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A B S T R A C T   

Background and purpose: Magnetic resonance imaging integrated linear accelerator (MR-Linac) platforms enable 
acquisition of diffusion weighted imaging (DWI) during treatment providing potential information about 
treatment response. Obtaining DWI on these platforms is technically different from diagnostic magnetic reso
nance imaging (MRI) scanners. The aim of this project was to determine feasibility of obtaining DWI and 
calculating apparent diffusion coefficient (ADC) parameters longitudinally in rectal cancer patients on the MR- 
Linac. 
Materials and methods: Nine patients undergoing treatment on MR-Linac had DWI acquired using b-values 0, 30, 
150, 500 s/mm2. Gross tumour volume (GTV) and normal tissue was delineated on DWI throughout treatment 
and median ADC was calculated using an in-house tool (pyOsirix ®). 
Results: Seven out of nine patients were included in the analysis; all demonstrated downstaging at follow-up. A 
total of 63 out of 70 DWI were analysed (7 excluded due to poor image quality). An increasing trend of ADC 
median for GTV (1.15 × 10− 3 mm2/s interquartile range (IQ): 1.05–1.17 vs 1.59 × 10− 3 mm2/s IQ: 1.37 – 1.64; p 
= 0.0156), correlating to treatment response. In comparison ADC median for normal tissue remained the same 
between first and last fraction (1.61 × 10− 3 mm2/s IQ: 1.56–1.71 vs 1.67 × 10− 3 mm2/s IQ: 1.37–2.00; p =
0.9375). 
Conclusions: DWI assessment in rectal cancer patients on MR-Linac is feasible. Initial results provide foundations 
for further studies to determine DWI use for treatment adaptation in rectal cancer.   

1. Introduction 

Management of locally advanced rectal adenocarcinoma includes 
neo-adjuvant chemoradiotherapy (nCRT) to rectum and pelvic nodes 
followed by surgery [1,2]. Pathological complete response (pCR) is seen 
in 15–25% [3] following nCRT, which improves 5-year overall survival 
(OS) in these patients to >87% [4] compared to 50–60% in those who do 
not achieve pCR [5,6]. Achieving pCR or tumour regression grade (TRG) 
0–2 [7] in rectal cancer is shown to be an independent prognostic factor 
for OS, local recurrence, and disease free survival [4,5,8–10], and a 
‘watch and wait’ policy of delaying surgery until the first signs of 
recurrence is advocated in these patients [11–13] under strict imaging 

surveillance [14]. 
To improve pathological response to nCRT dose escalated treatment 

at >60 Gy to gross tumour volume (GTV) is required [15]. However, 
increasing dose to tumour comes with worsening toxicity to normal 
tissue [16], and consequently a fine balancing act is required between 
improving tumour response and limiting long-term morbidity. Image 
guided radiotherapy (IGRT) and intensity modulated radiotherapy 
(IMRT) reduces dose delivered to organs at risk (OARs) such as small 
bowel [17,18]. Using magnetic resonance imaging integrated linear 
accelerator (MR-Linac) platforms online adaptations to treatment can be 
made based on anatomy of the day further improving dose delivery to 
tumour whilst sparing normal tissue [19]. 
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Magnetic resonance imaging (MRI) also provides the added benefit 
of giving functional information about tumour biology in the form of 
diffusion weighted imaging (DWI). High intensity signal on DWI corre
sponds to malignant tissue [20] and reduction of signal relates to 
disruption of cell membrane integrity thus suggesting regression of 
tumour caused by treatment [21]. Several studies have been published 
demonstrating ability to stratify rectal cancer patients into good and 
poor responders using pre-treatment DWI and apparent diffusion coef
ficient (ADC) [22–26], with good responders exhibiting an earlier 
response to treatment compared to the poor responders [27]. Recog
nising poor responders early in treatment could potentially allow for 
treatment adaptation with dose escalation in order to achieve pCR [28]. 

