS), and compared them with somatically mutated cancer genes. 32 

22 putative target genes were eQTLs, 32 were associated with DSS and 14 have been shown to be 33 

somatically mutated in breast, or other, cancers. Identifying the target genes at GWAS risk loci will 34 

lead to a greater understanding of the mechanisms that influence breast cancer risk and prognosis.  35 

  36 
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 37 

Genome-wide association studies (GWAS) coupled with large-scale replication and fine mapping 38 

studies have led to the identification of approximately 100 breast cancer risk loci. Breast cancer is a 39 

heterogeneous disease with two main subtypes defined by the presence (ER+) or absence (ER-) of 40 

the estrogen receptor. Approximately 80% of newly diagnosed breast cancers are ER+ although this 41 

proportion varies with age at diagnosis and ethnicity1. The majority of breast cancer GWAS risk loci 42 

have been identified on the basis of their association with overall breast cancer risk, or risk of ER+ 43 

disease2. Most of the risk single nucleotide polymorphisms (SNPs) map to non-protein-coding 44 

regions and are thought to influence transcriptional regulation3,4; many map to gene deserts with 45 

the nearest known protein-coding genes mapping several hundred kilobases (kb) away. Translating 46 

these findings into a greater understanding of the mechanisms that influence an individual woman’s 47 

risk requires the identification of causal variants and the targets of these causal variants (i.e. genes 48 

or non-coding RNAs that mediate the associations observed in GWAS). Systematic approaches to the 49 

functional characterisation of cancer risk loci have been proposed4,5. These include fine mapping of 50 

potentially large genomic regions (defined as regions that include all SNPs correlated with the 51 

published SNP with an r2 ≤ 0.2), the analysis of SNP genotypes in relation to expression of nearby 52 

genes (eQTL) and the use of chromatin association methods (chromosome conformation capture 53 

(3C) and Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET)) of regulatory 54 

regions to determine the identities of target genes. To facilitate a high-throughput approach to the 55 

identification of target genes at GWAS risk loci we developed Capture Hi-C (CHi-C)6. This novel Hi-C 56 

protocol7 allows high-throughput, high resolution analysis of physical interactions between 57 

regulatory elements and their target genes. We have used CHi-C previously, to characterise three 58 

breast cancer risk loci mapping to gene deserts at 2q35, 8q24.21 and 9q31.26. Here we selected 63 59 

established breast cancer risk loci (Supplementary Table 1); we identify CHi-C interaction peaks 60 

involving 110 putative target genes mapping to 33 loci and demonstrate long-range interaction 61 

peaks some of which span megabase (Mb) distances and involve adjacent risk loci. We carry out 62 
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eQTL analyses, analyses of disease specific survival (DSS) and compare our putative target genes 63 

with somatically mutated cancer genes to assess the orthogonal support for these putative target 64 

genes. 65 

RESULTS 66 

Generating CHi-C libraries representing 63 breast cancer GWAS risk loci 67 

We generated CHi-C libraries in two ER+ breast cancer cell lines (T-47D, ZR-75-1), two ER- breast 68 

cancer cell lines (BT-20, MDA-MB-231), one “normal” breast epithelial cell line (Bre80-Q-TERT 69 

(Bre80)) and a control, non-breast lymphoblastoid cell line (GM06990) (Supplementary Figure 1). We 70 

defined an interaction peak as any pair of HindIII fragments for which the number of di-tags was 71 

significantly (FDR adjusted P < 0.01) greater than expected under a negative binomial model, taking 72 

into account both the distance between the HindIII fragments and the propensity of the bait 73 

fragment to form interactions (‘‘interactability’’; Methods). The number of di-tags that constituted 74 

an interaction peak depended on the distance between the interacting fragments and ranged from 5 75 

to 14,151. We defined a locus as a single continuous capture region, annotated by at least one risk 76 

SNP (Methods). 77 

Distribution of CHi-C interaction peaks across the 63 risk loci 78 

The number of interaction peaks at each locus, in each cell line ranged from zero to 1,744 79 

(Supplementary Table 2, Supplementary Figure 2), with two outliers (1,744 at 8q21.11-rs2943559 in 80 

ZR-75-1 and 1,007 at 8q24.21-rs13281615 in T-47D). There were 12 loci (19.0%) at which there were 81 

no interaction peaks in any of the cell lines we examined (Supplementary Table 2); these loci were 82 

excluded from further analyses. 46 (90.2%) of the 51 loci that we were able to analyse were 83 

identified on the basis of their association with overall breast cancer risk or risk of ER+ disease; the 84 

exceptions were 2p24.1-rs12710696, 5p15.33-rs10069690, 6q25.1-rs12662670, rs2046210, 16q12.2-85 
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rs11075995 and 19p13.11-rs8170 which were associated with ER- and/or triple negative breast 86 

cancer (TNBC)8-20.  87 

We first tested for differences in the median number of interaction peaks across the six different cell 88 

lines according to ER status and cell type (breast/non-breast). The median number of interaction 89 

peaks per locus varied significantly between cell lines (Kruskal-Wallis test P = 0.0006; Table 1, Figure 90 

1a). There were, on average, more statistically significant interaction peaks per locus in the ER+ 91 

breast cancer cell lines (T-47D, ZR-75-1) compared to the ER- breast cancer cell lines (BT-20, MDA-92 

MB-231, Mann-Whitney test P = 0.0008) or the control lymphoblastoid cell line (GM06990, P = 93 

0.002). There was, however, no difference between the number of interaction peaks per locus in the 94 

ER+ breast cancer cell lines and the normal mammary epithelial cell line (Bre80, P = 0.85; Table 1), 95 

consistent with Bre80 representing a progenitor cell population that gives rise to ER+ breast cancer 96 

cells. Similarly, the median distance between interacting fragments varied across cell lines (Kruskal-97 

Wallis test P < 1 x 10-6; Table 1, Figure 1b) with a greater proportion of longest range interaction 98 

peaks (>2Mb) in the ER+ breast cancer cell lines compared to all other cell lines. In an analysis of 51 99 

breast cancer cell lines, there was no evidence that luminal (ER+) cell lines carried more genome 100 

aberrations than basal (ER-) cell lines.21 We cannot, however, exclude the possibility that 101 

rearrangements, gains and losses occur preferentially at ER+ risk loci in ER+ cell lines and this 102 

contributes to the higher proportion of long range interaction peaks we observe in the T-47D and 103 

ZR-75-1 breast cancer cell lines. 104 

To gain further insight into the relationship between interaction peaks and cell type-specificity, we 105 

looked at the number of interaction peaks that were identical between two or more cell types. Of 106 

the 12,736 interaction peaks we identified 7,681 (60.3%) were present in a single cell line and 5,055 107 

(39.7%) were present in multiple cell lines (FDR adjusted P < 0.01 Supplementary Table 3). The 108 

subset of interaction peaks that were present in at least two cell lines are provided as 109 

supplementary data (Supplementary Data). Excluding two loci with large outliers (i.e. 8q21.11-110 
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rs2943559 and 8q24.21-rs13281615 at which there were 1,744 and 1,007 interaction peaks in T-47D 111 

and ZR-75-1, respectively; Supplementary Figure 2) the numbers were 4,924 (50.6%) and 4,805 112 

