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Abstract 

Background  The rule of thumb that there is little gain in statistical power by obtaining more than 4 controls per 
case, is based on type-1 error α = 0.05. However, association studies that evaluate thousands or millions of associa‑
tions use smaller α and may have access to plentiful controls. We investigate power gains, and reductions in p-values, 
when increasing well beyond 4 controls per case, for small α.

Methods  We calculate the power, the median expected p-value, and the minimum detectable odds-ratio (OR), as a 
function of the number of controls/case, as α decreases.

Results  As α decreases, at each ratio of controls per case, the increase in power is larger than for α = 0.05. For α 
between 10–6 and 10–9 (typical for thousands or millions of associations), increasing from 4 controls per case to 
10–50 controls per case increases power. For example, a study with power = 0.2 (α = 5 × 10–8) with 1 control/case 
has power = 0.65 with 4 controls/case, but with 10 controls/case has power = 0.78, and with 50 controls/case has 
power = 0.84. For situations where obtaining more than 4 controls per case provides small increases in power beyond 
0.9 (at small α), the expected p-value can decrease by orders-of-magnitude below α. Increasing from 1 to 4 controls/
case reduces the minimum detectable OR toward the null by 20.9%, and from 4 to 50 controls/case reduces by an 
additional 9.7%, a result which applies regardless of α and hence also applies to “regular” α = 0.05 epidemiology.

Conclusions  At small α, versus 4 controls/case, recruiting 10 or more controls/cases can increase power, reduce the 
expected p-value by 1–2 orders of magnitude, and meaningfully reduce the minimum detectable OR. These ben‑
efits of increasing the controls/case ratio increase as the number of cases increases, although the amount of benefit 
depends on exposure frequencies and true OR. Provided that controls are comparable to cases, our findings suggest 
greater sharing of comparable controls in large-scale association studies.

Keywords  Control selection, Multiple comparisons, Study design, Molecular epidemiology

Introduction
A well-known rule of thumb in epidemiology is that 
there is little gain in statistical power by obtaining more 
than 4 controls per case [1–7]. Well-known exceptions 
to this rule are situations with rare exposures or large 
odds-ratios [1–7]. However, it may be less well-known 
that the rule presumes type-1 error α = 0.05. Large-scale 
association studies examine thousands or millions of 
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markers, but use small type-1 error α and small p-value 
thresholds to declare statistical significance [8, 9]. For 
example, exome-wide or genome-wide association stud-
ies (GWAS) examine millions of variants but require 
small α, such as α = 2.5 × 10–6 for a gene-based burden 
test [10] and α = 5 × 10–8 or 5 × 10–9 for a single-marker-
based test [11, 12]. Sometimes, plentiful appropriate 
controls are potentially available (such as consortial, reg-
istry, or cohort studies) or may be borrowed at little, or 
no, cost from other studies. When the number of cases 
is fixed, obtaining as many “free” controls as possible is 
ideal [1–7]. However, controls are rarely literally “free”. It 
is well-known that the cost-effective number of controls 
depends on the ratio of costs of obtaining controls vs 
cases [1–7], although it is often hard to quantify “costs”.

A salient example of power gains by increasing beyond 
4 controls/case is GWAS [13–16]. Methods have been 
proposed to borrow appropriate controls across GWAS 
[17–22] or genotype all cohort/biobank members [23–
25], either of which has resulted in a large number of con-
trols/case for GWAS of many diseases [26–32]. Although 
important, GWAS research has focused on a single α 
(“genome-wide significance”), not how statistical power 
varies with the controls/case ratio as α varies. The general 
epidemiologic principles justifying increasing beyond 4 
controls/case have not been articulated.

For planning a single large-scale association study, we 
examine how power increases, and the median expected 
p-value decreases, with increasing number of appropriate 
controls/case as a function of α. Particularly, we examine 
the value of obtaining > 4 controls/case for 2 situations: 
(1) when 4 controls/case is under-powered, to identify 
novel associations, or (2) when 4 controls/case is well-
powered, to provide greater evidence for association by 
further reducing the p-value. We also derive the decrease 
in minimum detectable odds-ratio as the number of con-
trols/case increases. We apply our findings to choosing 
the number of controls/case for a GWAS.