However, these finding are not successfully reproduced in the ma
jority of studies and DWI is yet to be validated as an imaging biomarker 
in this setting [29]. Furthermore, reproducing the methodology of DWI 
across studies is difficult due to use of different diagnostic MRI scanners 
and varying sequencing protocols [30]. Acquiring multiple MRI scans 
during treatment is also not feasible in a busy clinical department [21], 
therefore simultaneously scanning and treating the patient on an MR- 
Linac overcomes this hurdle [31] providing a means of investigating 
real time biological changes in tumour [32]. 

The design of one such MR-Linac differs from diagnostic MRI scan
ners [31] and causes technical difficulties in obtaining DWI at higher b- 
values [33]. As such, the quality of images obtained on this MR-Linac in 
rectal cancer longitudinally throughout treatment is not known and 
requires assessment. The aim of this study was to demonstrate feasibility 
and clinical relevance of DWI obtained in rectal cancer patients treated 
on an MR-Linac. 

2. Material and methods 

2.1. Patients and treatment 

Patients with a locally advanced rectal cancer (stage ≥T3, nodal 
involvement, circumferential margin (CRM) involvement, presence of 
extramural vascular invasion (EMVI) or threatened levators) [2], 
tumour size <12 cm, suitable for nCRT and with no contraindications to 
MRI and suitable for MR-Linac treatment or imaging were recruited to 
research and ethics commitee approved institutional based studies for 
treatment and imaging (PERMIT trial (NCT03727698) and PRIMER trial 
(NCT02973828)). Staging investigations such as CT and MRI, colonos
copy and biopsy were undertaken in local hospitals prior to referral to 
our unit. All patients’ treatment pathways were discussed in central 
multidisciplinary meeting. Patients were treated with nCRT with con
current Capecitabine 825 mg/m2 BD or Raltitrexed 3 mg/m2 day 1 every 
21 days if Capecitabine was contraindicated. A two-phase radiotherapy 
protocol was delivered; Phase 1 boost to gross tumour volume (GTV) 
and nodes delivering 9 Gy/5# on MR-Linac (delivered first due to longer 
duration of daily treatment on MR-Linac which symptomatic patients 
may not tolerate in last week of radiotherapy) followed by Phase 2 
treatment to pelvis via C-arm Linac delivering 45 Gy/25# to GTV plus 
mesorectum and pelvic nodes. Response to treatment was assessed 8–12 
weeks post-treatment with follow-up diagnostic MRI and/or histopa
thology following surgery using TRG response [7]. 

2.2. Pre-treatment planning 

Patients treated on MR-Linac underwent a planning CT scan (Philips, 
Big Bore CT) and MR simulation scan either on diagnostic MRI (Siemens, 
Aera 1.5T) or MR-Linac (Elekta Unity, 1.5 T). Bladder filling protocol on 
MR simulation required patients to empty bladder and drink 700 mls of 
water 1 h prior to scanning. Scanning was performed in treatment po
sition, ideally with an empty rectum. If rectum ≥5 cm on initial planning 
scan patients were re-scanned following bowel preparation. Radio
therapy planning was performed on Monaco® v5.40.01 (Elekta AB, 
Stockholm, Sweden) for Phase 1 and Raystation® v10.0.1.52 

(RaySearch Laboratories AB, Stockholm, Sweden) for Phase 2. 

2.3. Imaging acquisition on MR-Linac 

Imaging on MR-linac included T2 weighted 2 min scans utilised for 
online adaptation as described previously [34,35], followed by research 
imaging including DWI sequences. DWI acquisition was in keeping with 
consensus guidelines [33] and included diffusion weightings b = 0, 30, 
150, 500 s/mm2 combined to make 4D DWI (Fig. 1). Table 1 demon
strates sequencing parameters for acquisition of rectal DWI on MR- 
Linac. DWI was acquired daily during phase 1 and weekly during 
phase 2. 

2.4. Quantitative analysis 

Between Jan 2018 and Dec 2020, nine patients were consecutively 
recruited for nCRT on MR-Linac. DWI was not obtained in the first two 
patients therefore these patients were excluded from the analysis. De
mographics of the remaining seven are shown in Table 2. All patients 
demonstrated a TRG 1–3 response following treatment as assessed by 
MRI or histopathology following surgery. 

For each patient, ten DWI were acquired during treatment. 7/70 DWI 
were excluded from analysis as either DWI was not performed or not 
centred on tumour; thus 63 DWI were analysed in total. 