(49.4%; Supplementary Table 3). We found a statistically significant excess of interaction peaks that 113 

were common to all four breast cancer cell lines (N = 62, P = 0.0003, Figure 1c) and all five breast cell 114 

lines (N = 53, P < 0.0001 Figure 1d). We also found an excess of interaction peaks that were exclusive 115 

to the lymphoblastoid cell line (N = 304, P < 0.0001) suggesting that at least a subset of interaction 116 

peaks show cell type specificity. Comparing the cell lines according to receptor type, the interaction 117 

peaks were marginally more similar within the two ER+ cell lines (Jaccard similarity coefficient = 118 

0.18) and the two ER- cell lines (Jaccard similarity coefficient = 0.13) than between them (Figure 1e).  119 

Representative examples of loci that demonstrated cell type-specific activity are shown in Figure 2. 120 

At several of the ER+ risk loci, including the 10q26.13-rs2981579 (FGFR2) and 14q13.3-rs2236007 121 

(PAX9) risk loci, we observed interaction peaks that were restricted to the two ER+ breast cancer cell 122 

lines and the normal breast epithelial cell line (Figures 2a and c).  In both these examples, the 123 

transcription start site (TSS) of the target gene maps within the capture region and forms interaction 124 

peaks with specific HindIII fragments that map several hundred kb from the capture region. These 125 

distal fragments colocalise with DNase I hypersensitive sites, CTCF, FOXA1, GATA3 and/or ERα 126 

binding sites in T-47D cells and in both of these examples the orientation of the CTCF binding sites is 127 

towards the captured locus (Figures 2b, d and e)22.   128 

There were, however, many exceptions to the pattern of ER+ risk loci forming interaction peaks in 129 

the ER+ breast cancer cell lines and Bre80s. The 11p15.5-rs3817198 risk locus, which is associated 130 

with ER+ breast cancer forms multiple interaction peaks in the ER- breast cancer cell lines, but not in 131 

the ER+ breast cancer cell lines or in Bre80 (Figure 3a, Supplementary Table 2) and the 6q25.1-132 

rs2046210 (ESR1) locus which has been shown to be preferentially associated with ER- breast 133 

cancer20,23 forms interaction peaks in the ER+ but not the ER- breast cancer cell lines (Figure 3b, 134 

Supplementary Table 2). 135 
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Defining putative target genes 136 

We defined putative target genes as genes that mapped within, or in cis (≤ 5Mb) to, a captured 137 

region and for which the TSS mapped to an interacting fragment in at least two cell lines (Methods). 138 

On this basis, we were able to assign 110 putative target genes to 33 (64.7%) of the 51 loci (Table 2, 139 

Supplementary Table 4); 94 were protein coding and 16 were non-coding RNAs. The number of 140 

genes per locus, for these 33 loci ranged from one (13 loci) to 19 (11q13.1-rs3903072 locus) with a 141 

median of two. The distance between the published risk SNP and the TSS of the CHi-C target gene 142 

ranged from 1 kb (KCNN4) to more than 4 Mb (3p26.1-rs6762644 with CAV3, RAD18 and SETD5; 143 

11q13.1-rs3903072 with FADD) with a median of 135 kb (individual distances between risk SNPs and 144 

CHi-C target genes are given in Supplementary Table 5). Amongst our 51 informative risk loci there 145 

were 24 (at 12 chromosomal regions) that mapped within five Mb of another locus (Supplementary 146 

Table 1). We observed interaction peaks between adjacent loci at eight of these chromosomal 147 

regions and were able to potentially assign target genes to three additional loci on the basis of 148 

interaction peaks with the adjacent locus (Table 2). These loci were 8q21.11-rs6472903 (HNF4G and 149 

PEX2), 9q31.2-rs10759243 (KLF4) and 14q24.1-rs999737 (ZFP36L1); a representative example, 150 

showing interaction peaks within and between adjacent loci at 11q13, is shown in Figure 4. For the 151 

interaction peaks with the longest-range gene targets (3p26.1-rs6762644: CAV3, LINC00312, LMCD1, 152 

c3orf32, RAD18, SETD5, 4q24-rs9790517: CENPE, 8q24.21-rs13281615: CCDC26, 11q13.1-rs3903072: 153 

CCND1, FADD) we aligned our data with topologically associated domains (TADs) generated in 154 

Human Mammary Epithelial Cells (HMEC)24. At each of these loci we observed interaction peaks 155 

between captured fragments and target gene(s) mapping within the same TAD but also, less 156 

frequently, with target gene(s) mapping to a different TAD (Supplementary Figure 3). 157 

To determine whether the target genes selected using a CHi-C approach differ from those selected 158 

simply on the basis of proximity to the GWAS risk SNP (“nearest gene approach”) we compared the 159 

two approaches directly. At 15 of the 51 loci included in our analysis, we were unable to assign 160 
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target genes (i.e. there were no TSS directly or indirectly involved in statistically significant 161 

interaction peaks). Of the 36 loci at which we were able to assign at least one target gene directly 162 

(N=33) or indirectly (N=3) there were 24 at which the nearest gene was either the only CHi-C target 163 

gene (N=9; Table 2) or one of several CHi-C target genes (N=15; Table 2). There were, however, 12 164 

loci at which our data implicated genes other than the nearest gene; these loci included 13q13.1-165 

rs11571833 (CHi-C gene: PDSB5, nearest gene: BRCA2), 14q24.1-rs2588809 and rs999737 (CHi-C 166 

gene: ZFP36L1, nearest gene: RAD51B) and 16q12.2-rs17817449 and rs11075995 (CHi-C genes: 167 

CRNDE, IRX5, IRX3, LOC100996, nearest gene: FTO).  168 

CHi-C target genes and eQTL analyses 169 

To assess the likelihood of our putative target genes having a causal role in breast cancer aetiology, 170 

we first carried out eQTL analyses using the published risk SNPs (or a close proxy, r2 > 0.8) and RNA-171 

Seq data from the Cancer Genome Atlas25 (TCGA) adjusted for matched DNA methylation and 172 

somatic copy-number alterations. Many of risk loci we included have been shown to be associated 173 

with breast cancer risk overall, albeit with evidence that the association may differ in magnitude 174 

between ER+ and ER- cancers for some26. Accordingly, we carried out eQTL analyses for all cancers 175 

combined (N = 547) and then stratified by ER status (ER+ N = 415, ER- N = 95, ER unknown N = 37). 176 

There were 9 loci (26 protein coding genes) at which there were no suitable proxies, and levels of 177 

expression of 18 of our putative target genes (KRTPA5-5, KRTAP5-6 and 16 non-coding RNAs) were 178 

too low for analysis. eQTL analysis of the remaining 26 loci (69 protein coding genes) identified 22 179 

SNP-gene combinations that were nominally significant (P < 0.05) in all, ER+ or ER- breast cancers 180 

(Supplementary Table 6), nine of which remained significant after taking account of multiple testing 181 

(FDR adjusted P < 0.1,Table 3). Comparing these eQTLs with “nearest genes”, three were nearest 182 

genes and six were not. Including all nearest genes (regardless of whether they were also a CHi-C 183 

target gene) in our eQTL analysis we found two additional SNP-gene combinations that were not 184 

captured by our CHi-C analysis; rs4808801 was associated with levels of expression of ELL in all 185 
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cancers and ER+ cancers and rs8170 was associated with levels of expression of ANKLE in all cancers 186 