Methods
We focus on testing for association via an odds-ratio in 
a case–control design. Our general findings are based 
on the classical calculation of the increase in statisti-
cal efficiency with increasing controls/case [1–7]. This 
presumes “local alternatives”: as the number of cases 
increases, the minimum odds-ratio to detect becomes 
closer to 1 [1–7]. This asymptotic is apt when studies 
with larger sample sizes seek to identify smaller effects. 
The value of the local alternatives asymptotic is to not 
require individually specifying numbers of cases or con-
trols, marker prevalence, or odds-ratio (OR) – these vari-
ables are subsumed by solely specifying the power for a 

study with 1 control/case. Although the equations dem-
onstrate general principles, for a specific application it is 
of interest to examine the interplay of all variables, which 
we will do for GWAS. Here we show the final equations – 
see Supplement for derivations.

Increase in power with increasing number of controls/case 
by α
Denote power for an association with 1 control/case as 
1-β1 and power with J controls/case as 1-βJ. The power 
for J controls/case is (derivation in Supplement)

where � is the CDF of the standard normal distribu-
tion and Z{x} is the upper two-sided standard normal 
deviate at level x ; for example Z{1−(5e−08)/2} = 5.45 and 
Z{0.8} = 0.84 . The key point is that the power increases 
as Z{1−α/2} increases, i.e., as α decreases. Thus, fixing 
the power of a study with 1 control/case (regardless of 
the combination of sample-sizes, marker prevalences, 
and odds-ratio that results in that power), the increase 
in power for J controls/cases, versus 1 control/case, is 
greater as α decreases. We will plot this power for J con-
trols/case as J increases, for various α, to demonstrate 
that the increase in power from J controls/case increases 
as α decreases.

However, note that Eq. (1) will not tell us about power 
for a particular study where we must set exposure fre-
quencies, sample sizes, and other parameters. Figures 3, 
S1, and S2 vary all parameters of a traditional power cal-
culation to examine power for particular GWAS studies 
(see Supplement for derivation):

where N  is the total sample size (total number of alleles), 
p1 and p2 are exposure frequencies for cases and controls 
(respectively), and φ0 and φ1 are the standard deviations 
under the null and alternative hypotheses (respectively). 
Parenthetically, the Genet​ic Assoc​iatio​n Study​ (GAS)​ 
Power​ Calcu​lator [13, 33] substitutes the variance under 
the alternative for the variance under the null (i.e. substi-
tutes φ1 for φ0 ), which is appropriate for a Wald test, but 
not for a score test (see Supplement).

Reduction in median expected p‑value with increasing 
number of controls/case by α
P-values are random variables that vary over hypotheti-
cal study replications [34, 35]. The p-value estimates the 
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median of the p-values in a hypothetical population of all 
possible study results [36]. That is, under the null hypoth-
esis of no effect, p-values have a uniform distribution, 
but under the alternative hypothesis, the distribution 
of p-values is highly skewed toward 0 and the median 
expected (two-sided) p-value [36] is

The median expected p-value informs about the 
p-value that can be expected for an association with 
given power and α. Figure  1 plots the median expected 
p-value versus power at selected α. For an association 
with 50% power, the median expected p-value equals α. 
At 80% power and α = 0.05, the median expected p-value 
for the association is 0.0051. At 80% power and genome-
wide significant α = 5 × 10–8, the median expected p-value 
is 3 × 10–10. See Supplement for more explanation.

The median expected p-value for a study with J con-
trols/case is calculated by plugging in the power from 
Eq. (1). The key point is that the median expected p-value 
decreases as α decreases. Thus, fixing the power of a 
study with 1 control/case (regardless of the combina-
tion of sample-sizes, marker prevalences, and odds-ratio 
that results in that power), the median expected p-value 
for J controls/cases, versus 1 control/case, is lower as α 
decreases. We will plot the median expected p-value for 
J controls/case as J increases, for various α, to demon-
strate that the reduction in power from J controls/case 
increases as α decreases.

Fractional reduction, toward the null, in the minimum 
detectable OR, regardless of α
Denote the minimum detectable OR for a study with 1 
control/case as OR1, and for a study with J controls/case 
as ORJ. The maximum reduction in the OR toward the 
null is OR1-1, of which a study with J controls/case will 
achieve OR1-ORJ. The fractional reduction, toward the 
null, in the minimum detectable OR by obtaining J con-
trols/case is approximately (derivation in Supplement)

Note that the fractional reduction, toward the null, in 
the minimum detectable OR depends only on the num-
ber of controls/case. Power, α, marker frequencies, and 
sample sizes are all subsumed into the minimum detect-
able OR for 1 control/case. Because even α is subsumed, 
this result applies also to “regular” α = 0.05 epidemiology. 
Hence, once one has calculated the minimum detectable 
OR for 1 control/case, the equation above calculates the 

(2)p = 2×�(−|Z{1−β} + Z{1−α/2}|).