DICOM images were imported into an open-source medical image 
viewer (Horos, GNU Lesser General Public License, Version 3 (LGPL- 
3.0)) where DWI were evaluated and GTV delineation on DWI was 
performed by a single experienced observer to minimise intra-observer 
delineation variability. 

Utilising an in-house plug in tool (pyOsirix® [36,37]) ADC maps 
were created from b-values 150 and 500 s/mm2. Contours for GTV and 
normal tissue (ovary for female, seminal vesicles for male), delineated 
on b = 500 s/mm2 image, were transposed from DWI onto ADC map. 
Ovary and seminal vesicles chosen as normal tissue example as these 
organs were within planning tumour volume (PTV) and received same 
dose as GTV. ADC median for region of interest (ROI) at each fraction 
was calculated using in house-tool. Statistical analyses and graph 
modelling was performed using GraphPad Prism v9.1.2. 

3. Results 

An area of low ADC value was present on ADC maps corresponding to 
region of signal on b = 500 s/mm2, which can be considered to 
demonstrate presence of tumour (Fig. 2a). All patients demonstrated a 
trend of increasing ADC median from fraction 1 (1.15 × 10− 3 mm2/s 
interquartile range (IQ): 1.05–1.17) to fraction 30 (1.60 × 10− 3 mm2/s 
IQ: 1.37–1.64) (Fig. 2b). Using Wilcoxon t-test the difference in ADC 
median between fraction 1 and 30 was found to be statistically signifi
cant (p = 0.0156). In comparison ADC median calculated in normal 
tissue showed no difference between first and last fraction (1.61 × 10− 3 

mm2/s IQ: 1.56–1.71 vs 1.67 × 10− 3 mm2/s IQ: 1.37–2.00; p = 0.9375) 
(Fig. 2c). %ΔADC median calculated at weekly intervals demonstrates 3 
patients (patients 4, 5 and 6) experiencing a >50% ΔADC from baseline 
by week 3, whilst 2 patients (patients 2 and 7) remain < 50%ΔADC from 
baseline throughout treatment (Fig. 3). There was no histopathological 
correlation to these trends. 

4. Discussion 

The findings from this study hold promise for utilisation of DWI 
signal and ADC metrics for adaptation of treatment according to treat
ment response on MR-Linac. Preliminary work on the longitudinal 
analysis of DWI and ADC median in rectal cancer on the MR-Linac 
demonstrated that an increase in ADC median in GTV is seen in all pa
tients, whereas ADC median in normal tissue remains at similar value. 
ADC median of GTV also increases to a value comparable to normal 
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tissue. Given that all patients demonstrated a pathological response TRG 
1–3 to treatment, we suggest that Median ADC measured on MR-Linac 
appears to correlate to treatment response, which is in keeping with 
published literature [24,38]. These results are similar to a study per
formed on 0.35 T MR integrated platform looking at DWI in 3 patients 
[39]. 

Based on published evidence in rectal cancer, the principal param
eter that predicts treatment response is %ΔADC (which compares post- 
treatment ADC metrics to pre-treatment ADC metrics calculated 6–8 
weeks after completion of treatment) where patients with pCR demon
strate a >50% ΔADC compared to patients who do not achieve pCR 
[25,26,40,41]. However, we have observed that in five out of seven 
patients %ΔADC is <50% by the last fraction. One explanation is that 
the final DWI that we analyzed was obtained during the final week of RT 
as opposed to 6–8 weeks post-treatment as stated in the published 
studies. It is well known that tumour regression can continue following 
completion of CRT [42]. In addition, the signal intensity in the tumour is 
reduced by the end of treatment, leading to smaller volume of ROI for 
ADC calculations which can result in inaccuracies in ADC measurements 
[41]. 