(FDR adjusted P < 0.1). 187 

Several of the CHi-C target gene eQTLs were consistent with previous reports including IGFBP5 at 188 

2q35-rs133870426,27, COX11 at 17q22-rs650495028 and LRRC25 at 19p13.11-rs480880129. Novel 189 

eQTLs included genes that mapped within the capture region, proximal to the reported risk SNP such 190 

as CDCA7 at 2q31.1-rs1550623, SSBP4 at 19p13.11-rs4808801 and MRPL34 at 19p13.11-rs8170 as 191 

well as genes that mapped several hundred kb from the reported SNP including IRX3 at 16q12.2-192 

rs17817449 and ZFP36L1 at 14q24.1-rs2588809. At 11q13.1-rs3903072, eQTL analyses support 193 

multiple putative target genes of which SNX32, CTSW and CFL1 map within the capture region but, 194 

intriguingly, FADD and CCND1 map at a distance of approximately 4Mb from rs39030702 (Figure 4). 195 

Both FADD and CCND1 map to a region of chromosome 11 that is frequently subject to 196 

amplifications and copy number gains in breast cancer (FADD and CCND1 map to regions of copy-197 

number gain in 20 – 30% of Metabric30 and TCGA samples), raising the concern that this long range 198 

eQTL association might be influenced by these samples. Excluding samples with genomic copy-199 

number gains from the analysis, however, strengthened the association between 11q13.1-rs3903072 200 

and FADD (all samples PER+ = 0.01, excluding 119 samples with copy-number gains PER+ = 0.004; 201 

Figure 5a and 5c), but not CCND1 (all samples PER+ = 0.04, excluding 130 samples PER+ = 0.05: 202 

Supplementary Figure 4). 203 

CHi-C target genes and disease-specific survival (DSS) 204 

To our knowledge, only one of the risk SNPs we included has been associated with disease prognosis 205 

(16q12.1-rs3803662 and TOX331); this may reflect a fundamental difference between the genetics of 206 

predisposition and prognosis or a relative lack of power for observational studies of outcome in 207 

which detailed information on treatment is generally lacking. As any individual regulatory variant 208 

may only explain a small proportion of the total variance in gene expression, however, we looked 209 

directly for an association between levels of expression of our putative target genes and patient 210 
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outcome in the Metabric breast cancer cohort30. Given the profound effect of ER status on outcome, 211 

we performed survival analyses on ER+ and ER- subpopulations separately. Of the 97 putative target 212 

genes (94 protein coding, three non-coding RNAs) for which levels of expression were available, 32 213 

(33%) were associated with disease-specific survival (DSS) in individuals with ER+ disease; none was 214 

associated with DSS in ER- disease (FDR adjusted P < 0.1; Supplementary Table 7). Comparing these 215 

32 genes with those for which we found eQTL associations in ER+ cancers (nominal P < 0.05) there 216 

were six that were common to both groups (CFL1, FADD, MRPL34, IGFBP5, IRX3, ZFP36L1). In 217 

addition, there was a highly significant association between levels of expression of CDCA7 and DSS (P 218 

= 1.22 x 10-8), which maps just 7 kb from the reported 2q31.1 risk SNP (rs1550623) but while there 219 

was a robust eQTL association between rs1550623 and CDCA7 in all cancers (nominal P = 0.007, FDR 220 

adjusted P = 0.09) there was no association in ER+ cancers alone (both P > 0.1). We also observed 221 

highly significant associations (FDR adjusted P <0.005) for five genes that were excluded from eQTL 222 

analysis due to a lack of suitable tag SNP (CENPE at 4q24, TPCN2 and ORAOV1 at 11q13.3, PDS5B at 223 

13q13.1 and SLC4A7 at 3p24.1: Supplementary Figure 5) 224 

CHi-C target genes and somatic mutations in cancer genes 225 

Finally, we compared our CHi-C putative target genes with the list of 727 cancer genes compiled by 226 

Nik-Zainal and colleagues in their analysis of whole genome sequences of 560 breast cancers32. The 227 

94 protein-coding CHi-C target genes are highly enriched for these cancer genes (14 observed, 228 

Hypergeometric P = 2.02 x 10-6) and include well-documented cancer genes (CCND1, CDKN2A, 229 

CDKN2B, MYC, MAP3K1, ESR1 and FGFR2) as well as relatively uncharacterised examples (TET2, 230 

KLF4, MLLT10, FADD, TBX3, PAX9 and ZFP36L1). 231 

Combining the somatic mutation data with the eQTL and DSS analyses, there were 48 CHi-C target 232 

genes mapping to 32 loci for which there was orthogonal support from at least one additional source 233 

and six genes mapping to six loci for which there was support from at least two additional sources 234 

(Table 4). For four of these, CDCA7, FADD, ZFP36L1 and MRPL34, levels of expression were 235 
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associated with both SNP genotype and DSS (Table 4) and we were able to assess whether high (or 236 

low) levels of expression were similarly associated with risk and poor outcome. For FADD the 237 

associations are inconsistent; the rare allele of 11q13.1-rs3903072 is associated with higher levels of 238 

expression (Figure 5a) and lower risk26, but higher levels of expression are associated with poor 239 

outcome (Figure 5b). In addition, the strong influence of copy number gains on levels of expression 240 

of FADD confounds both eQTL and DSS analyses with opposite effects; excluding 119 ER+ cancers 241 

with copy-number gains strengthens the eQTL association in TCGA (Figure 5c), excluding 345 such 242 

samples from the analysis of outcome in Metabric abrogates the association with DSS (Figure 5d) 243 

suggesting that samples with copy-number gains at this region may have a poor outcome that is not 244 

directly related to levels of expression of FADD. Similarly, for CDCA7 the associations are 245 

inconsistent. The risk allele of rs1550623 is the common allele26; the common allele is associated 246 

with lower levels of CDCA7 expression (Figure 5e) but lower levels of expression of CDCA7 are 247 

associated with a better prognosis (Figure 5f). However, for both 14q24.1-rs2588809 (ZFP36L1) and 248 

19p13.1-rs8170 (MRPL34) the rare alleles are associated with lower levels of expression (Figure 5g 249 

and 5i) and higher risk26 ; lower levels of expression are also associated with a poor outcome (Figure 250 

5h and 5j) consistent with these genes acting as tumour supressors influencing both predisposition 251 

and outcome similarly. 252 

DISCUSSION 253 

The purpose of this analysis was to identify target genes at 63 breast cancer GWAS risk loci using an 254 

unbiased, high resolution chromosome association method, CHi-C and evaluate this method in 255 

comparison to a simple “nearest gene” approach. We were able to assign 110 putative target genes 256 

to 33 loci; 94 were protein coding and 16 were non-coding RNAs. We used three publicly available 257 

data sources to assess support for our CHi-C target genes as having a causal role in breast cancer 258 

aetiology. In eQTL analyses we identified 22 SNP-gene combinations that were nominally significant 259 