(3)
OR1 − ORJ

OR1 − 1
≈ 1−

J + 1

2J
.

minimum detectable OR for any number of controls/
case.

In particular, as J controls/case increases, the fractional 
reduction, toward the null, in the minimum detectable OR 
asymptotes at 1−

√
1/2 = 29.3% . For example, if the min-

imum detectable OR for a study with 1 control/case were 
2, then the minimum detectable OR for a study with large 
number of controls/case is 2− 0.293(2− 1) = 1.71 . We 
will make a table showing how the minimum detectable 
OR is reduced as the number of controls/case increases.

Results
Increase in power with increasing number of controls/case 
by α
Figure 2 and Table S1 show power for an association with 
J controls/case as α decreases (based on Eq.  (1)), fixing 
power for the association with 1 control/case to be low/
moderate (0.1–0.5). For α = 0.05, the power does not 
increase much as controls increase beyond 4 in any situ-
ation, agreeing with classical results [1–7]. But this is not 
true for α = 0.001, and especially gene-based-significance 
(α = 2.5 × 10–6), genome-wide-significance (α = 5 × 10–8), 
or for an example “stringent” threshold (α = 3 × 10–12). 
The increase in power from each value of controls/case is 
stronger as α decreases and when a study with 1 control/
case has low power for the association.

For example, when a 1 control/case study has 
power = 0.2 and  α = 0.05, the power asymptotes at 0.35 
for 100 controls/case. For smaller α, obtaining 4 controls/
case raises power from 0.2 to 0.57 (α = 2.5 × 10–6), 0.65 
(α = 5 × 10–8), 0.69 (α = 5 × 10–9), and 0.78 (α = 3 × 10–12). 
However, power remains < 0.8. Further increasing from 
4 to 50 controls/case raises power from 0.57 to 0.76 
(α = 2.5 × 10–6), 0.65 to 0.84 (α = 5 × 10–8), 0.69 to 0.88 
(α = 5 × 10–9), and from 0.78 to 0.95 (α = 3 × 10–12). As 
expected, 4 controls/case raises power, but increasing to 
50 controls/case provides additional gains to approach 
or exceed power = 0.8 or 0.9. Similar gains in power are 
observed for obtaining 50 vs. 4 controls/case when 1 con-
trol/case has power 0.1–0.3.

Reduction in median expected p‑value with increasing 
number of controls/case by α
Figure 3 and Table S2 show the median expected p-value 
for an association (based on Eq.  (2)) decreasing as the 
number of controls/case increases, given α and power 
for the association in a 1 control/case study. For α = 0.05, 
increasing controls/case does not substantially decrease 
the median expected p-value. In contrast, as α decreases, 
increasing controls/case beyond 4 decreases the median 
expected p-value by orders of magnitude, with the ratio 
reduction increasing as α decreases.
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Fig. 1  Median expected p-value versus power at selected α. Table below figure shows the median expected p-value for chosen powers and α. Note 
that when power = 50%, the median expected p-value equals α
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Fig. 2  Power of an association versus the number of controls per case as α decreases, as the power with 1 control per case increases from 0.1 to 0.2 
to 0.3 to 0.5. Y-axis is on the probit scale to appropriately show meaningful differences in seemingly small power gains beyond 0.9; x-axis is on a log 
scale. Dotted horizontal lines indicate powers of 0.8 and 0.9