Sun et al demonstrated a significant increase in ADC metrics and %Δ 
ADC during treatment where down-staged patients (TRG 1–3) had an 
earlier increase in ADC metrics by end of week 1 (1.07 × 10− 3 mm/s2 ±

SD 0.13 pre-treatment to 1.32 × 10− 3 mm/s2 ± SD 0.16; p < 0.001) at 
end of week 1 and larger change in %ΔADC by end of week 2 (28.2% vs 
9.8%; p < 0.01) compared to non-downstaged patients (TRG 4–5) [27]. 
Our results demonstrated three out of seven patients exhibit similar 
early rises in Median ADC and large %ΔADC by week 3 (fig, 2c and 3). 
However on further analysis based on TRG stratification, it was difficult 
to demonstrate a difference in trend between good (TRG 1–2) and poor 
responders (TRG 3–5). 

Our study is limited by small patient numbers; therefore, further 
studies with larger patient numbers are required to demonstrate corre
lation between DWI measurements and pathological outcome in order to 
establish DWI as an imaging biomarker in clinical practice. We also 
recognise that combining ovary and seminal vesicles within normal 
tissue ROI may not give true representation of median ADC within 
normal tissue; however as these organs are included in the PTV and 
receive same dose as GTV it was deemed that this comparison was the 
most similar. Furthermore, assessing repeatability is also required if 
utilising DWI for patient stratification in order to ensure that ADC metric 
changes are due to treatment related changes in tumour biology, and not 
machine or other patient related factors [32]. 

Previous analysis of our data included b-values <100 s/mm2 in ADC 

Fig. 1. Diffusion weighted images b = 0, 30, 150 and 500 s/mm2 and T2 weighted image at first fraction of a patient with an upper rectal cancer tumour with GTV 
contour (purple). 

Table 1 
MRI sequencing parameters for DWI acquisition on Elekta Unity MR-Linac.  

Parameters Rectal DWI sequencing 

Field of view (mm) AP = 420 
RL = 420 
FH = 120 

Recon. Voxel (mm)  
AP 1.75 
RL 1.75 
TR (ms) 4483 
TE (ms) 81 
DELTA/delta (ms) 40.7/20.3 
Fat Suppression STIR 
EPI factor 55 
Parallel imaging factor 2.2 
Section thickness (mm) 4 
Direction of motion probing gradients Isotropic 
b-factors (s/mm2) 0, 30, 150, 500 
b-factor averages  
b = 0 8 
b = 30 8 
b = 150 8 
b = 500 16  

Table 2 
Patient and tumour characteristics.    

N = 7 

Gender Male 6 (86%)  
Female 1 (14%) 

Age  61.3 yrs (Range 37–74) 
T stage T3a 1 (14%)  

T3b 1 (14%)  
T3c 3 (43%)  
T4 2 (29%) 

N Stage N1 5 (71%)  
N2 2 (29%) 

M Stage M0 7 (100%) 
CRM involved Yes 5 (71%)  

No 2 (29%) 
EMVI present Yes 7 (100%) 
Mandard response post treatment TRG 1 3 (43%)  

TRG 2 2 (29%)  
TRG 3 2 (29%)  
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calculations where we demonstrated one patient with a decreasing trend 
of ADC metrics [43]. Excluding b-values <100 s/mm2 reversed this 
trend, indicating that lower b-values make ADC a more sensitive 
biomarker, especially to perfusion [33]. Intra-voxel incoherent motion 
(IVIM) analysis may provide more accurate assessment of tumour 
response to treatment by separating perfusion and diffusion factors [44], 
giving a more robust picture of tumour microcellularity during 
treatment. 

In conclusion, DWI signal change and ADC metrics can be measured 
on MR-Linac in rectal cancer, demonstrating promise in its ability to 
determine response to treatment. Integration of DWI in adaptive 
radiotherapy planning may increase confidence in delivering dose 
escalated radiotherapy to GTV with the aim of improving treatment 
related outcomes in rectal cancer patients. 

Fig. 2. a. Example of b = 500 s/mm2 images and corresponding ADC maps from week 1, 3 and 6 of patient with an upper rectal tumour (orange contour) and ovary 
(pink contour). An area of low ADC value is seen in week 1 corresponding to area of high signal seen on DWI in GTV. b. Median ADC of tumour between first and last 
fraction, with an increasing trend seen. c. Median ADC of normal tissue between first and last fraction, with no change seen. 

Fig. 3. Graph indicating relative ΔADC median (%) from baseline at 
weekly intervals. 
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