(P < 0.05) in all, ER+ or ER- breast cancers in TCGA. DSS analyses of ER+ breast cancers in the 260 
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Metabric cohort supported 32 CHi-C target genes (FDR adjusted P < 0.1) and 14 were listed in 727 261 

cancer genes compiled by Nik-Zainal and colleagues. In all data sources combined there was support 262 

for 48 CHi-C target genes mapping to 32 loci from at least one additional source and there was 263 

support for six genes mapping to six loci from at least two additional sources. These data suggest 264 

that a substantial proportion of the CHi-C putative target genes are likely to influence breast cancer 265 

risk and warrant further investigation. 266 

However, amongst the 63 risk loci that we investigated there were 12 at which we detected no 267 

interaction peaks at all. This may, in part, be a consequence of our methodology as 3C-based 268 

techniques are not considered reliable for detecting interactions over distances of less than 10 kb 33; 269 

at three of these 12 loci (4q34.1-rs6828523 (ADAM29), 10q21.2-rs10995190 (ZNF365) and 16q12.1-270 

rs3803662 (TOX3) the TSS of a nominated target gene mapped within 10kb of the reported SNP. 271 

Similarly, for the 15 loci at which the interaction peaks we detected did not include direct, or 272 

indirect, interactions with the promoter of a RefSeq gene, there were four at which the TSS of the 273 

proposed target gene mapped within 10 kb (6p25.3-rs11242675 (FOXQ1), 22q12.1-rs17879961 274 

(CHEK2)) or 20kb (5p15.33-rs10069690 (TERT), 22q12.1-rs132390 (EMID1)) of the reported SNP 275 

(Supplementary Table 2). In any analysis, there is a trade-off between type I and type II errors. By 276 

using a rigorous threshold (FDR adjusted P < 0.01) for calling an interaction peak “significant” we will 277 

have minimised false positives but we may also have missed potentially important low frequency 278 

interactions. Finally, we may have missed important target genes by using a restricted set of cell 279 

lines that will only capture interaction peaks between regulatory elements and genes that are 280 

expressed in breast epithelial cells. At the other extreme, there were several loci mapping to gene-281 

rich regions (particularly 11q13 and 19p13), at which we observed interaction peaks with multiple 282 

putative target genes some of which mapped to the same HindIII restriction fragment as another 283 

target gene (Table 2). Reducing the size of the average restriction fragment, by using an enzyme that 284 

cuts more frequently would provide greater resolution, but it is clear that CHi-C cannot resolve 285 
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interaction peaks at the TSS of putative target genes that map within a few hundred base pairs of 286 

each other.  287 

The other metrics that are frequently used for defining putative target genes are nearest gene, or 288 

nearest plausible gene, and eQTL analyses. While in many cases our analyses support the nearest 289 

gene or the nearest plausible gene the limitations to this approach are obvious; there are many 290 

examples of long range interactions between regulatory elements and target genes that bypass 291 

more proximal putative target genes34-36. Comparing CHi-C with a nearest-gene metric for assigning 292 

putative target genes to risk loci, our data were informative at 36 (57%) of the 63 loci we selected 293 

for analysis and at 27 (43%) our data implicated genes in addition to, or other than, the nearest 294 

gene. Notably, our data implicates several protein coding genes and non-coding RNAs that map at 295 

distances of more than 1Mb from the published risk SNP (ie outside the limit of many eQTL 296 

analyses). While the presence of these long range interactions may inform future follow up studies, 297 

they do not exclude effects that are more local to the risk loci. In their functional annotation of the 298 

human genome, the ENCODE consortium estimated that the average number of TSSs that interact 299 

with any given distal element is 2.537 and regulatory variants that map to such elements may 300 

influence absolute or relative levels of expression of multiple genes. Of the six genes for which there 301 

was support from at least two additional data sources, neither ZFP36L1 (which maps 600 kb from 302 

rs2588809) nor FADD (mapping 4.5 Mb from rs3903072) would have been selected by a nearest 303 

gene metric supporting the use of CHi-C as a means of identifying putative target genes that map 304 

several hundred kb or even Mb from the risk locus.  305 

eQTL analyses provide an intuitive approach to the process of identifying putative target genes. 306 

However, implicit in eQTL analyses of breast cancer or normal breast tissue is an assumption of a 307 

model in which a breast cancer GWAS locus influences risk by altering steady-state expression of a 308 

gene that is transcribed in normal or malignant breast tissue; this may not be true for a substantial 309 

minority of loci. For this reason, a CHi-C based approach which detects “permissive” interaction 310 
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peaks (as well as “instructive” interaction peaks)33,38 may have benefits over an eQTL based 311 

approach by allowing the identification of putative target genes that are poised for expression at a 312 

particular stage of differentiation or in response to external stimuli such as hormones or DNA 313 

damage.  314 

The variants detected by GWAS are common variants with small effects (ORs are typically < 1.2) and 315 

any individual risk SNP will usually only explain a small proportion of variance in levels of expression 316 

of a target gene. For example, the association between 11q13.1-rs3903072 and FADD is weak in all 317 

ER+ cancers (nominal P = 0.01); excluding ER+ cancers with copy number gains reduces the variance 318 

in levels of expression of FADD and increases the proportion of variance explained by rs3903072 319 

(nominal P = 0.004). Given the small effects of individual variants, eQTL approaches based on current 320 

data sets of a few hundred samples lack power. To limit the penalty for multiple testing, most eQTL 321 

analyses are restricted to genes within a 1Mb window of the risk SNP or a proposed causal variant. 322 

In our eQTL analysis we used our CHi-C results to restrict our gene set to 69 protein-coding genes. 323 

Despite this our eQTL analysis probably lacked power, particularly for the stratified analyses where 324 

there were just four ER+ eQTLs and no ER- eQTLs that were significant after taking account of 325 

multiple testing. Indeed IGFBP5, KLF4, CFL1, CCND1 and IRX3 are all fairly compelling putative target 326 

genes with nominal associations for which the adjusted eQTL P-values were non-significant (all 327 

nominal PER+ < 0.05, all FDR adjusted PER+ > 0.1).  328 

For several of the risk loci that we included, functional annotation studies have been previously 329 

reported on a locus-by-locus basis 27,28,39-51 and target genes have been inferred by a combination of 330 

proximity, eQTL analysis and testing for looping interactions on a candidate basis using 3C. Our CHi-C 331 

targets are consistent with many of these27,28,43,46,47 but may implicate CENPE in addition to TET2 at 332 

4q2440 and MRPL34 in addition to ABHD8 or ANKLE1 at 19p13.151. The other notable feature of our 333 

data is the frequency with which we observed interaction peaks between adjacent loci several of 334 

which map megabase distances apart. This feature, and our observation of an eQTL between 335 
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rs3903072 and both CFL1 and FADD which map 4.5 Mb apart, suggests that the number of target 336 

genes may be less than the number of reported risk loci albeit with, potentially, multiple co-337 

regulated target genes at some loci. 338 

Overall it is difficult to evaluate our list of putative target genes when fully understanding the 339 

mechanisms by which a given gene influences cancer risk are often complex and require many years’ 340 

work. It seems likely, however, that the first stage of this process will be short-listing candidates for 341 

follow up studies. On that basis, we would argue that a high-throughput CHi-C analysis can 342 

contribute to on-going efforts to functionally annotate GWAS risk loci and that CHi-C target genes 343 

that are supported by additional data sources are strong candidates for in depth functional follow up 344 

studies.   345 
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METHODS 346 

Target Enrichment Array Design 347 

74 SNPs mapping to 68 GWAS risk loci were selected based on all available published GWAS and 348 

replication studies as of 31/01/2015. Capture regions were defined as the region that included all 349 