Fig. 3  Expected p-value under replication of an association versus the number of controls per case as α decreases, as the power of a study with 1 
control per case increases from 0.1 to 0.2 to 0.3 to 0.5. Dotted lines represent the α level for that color. Both axes are on a log scale
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For example, when a 1 control/case has power = 0.1, 1 
vs. 4 controls/case reduces the median expected p-value 
60-fold (p = 6 × 10–4 to p = 1 × 10–5; α = 2.5 × 10–6), 
by 300-fold (p = 3 × 10–5 to p = 1 × 10–7, α = 5 × 10–8), 
by 600-fold (p = 5 × 10–6 to p = 8 × 10–9; α = 5 × 10–9), 
and by 16,000-fold (p = 1 × 10–8 to p = 6 × 10–13; 
α = 3 × 10–12). However, the median expected p-value 
remains above α. Further increasing from 4 to 50 
controls/case, the median expected p-value drops to 
below α, reducing by 5-fold (p = 1 × 10–5 to p = 2 × 10–6; 
α = 2.5 × 10–6), by 20-fold (p = 1 × 10–7 to p = 5 × 10–9, 
α = 5 × 10–8), by 40-fold (p = 8 × 10–9 to p = 2 × 10–10; 
α = 5 × 10–9), and by 300-fold (p = 6 × 10–13 to 
p = 2 × 10–15; α = 3 × 10–12). Thus, obtaining 4 controls/
case reduces median expected p-values, but sometimes 
not below α. Increasing to 50 controls/case further 
reduces median expected p-values by 5-fold to 300-
fold, and in this situation, to below α, potentially identi-
fying novel associations.

When power = 0.5 for a 1 control/case study, power 
is > 0.89 with J = 4 controls for α α ≤ 2.5 × 10–6 (Fig.  2), 
which represent well-powered associations. Thus increas-
ing from 4 to 50 controls/case cannot increase power by 
much, yet, the median expected p-value still decreases 
by orders of magnitude (Fig.  3). This is because small 
increases in power > 0.9 substantially reduce the expected 
p-value (Fig. 1), providing concomitantly greater reassur-
ance that an association is not a false-positive.

For example, when 1 control/case has power = 0.5, 
increasing from 1 to 4 controls/case reduces the median 
expected p-value 1,000-fold (p = 2 × 10–6 to p = 3 × 10–9; 
α = 2.5 × 10–6), by 10,000-fold (p = 5 × 10–8 to p = 5 × 10–12, 
α = 5 × 10–8), by 50,000-fold (p = 5 × 10–9 to p = 1 × 10–13; 
α = 5 × 10–9), and by 3,000,000-fold (p = 3 × 10–12 to 
1 × 10–18; α = 3 × 10–12). These already represent substan-
tial p-value reductions, sometimes below a “stringent” 
p = 3 × 10–12 threshold.

Moreover, substantial further reductions are pos-
sible by increasing from 4 to 50 controls/case. For 
α = 2.5 × 10–6, power increases only from 0.894 to 0.970, 
but the median expected p-value decreases 75-fold 
(p = 3 × 10–9 to p = 4 × 10–11). For α = 5 × 10–8, power 
increases only from 0.926 to 0.985, but the median 
expected p-value decreases 235-fold (p = 5 × 10–12 to 
p = 2 × 10–14). For α = 5 × 10–9, power increases only 
from 0.939 to 0.990, but the median expected p-value 
decreases 300-fold (p = 1 × 10–13 to p = 3 × 10–16). For 
α = 3 × 10–12, power increases only from 0.968 to 0.997, 
but the median expected p-value decreases 7200-fold 
(p = 1 × 10–18 to p = 1.5 × 10–22). Thus even for studies 
well-powered at 4 controls/case, increasing to 50 con-
trols/case further reduces median expected p-values 
by 75-fold to 7000-fold, reducing below a “stringent” 

p = 3 × 10–12, providing concomitantly greater reassur-
ance in the association.

Although increasing to 10–20 controls/case achieves 
most of the benefit of 50 controls/case, 50 controls/case 
typically represents a further reduction in the median 
expected p-value by factors of 2–10 versus 10–20 con-
trols/case (Fig.  3; Table S2). If controls were truly low/
no-cost, such reductions would generally be considered 
worthwhile. Little further reduction is achieved by 100 
controls/case, unless α = 3 × 10–12.

Fractional reduction, toward the null, in the minimum 
detectable odds‑ratio with increasing number of controls/
case
Using Eq.  (3), Table  1 shows the reduction in the mini-
mum detectable OR as the number of controls/case 
increases. Table 1 requires specifying only the minimum 
detectable OR at 1 control/case, which subsumes α, 
power, marker frequencies, and sample sizes. Table 1 can 
be referred to during study design to see the reduction in 
the minimum detectable OR by increasing the number of 
controls/case, regardless of α. Increasing from 1 to 4 con-
trols/case reduces the minimum detectable OR toward 
the null by 20.9%, and from 4 to 50 controls/case reduces 
by an additional 9.7%. The maximum reduction is nearly 
achieved by 1000 controls/case, which achieves a 29.3% 
reduction versus 1 control/case and 10.5% reduction ver-
sus 4 controls/case.

Example: considering the number of controls in GWAS
We have demonstrated the general value of recruiting > 4 
controls/case for small α in Fig. 2, but in a specific situa-
tion, one must calculate the best number of controls/case 
to obtain. Here we consider genetic association studies. 
The Supplement details the allele-based power calculation 
and does not presume “local alternatives”. The calculation 
specifies the empirical OR between alleles and disease in 
a population, which is agnostic of genetic architecture 
except requiring Hardy–Weinberg Equilibrium [37].

To identify a minimum sample size where p-values 
have correct asymptotic performance even for rare minor 
allele frequencies (MAF), we simulated and calculated 
the skewness of test statistics and type-1 error (Supple-
ment). We found that a minimum sample of 10,000 cases 
ensured validity of asymptotic p-values at rare marker 
prevalence of 1%, agreeing with prior work [38]. We will 
presume that enough cases have been chosen to ensure 
correct asymptotic performance of calculated p-values.

Figure 4 shows the median expected p-value in GWAS 
(α = 5 × 10–8) by number of controls per case, at fixed 
number of cases at OR = 1.1 (Figure S1: OR = 1.2; Figure 
S2: OR = 1.05), and varying the control MAF from 0.5 to 
0.01. The reduction in expected p-value with increasing 
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controls/case is greatest when the p-values are smallest, 
and hence as the number of cases increases. Thus, the 
key result is that the reduction in expected p-value, by 
increasing controls/case, increases with more cases.

For example, increasing from 1 to 2 controls/case for 
OR = 1.1 and MAF = 0.5 reduces the expected p-value 
for 5,000 cases by 8-fold (p = 8 × 10–4 vs p = 1 × 10–4), 

for 10,000 cases by 50-fold (p = 2 × 10–6 vs p = 4 × 10–8), 
but for 30,000 cases by 100,000-fold (p = 2 × 10–16 vs 
p = 2 × 10–21). Similarly, increasing from 4 to 50 con-
trols/case for OR = 1.1 and MAF = 0.5 reduces the 
expected p-value for 5,000 cases by 8-fold (p = 2 × 10–5 
vs p = 3 × 10–6), for 10,000 cases by 60-fold (p = 2 × 10–9 
vs p = 3 × 10–11), but for 30,000 cases by 200,000-fold 

Table 1  Minimum detectable OR from J controls/case, for example minimum detectable OR for 1 control/case, based on a derivation 
valid for small associations (see Supplement). Note that the percent reduction in the OR only depends on the number of controls per 
case, subsuming power, α, number of cases, or control marker frequency

a  Fractional reduction towards the null for minimum detectable odds-ratio for J controls/case (ORJ) vs 1 control/case (OR1) equals (OR1 – ORJ)/(OR1 – 1)
b  Fractional reduction towards the null for minimum detectable odds-ratio for J controls/case (ORJ) vs 4 controls/case (OR4) equals (OR4 – ORJ)/(OR4 – 1)

Controls/case (J) Minimum detectable odds-ratio (OR) for 1 control/case % Reduction towards 
null vs J = 1 ORa