SNPs that were correlated (r2 ≥ 0.2) with the published SNP based on 1000 Genomes pilot data 350 

(http://www.1000genomes.org/; Supplementary Table 1). Biotinylated 120-mer RNA baits were 351 

designed to target both ends of the HindIII restriction fragments that mapped within these capture 352 

regions using Agilent eArray software (Agilent, Santa Clara, CA, USA), using 2x tiling, moderately 353 

stringent repeat masking and maximum performance boosting options. 354 

Cell culture and formaldehyde crosslinking 355 

T-47D, ZR-75-1, BT-20 and MDA-MB-231 cell lines were obtained from ATCC (Middlesex, UK), 356 

GM06990 cells were supplied by Coriell Cell Repositories (Coriell Institute for Medical Research, New 357 

Jersey, USA). Normal Bre80 TERT-immortalised mammary epithelial cells Bre80-Q-TERT (Bre80), 358 

were kindly provided by Prof Georgia Chenevix-Trench (Queensland Institute of Medical Research, 359 

Brisbane, Queensland, Australia). Cell lines were authenticated using STR genotyping and were 360 

regularly tested for mycoplasma contamination. Bre80 cells were grown in DMEM/F12 with phenol 361 

red (Gibco, Life Technologies) supplemented with 5% horse serum, 10µg/ml insulin, 0.5µg/ml 362 

hydrocortizone, 20ng/ml epidermal growth factor, 100ng/ml cholera toxin, 50U/ml penicillin and 363 

50µg/ml streptomycin (Sigma-Aldrich, St. Louis, MO, USA).  T-47D and ZR-75-1 were grown in RPMI 364 

1640 (Gibco, Life Technologies) supplemented with 10% fetal bovine serum (FBS, Life Technologies), 365 

50U/ml penicillin, 50µg/ml streptomycin (Sigma-Aldrich, St. Louis, MO, USA) and, for T-47D, 10µg/ml 366 

insulin (Sigma-Aldrich, St. Louis, MO, USA). BT-20 cells were grown in EMEM (ATCC, Middlesex, UK) 367 

supplemented with 10% FBS, 50U/ml penicillin, 50µg/ml streptomycin.  MDA-MB-231 cells were 368 

grown in DMEM supplemented with 10% FBS, 50U/ml penicillin, 50µg/ml streptomycin and 369 

http://www.1000genomes.org/
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GM06990 cells were grown in RPMI 1640 supplemented with 15% FBS, 50U/ml penicillin, 50µg/ml 370 

streptomycin and 2mM L-Glutamine. Formaldehyde crosslinking of 20 million cells was performed as 371 

described by Belton and colleagues 52 by substituting standard culture media with FBS-free media 372 

containing 2% formaldehyde for 5 minutes at room temperature. Crosslinking was quenched by 373 

addition of glycine to a final concentration of 150mM. Adherent T-47D, ZR-75-1, BT-20, MDA-MB-374 

231 and Bre80 cells were scraped off the culture flask after crosslinking, non-adherent (GM06990) 375 

cells were transferred directly to a falcon tube. Cells were washed with cold PBS, snap-frozen in 376 

liquid nitrogen and stored at -80°C before preparation of the Hi-C library. 377 

Hi-C library generation 378 

Each cross-linked cell aliquot (~20 million cells) was re-suspended in 50ml of permeabilisation buffer 379 

(10mM Tris-HCl pH8, 10mM NaCl, 0.2% IGEPAL CA-630 (Sigma-Aldrich, St. Louis, MO, USA), 380 

supplemented with complete mini EDTA-free tablets (Roche, Basel, Switzerland) and incubated on 381 

ice for 30 minutes with occasional mixing. T-47D, ZR-75-1 and GM06990 cells were lysed using 10 382 

strokes of a dounce homogeniser. BT-20, MDA-MB-231 and Bre80 cells were lysed by incubating 383 

with trypsin (0.25%, Sigma-Aldrich, St. Louis, MO, USA) at 37°C for 5 minutes. Trypsin was 384 

inactivated by addition of 500µl FBS. Permeabilised cells were centrifuged for 6 minutes at 600g and 385 

washed three times in 1ml 1.3 x NEBuffer 2 (New England Biolabs, Ipswich, MA, USA). Nuclei were 386 

resuspended and chromatin digestion and Hi-C library preparation were carried out as described by 387 

van Berkum and colleagues 7 with the following modifications: (i) cells were split into three 388 

microcentrifuge tubes instead of five (ii) restriction fragment overhangs were filled in with 389 

biotinylated dATP instead of biotinylated dCTP (iii) dGTP was not added to the reaction mixture for 390 

the removal of biotinylated dATP from unligated ends (iv) an agarose gel size selection step was not 391 

included, and (v) after PCR amplification (5-8 cycles) of the Hi-C library-bound streptavidin beads the 392 

PCR product was pooled and  subjected to target enrichment (below) before paired end sequencing. 393 

Target enrichment 394 
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Target enrichment was performed based on the SureSelect protocol (Agilent, Santa Clara, CA, USA) 395 

but incorporating the following modifications: (i) Biotinylated Hi-C ditags bound to streptavidin-396 

beads were amplified pre-hybridization directly from beads using 24 parallel 25µl PCR reactions with 397 

five to eight cycles using Q5 High-Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA, USA) 398 

and pre-hybridization PCR primers: ACACTCTTTCCCTACACGACGCTCTTCCGATC*T and 399 

CTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T.  PCR products were pooled and purified using 400 

Agencourt Ampure XP beads (Beckman Coulter, Brea, CA, USA) to yield approximately 750-1300ng 401 

total DNA. 750ng of library DNA was dried using a speedvac concentrator then resuspended in 3.4µl 402 

of water. (ii) Enriched fragments were amplified post-hybridization again directly from the 403 

streptavidin beads, using 18 parallel 25µl reactions of five to eight cycles of PCR. PCR products were 404 

again pooled and purified using Agencourt Ampure XP beads (Beckman Coulter, Brea, CA, USA). 405 

Post-hybridization PCR primers to the paired end adaptors were as described in Belton and 406 

colleagues 52 407 

Paired-end next generation sequencing (NGS), mapping and filtering 408 

12 target enriched Hi-C libraries (two biological replicates for each of six cell lines) were prepared. 409 

Eight of the libraries (all at concentrations >2,500 pM) were sequenced on single flow cell lanes on 410 

an Illumina HiSeq2000 (Illumina, San Diego, CA, USA) generating 76bp paired-end reads. The other 411 

four libraries, which were at lower concentrations (330-630 pM), were sequenced on two flow cell 412 

lanes each. Casava software (v1.8, Illumina) was used to make base calls; reads failing the Illumina 413 

chastity filter were removed before further analysis. Sequences were output in fastq format before 414 

mapping against the human reference genome (GRCh37/hg19) generating between 86 and 153 415 

million di-tags with both ends uniquely mapped to the reference genome. Filtering to remove 416 

experimental artefacts was carried out using the publicly available Hi-C User Pipeline (HiCUP). Full 417 

details of this pipeline are available from Babraham Bioinformatics 418 

(http://www.bioinformatics.babraham.ac.uk/). In addition to the standard pipeline, off-target di-419 

http://www.bioinformatics.babraham.ac.uk/
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tags (defined as di-tags where neither end mapped to one of the capture regions) were removed 420 

from the final processed data sets. After excluding invalid pairs 52,53, PCR duplicates, and off-target 421 

di-tags, the number of valid di-tags ranged from 24 to 71 million. Full details of the number and 422 

proportion of excluded di-tags are given in Supplementary Table 8.  423 

Analysis of Hi-C interaction peaks 424 

The power of our analysis to detect significant interaction peaks depends on the read density, which 425 

in turn depends on the size of the bin or unit of analysis. Given that our purpose was to identify 426 

individual target genes, we restricted the analysis to a high resolution (single HindIII fragment) 427 

analysis of valid di-tags generated by ligations between a captured fragment and (i) another 428 

captured fragment in cis or (ii) a non-captured fragment in cis, mapping within five Mb6. We carried 429 

out separate analyses for each type of ligation on the basis that the statistical properties of ligations 430 

where both ends of the di-tag have been captured (type (i)) will differ from those where just one end 431 

has been captured (type (ii)).  432 

To assess the reproducibility of our libraries we calculated Spearman’s ρ for each possible 433 

combination of HindIII fragments, for each type of analysis ((i) and (ii)) using the two biological 434 

replicate libraries for each of the six cell lines. We excluded combinations of HindIII fragments for 435 

which there were zero read pairs in both libraries and stratified our analysis on the distance 436 

between the two HindIII fragments (0 – 500 kb, 500 kb – 1 Mb, 1 Mb – 1.5 Mb, > 1.5 Mb). The 437 

correlation between duplicates was strongest when both fragments were captured and mapped 438 

within 500 kb of each other (ρ = 0.78 to ρ = 0.92). For fragments separated by distances of > 1Mb 439 

(where most of the raw di-tags represent “noise”) there was weak or no correlation between 440 

replicates (all ρ < 0.4); for fragments separated by 500 kb to 1 Mb correlation was moderate (ρ = 441 

0.53 to ρ = 0.77 when both fragments were captured, and ρ = 0.33 to ρ = 0.59 when just one 442 

fragment was captured; Supplementary Figures 6 and 7). 443 
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There were eight loci annotated by 10 SNPs (5p15.33-rs10069690, 5p15.33-rs7726159 and 444 

rs2736108, 11q13.3-rs554219 and rs78540526, 11q13.3-rs75915166, 16q12.2-rs17817449, 16q12.2-445 

rs11075995, 19p13.1-rs8170, 19p13.1-rs2363956) where the capture regions were too close for us 446 

to analyse separately. Accordingly we collapsed these eight regions into four regions. There was one 447 

region at 10q23.1-rs7071985 (82909977-83064943) that failed to generate high numbers of reads in 448 

any of the cell lines we assayed. After excluding this region and combining eight regions into four, 449 

there were 63 separate loci for analysis (Supplementary Table 1). On our arrays, there were also 450 

1,254 captured HindIII fragments that did not map to known breast cancer risk loci and were not 451 

considered further in this study. Three of these fragments comprising the GSTP1 promoter, mapped 452 

within 5Mb of the 11q13.1-rs3903072 capture region and formed interaction peaks with this capture 453 

region. For clarity these interaction peaks are excluded from Figure 4. For the 63 risk loci we 454 

generated data sets that comprised all di-tags in both categories (type (i) and (ii)) using the SeqMonk 455 

mapped sequence analysis tool (www.bioinformatics.babraham.ac.uk/projects/seqmonk/‎). Where a 456 

captured region mapped within five Mb of another captured region we considered HindIII fragments 457 

mapping to these two regions as part of a “within capture” (type (i)) analysis. 458 

In common with other “C”-based techniques, our Capture Hi-C methodology includes several steps 459 

that will show local differences in efficiency thereby introducing biases in the detection of 460 

interaction peaks35. To correct for these biases, we used a modification of the procedure described 461 

by Sanyal and colleagues6,35.  Briefly, our method assumes that some of our captured fragments 462 

“fail” and we exclude these; we then use a truncated negative binomial model, which takes account 463 

of both the large number of zero counts in the data and allows for overdispersion, to model all 464 

ligations for which one end maps an unexcluded captured fragment. R-scripts are available on 465 

request. In detail, on the assumption that the majority of trans ligations represent random events, 466 

we calculated the total number of trans ligations (NT) made by each of the captured HindIII 467 

fragments as a measure of the fragment’s “interactability”, its propensity to interact with other 468 

fragments. The interactability had a bimodal distribution which we assumed to arise from two 469 
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components corresponding to low numbers of counts, which we regarded as stochastic noise, and 470 

higher numbers of counts, which we regarded as genuine signal.  For each cell line and biological 471 

replicate a truncated negative binomial distribution, based on the number of di-tags, was fitted to 472 

the higher component. By visually inspecting the histogram, it was apparent that the truncation 473 

point varied between each cell line and biological replicate. Both the histograms and individual 474 

truncation points were used to define an individual threshold, this being the 5% quantile point of the 475 

corresponding non-truncated distribution, for each cell line and replicate. All fragments with a total 476 

number of trans di-tags below the corresponding threshold value were regarded as noise and were 477 

filtered out. This resulted in excluding between 8.6% and 30.0% of the fragments with the lowest 478 

number of trans ligations (di-tags). We fitted negative binomial regression models to the filtered 479 

data sets, combining data from the two biological replicates for each cell line. We corrected for 480 

experimental biases due to differing interactability of fragments by including as a covariate the loge 481 

of the total number of trans ligations (ln(NT)) for each captured fragment from each biological 482 

replicate; for cis ligations within the capture regions we also included a term for interaction products 483 

of ln(NT) for each of the two ligated fragments in each biological replicate. We corrected for distance 484 

between the ligated fragments by including as a covariate the loge of the distance between the mid-485 

points of the two fragments (ln(D)); to approximate local smoothing we fitted the data in bins each 486 

of which contained 1 percentile of the distance range. P-values were obtained by comparing the 487 

observed counts to the fitted distributions. For each capture region in each cell line, we controlled 488 

the false discovery rate using the method of Benjamini & Hochberg54.  Supplementary Figures 8 and 489 

9 show raw read counts aligned to the reported interaction peaks in two libraries ((i) T-47D and (ii) 490 

MDA-MB-231 at the 10q26.13-rs2981579 locus (see Figure 2a) and the 11p15.5-rs3817198 locus 491 

(see Figure 3a). 492 

Comparison of interaction peaks between cell lines 493 
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 Non-parametric equality tests (Mann-Whitney for two samples, Kruskal-Wallis for multiple samples) 494 

were used to test for a difference in the median number of interaction peaks per locus and the 495 

median distance between interacting fragments, across cell lines. We tested the probability of an 496 

excess of shared interaction peaks among breast cancer cell lines and all breast-specific cell lines 497 

using a random sampling (10,000 permutations) and we estimated the similarity according to 498 

receptor status (ER+/ER-) for the breast cancer cell lines using the Jaccard similarity coefficient.  499 

Allocating putative target genes and nearest genes  500 

To define a set of putative target genes, we identified all catalogued RefSeq genes (GRCh37/hg19), 501 

mapping within, or in cis (≤ 5Mb) to a captured region. From these we selected the subset for which 502 

the transcription start-site (TSS) mapped to one end of an interaction peak (an interacting fragment). 503 

Given that cancer cell lines are aneuploid, with multiple rearrangements and regions of loss or gain, 504 

we further required that the TSS mapped to an interacting fragment in at least two cell lines. For 505 

SNPs that mapped to a RefSeq gene (UTR, exon or intron), this gene was considered to be the 506 

nearest gene (Table 2). For intergenic SNPs, the nearest gene was determined on the basis of the 507 

nearest RefSeq catalogued TSS. Where the nearest catalogued TSS was for a non-coding RNA, this 508 

non-coding RNA is listed along with the nearest protein-coding gene (Table 2).  509 

Aligning CHi-C data with TADs. 510 

In order to align CHi-C data with TADs, we accessed Hi-C data generated in HMECs24 through the 3D 511 

genome browser (http://promoter.bx.psu.edu/).  512 

eQTL Analysis 513 

TCGA breast cancer (BRCA) dataset was used to test for an association between genotype and mRNA 514 

abundance further adjusted for DNA methylation and somatic copy number profiles. Pre-processed 515 

controlled access germline genotype calls (birdseed algorithm) were downloaded from the TCGA 516 

data portal. Putative target genes at each of the risk loci were assigned as described above. For SNPs 517 
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missing from the Affymetrix SNP6 platform, proxy SNPs were identified using phase 3 data from the 518 

1000 Genomes project (r2 > 0.8, distance limit = 500KB). TCGA BRCA mRNA, DNA methylation and 519 

DNA copy number data were downloaded from GDAC (version: 2016_01_28). After excluding data 520 

from women of Asian (N=37), African (N=159) or American Indian/Alaska Native (N=1) ethnicity, 521 

matched data (including germ-line genotype data) were available for 547 samples; 415 ER+ samples 522 

and 95 ER- samples (ER status was unknown for 37 samples). mRNA data was log2 transformed for 523 

eQTL analysis. Statistical association between mRNA abundance levels and genotype groups (AA, AB, 524 

BB) was estimated using multivariate linear regression models with one degree of freedom for 525 

genotype groups, adjusted for DNA methylation and copy number data. For DNA methylation arrays, 526 

methylation levels of the probe with strongest inverse correlation (otherwise minimum correlation 527 

coefficient) with its target gene’s expression were used as representative methylation levels of the 528 

target gene. Analyses for ER+ and ER- subsets were performed separately. P values were adjusted 529 

for multiple comparisons using the Benjamini-Hochberg method 54. eQTL analyses in ER+ samples of 530 

genes at chromosome 11q13 were further stratified by copy-number gains using the threshold 531 

defined in TCGA25  (log2 copy number > 0.3). The variation in copy number within strata was greatly 532 

reduced and the eQTL regression models for these additional stratified analyses were as described 533 

above, but adjusted for DNA methylation only. 534 

Survival Analysis 535 

The Metabric30 breast cancer cohort (EGA Study ID: EGAS00000000083) was used for disease-536 

specific survival analysis (DSS). Data were summarized and quantile-normalized from the raw 537 

expression files generated by Illumina BeadStudio (R packages: beadarray v2.4.2 and illuminaHuman 538 

v3.db_1.12.2). Raw data files of one Metabric sample were not available at the time of our analysis, 539 

and were therefore excluded. The most variable probe was used as a representative for the 540 

corresponding gene’s mRNA abundance levels. A Cox proportional hazards model was used to 541 

estimate pair-wise hazard ratios with the lowest expression group treated as baseline. P-values for 542 
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pairwise comparison of survival curves were estimated using Wald tests. The overall test of the Null 543 

hypothesis that the expression-derived survival curves show no association with patient outcome 544 

was tested with Wald tests (1 degree of freedom, P-trend). P values were further adjusted for 545 

multiple comparisons using the Benjamini-Hochberg method54. Survival analysis was carried out for 546 

ER+ and ER- subsets separately. 547 

Data availability 548 

All CHi-C data sets generated as part of this analysis are publicly available at 549 

(https://www.ebi.ac.uk/ena) under the accession code PRJEB23968 550 

 Processed data can be visualised at bit.ly/CHiC-BC/. Publicly available data sets that were accessed 551 

for this analysis are detailed in Supplementary Table 9.  552 

https://www.ebi.ac.uk/ena
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Table 1: Characteristics of 51 informative risk loci in six cell lines 

 

Cell line T-47D ZR-75-1 Bre80
1
 BT-20 MDA-MB-231 GM06990

2
 

Origin Breast  Breast Breast Breast  Breast Lymphoblastoid 

Cancer/normal Cancer Cancer Normal Cancer Cancer Normal 

Receptor status ER+ ER+ ER- ER- ER- ER- 

Breast cancer subtype Luminal Luminal  Normal Basal A Basal B N/A 

Informative loci (%) 34 (66.7) 38 (74.5) 41 (80.4) 21 (41.2) 27 (52.9) 23 (45.1) 

Median peaks per locus 

(range) 

7 (0 - 1,107) 9 (0 – 1,744) 10 (0 – 181) 0 (0 – 246) 1 (0 – 466) 0 (0 – 155) 

Median distance 

between interacting 

fragments
3
 (kb) 

1392 1647 349 338 388 534 

Number (%) of   peaks > 

2000 kb 

1453 (35.4) 1417 (36.4) 94 (7.3) 128 (9.7) 108 (8.0) 102 (12.5) 

1Bre80-Q-TERT (Bre80) are normal Bre80 TERT-immortalised mammary epithelial cells, kindly provided by Prof Georgia Chenevix-Trench (Queensland 

Institute of Medical Research, Brisbane, Queensland, Australia). 2GM06990 are Epstein-Barr virus transformed B-lymphocytes from the Coriell Cell 

Repositories (Coriell Institute for Medical Research, New Jersey, USA). 3Range is not given as it was pre-defined to be 10kb to 5Mb.  
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Table 2: Risk loci which formed interaction peaks directly (N=33), or via an adjacent risk locus (N=3), with 110 target genes. 

Locus SNP(s) CHi-C target genes Nearest gene Agrees 

1p36.22 rs616488 APITD1; DFFA, PEX14; PGD PEX14 √+ 

1p13.2 rs11552449 OLFML3; HIPK1 DCLREB1 X 

2q31.1 rs2016394 CDCA7; DLX2; DYNC1I2 DLX2 √+ 

2q31.1 rs1550623 CDCA7; DLX2 CDCA7 √+ 

2q35 rs13387042 IGFBP5 LINC01921, TNP1 X 

2q35 rs16857609 IGFBP5; RPL37A DIRC3, TNS1 X 

3p26.1 rs6762644 BHLHE40; CAV3; LINC00312; LMCD1; c3orf32; RAD18; SETD5 ITPR1 X 

3p24.1 rs4973768 NGLY1, OXSM; SLC4A7 SLC4A7 √+ 

4q24 rs9790517 CENPE; PPA2; TET2 TET2 √+ 

5q11.2 rs889312 MAP3K1 MAP3K1 √ 

6p23 rs204247 RANBP9 RANBP9 √ 

6q25.1 rs12662670, rs2046210 ESR1 CCDC170 X 

8q21.11 rs6472903 HNF4G/PEX2 (adj) CASC9, HNF4G √+ 

8q21.11 rs2943559 HNF4G; PEX2; HNF4G √+ 

8q24.21 rs13281615 CCDC26; CASC11, MYC CASC8, CASC21, POU5F1B, MYC √+ 

8q24.21 rs11780156 CCDC26; CASC11, MYC PVT1, MYC √+ 

9p21.3 rs1011970 CDKN2A; CDKN2B; MTAP CDKN2B √+ 

9q31.2 rs10759243 KLF4 (adj) KLF4 √ 
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9q31.2 rs865686 KLF4 KLF4 √ 

10p12.31 rs7072776, rs11814448 
BMI1; COMMD3; LOC100499489; MIR1915, c10orf114; MLLT10; 

c10orf140 
DNAJC1, MLLT10 √+ 

10q22.3 rs704010 ZMIZ1 ZMIZ1 √ 

10q26.13 rs2981579 FGFR2 FGFR2 √ 

11p15.5 rs3817198 
FAM99B, KRTAP5-6; IGF2; KRTAP5-5; MRPL23, SNORD131; TNNT3; LSP1, 

LINC01150. 
LSP1 √+ 

11q13.1 rs3903072 

DKFZp761E198, MIR1234, OVOL1; C11orf68, DRAP1; CCDC85B; CFL1; 

CTSW, FIBP; FOSL1; KAT5; MUS81, EFEMP2; RNASEH2C; SART1; SNX32; 

TSGA10IP; CCND1, FADD 

SNX32 √+ 

11q13.3 
rs554219, rs78540526, 

rs75915166 

CCND1; LINC01488; ORAOV1; FADD; LOC338694; MIR3164; MRGPRF; 

MRPL21, IGHMBP2; MYEOV; TPCN2 
LINC01488, CCND1 √+ 

12q24.21 rs1292011 TBX3 TBX3 √ 

13q13.1 rs11571833 PDS5B BRCA2 X 

14q13.3 rs2236007 PAX9 PAX9 √ 

14q24.1 rs2588809 ZFP36L1 RAD51B X 

14q24.1 rs999737 ZFP36L1(adj) RAD51B X 

16q12.2 rs17817449, rs11075995 CRNDE, IRX5; IRX3; LINC02169 FTO X 

17q22 rs6504950 STXBP4, COX11; TOM1L1 STXBP4 √+ 

19p13.1 rs8170, rs2363956 ANO8, GTPBP3; DDA1; MRPL34; NR2F6 ; USE1, OCEL1 BABAM1, ANKLE1 X 

19p13.11 rs4808801 LRRC25; SSBP4, ISYNA1; LSM4; MRPL34; PGPEP1, GDF15, MIR3189; UPF1 ELL X 

19q13.31 rs3760982 KCNN4 KCNN4 √ 

22q13.1 rs6001930 LOC101927257 MLK1 X 
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Where TSS for two or more target genes map to a single HindIII fragment, the genes are separated by a comma. Non-coding RNAs (long non-coding RNAs, microRNAs and 

small nucleolar RNAs) are indicated in green. There were three loci at which the target gene is assigned indirectly on the basis of interaction peaks with an adjacent locus; 

these are indicated by (adj). Defining nearest gene; for SNPs that map within a gene (UTR, exons or introns) this gene is considered to be the nearest gene, for SNPs that do 

not map within a gene, nearest gene is assigned based on the location of the nearest TSS according to RefSeq genes (GRCh37/hg19). Where the nearest gene is a non-

coding RNA, the nearest protein-coding gene is also given. CHi-C target genes that are also the nearest gene are indicated in bold. CHi-C targets and the nearest gene are 

compared in the “Agrees” column; √ = CHi-C data were consistent with the nearest gene being the sole target gene, √+ = CHi-C data were consistent with the nearest gene 

being one of several target genes, X = CHi-C data support a gene other than the nearest gene as a target. 

 

 

Table 3: Nine CHi-C putative target genes that were statistically significant eQTLs (FDR adjusted P < 0.1) 

Cytoband SNP Proxy Gene All cancers ER+ cancers ER- cancers 

   Nearest CHi-C target P Padj P Padj P Padj 

2q31.1 rs1550623 
 

CDCA7 CDCA7 0.007 0.087 0.511 0.666 0.330 0.892 

11q13.1 rs3903072 
 

SNX32 CTSW 0.006 0.087 0.064 0.326 0.001 0.101 

11q13.1 rs3903072 
 

SNX32 SNX32 0.007 0.087 0.032 0.268 0.036 0.506 

14q13.3 rs2236007 rs1018464 PAX9 PAX9 0.003 0.066 0.054 0.317 0.248 0.854 

14q24.1 rs2588809 
 

RAD51B ZFP36L1 0.079 0.380 0.004 0.091 0.256 0.854 

17q22 rs6504950 rs9902718 STXBP4 COX11 0.002 0.059 0.001 0.032 0.403 0.892 

19p13.11 rs8170 rs34084277 
BABAM1, 
ANKLE1* 

MRPL34 0.001 0.059 0.011 0.173 0.131 0.829 

19p13.11 rs4808801 
 

ELL* LRRC25 0.009 0.092 0.004 0.091 0.768 0.954 

19p13.11 rs4808801 
 

ELL* SSBP4 0.002 0.059 0.0002 0.016 0.475 0.892 

* in an analysis that included all genes that are nearest genes, regardless of whether they were also a CHi-C target gene, rs4808801 was also associated with expression of 

ELL (FDR adjusted P = 0.05 for all cancers and P = 0.04 for ER+ cancers) and rs8170 was also associated with expression of ANKLE1 (FDR corrected P = 0.05 for all cancers). 

P = P value (1df t-test) per allele association with gene expression, adjusted for methylation and copy number; Padj = P value further adjusted for multiple testing 

 

 

Table 4: Six CHi-C putative target genes for which there was orthogonal support for at least two additional data sources 
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Locus SNP Gene eQTL Pall eQTL PER+ DSS PER+ 727 cancer genes source 

2q31.1 rs1550623 CDCA7 0.007 (0.09) 0.51 (0.67) 4 x 10-7  

11q13.1 rs3903072 FADD 0.04 (0.28) 0.01* (0.17) 0.0009 cancer related genes panel 

12q24.21 rs1292011 TBX3 0.28 (0.50) 0.21 (0.52) 0.012 cancer gene census 

14q13.3 rs2236007 PAX9 0.003 (0.07) 0.05 (0.32) 0.20 cancer related genes panel 

14q24.1 rs2588809 ZFP36L1 0.08 (0.38) 0.004 (0.09) 0.09 identified in Nik-Zainal et al 2016 

19p13.11 rs8170 MRPL34 0.001 (0.06) 0.01 (0.17) 0.004 
 eQTL P values in parenthesis are FDR adjusted; *excluding 119 ER+ cancers with copy-number gains at FADD, P = 0.004 

 

 