% Reduction 
towards null vs 
J = 4 ORb1.05 1.1 1.2 1.3 1.5 1.75 2

1 1.05 1.1 1.2 1.3 1.5 1.75 2 0.0% -26.5%

2 1.043 1.087 1.17 1.26 1.43 1.65 1.87 13.4% -9.5%

3 1.041 1.082 1.16 1.25 1.41 1.61 1.82 18.4% -3.3%

4 1.04 1.079 1.16 1.24 1.40 1.59 1.79 20.9% 0.0%

5 1.039 1.077 1.16 1.23 1.39 1.58 1.78 22.5% 2.0%

10 1.037 1.074 1.15 1.22 1.37 1.56 1.74 25.8% 6.2%

20 1.036 1.072 1.15 1.22 1.36 1.54 1.73 27.5% 8.3%

50 1.036 1.071 1.14 1.21 1.36 1.54 1.71 28.6% 9.7%

100 1.036 1.071 1.14 1.21 1.36 1.53 1.71 28.9% 10.1%

1000 1.035 1.071 1.14 1.21 1.35 1.53 1.71 29.3% 10.5%
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Fig. 4  Expected p-value vs number of controls per cases, by the number of cases in a GWAS (α = 5 × 10–8) for OR = 1.1 and control minor allele 
frequency varying across plots from 0.5, 0.1, 0.05, 0.01. Dotted lines are expected p = α = 5 × 10–8 and “stringent” expected p = 3 × 10–12. P-values 
below 10–50 are not plotted. Both axes are on a log scale
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(p = 2 × 10–25 vs p = 7 × 10–31). Note that extra controls 
provide greater reductions when expected p < α, which 
is helpful for attaining “stringent” p-values, such as 
p = 3 × 10–12, which provide greatest reassurance against 
reporting a false-positive association.

Table 2 shows how the minimum detectable OR at 80% 
power and α = 5 × 10–8 decreases with increasing num-
bers of controls/case, as control marker frequency varies 
from common to rare. Note that the fractional reduc-
tions, towards the null, by increasing number of controls/
case are close to those of Table 1. Increasing beyond 10 
controls/case does not seem to meaningfully reduce the 
minimum detectable OR.

The Supplement derives two “rules of thumb” to assess 
the order of magnitude of the expected p-value attain-
able by increasing sample-size. First, the order of magni-
tude of the p-value at large controls/case equals roughly 
the square of the p-value at 1 control/case (“squaring 
rule”). Second, the median expected p-value at large 
controls/case is approximately equal to that of doubling 
the number of cases at 1 control/case (“doubling rule”). 
The “squaring” and “doubling” rules synergize to drive 
p-values below α. For example, consider the situation of 
where p-values of 10–4 have been observed at 1 control/
case. Then the “doubling” rule implies that if the number 
of cases in the next GWAS were doubled, the p-value at 

Table 2  Minimum detectable OR at 80% power and α = 5 × 10–8 for a GWAS by control minor allele frequencies, number of controls/
case, and number of cases

Number of cases Number of controls/case Minor allele frequency in controls

0.01 0.05 0.1 0.2 0.5

2,500 cases 1 2.74 1.68 1.48 1.35 1.29

4 2.42 1.54 1.38 1.28 1.22

10 2.35 1.51 1.35 1.26 1.21

50 2.31 1.49 1.34 1.25 1.20

5,000 cases 1 2.12 1.46 1.33 1.24 1.20

4 1.91 1.36 1.26 1.19 1.15

10 1.86 1.34 1.24 1.18 1.14

50 1.83 1.33 1.23 1.17 1.14

10,000 cases 1 1.74 1.31 1.22 1.17 1.134

4 1.60 1.25 1.18 1.13 1.105

10 1.57 1.23 1.17 1.12 1.098

50 1.55 1.23 1.16 1.12 1.094

20,000 cases 1 1.50 1.216 1.155 1.116 1.093

4 1.40 1.171 1.123 1.091 1.073

10 1.38 1.161 1.115 1.086 1.068

50 1.37 1.155 1.111 1.082 1.066

40,000 cases 1 1.34 1.150 1.108 1.081 1.065

4 1.27 1.119 1.086 1.064 1.051

10 1.26 1.112 1.080 1.060 1.048

50 1.25 1.108 1.077 1.058 1.046

80,000 cases 1 1.24 1.105 1.076 1.057 1.046

4 1.19 1.083 1.060 1.045 1.036

10 1.18 1.078 1.056 1.042 1.034

50 1.17 1.075 1.054 1.040 1.032

160,000 cases 1 1.165 1.074 1.053 1.04 1.032

4 1.131 1.058 1.042 1.031 1.025

10 1.123 1.055 1.04 1.03 1.024

50 1.118 1.053 1.038 1.028 1.023

320,000 cases 1 1.115 1.052 1.037 1.028 1.022

4 1.091 1.041 1.03 1.022 1.018

10 1.086 1.038 1.028 1.021 1.017

50 1.083 1.037 1.027 1.02 1.016
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1 control/case would be approximately 10–8, and if large 
controls/case could be obtained, the “squaring” rule 
implies that the p-value could be approximately reduced 
to the order of 10–16. Thus increasing to a very large num-
ber of controls reduces the p-value in the same amount 
as doubling the number of cases (at 1 control/case).

Example: reduction in p‑values as the number of controls 
per case increases for 4 selected SNPs in the PLCO GWAS 
data
In Table  3, we chose individuals with SNPs genotyped on 
the Illumina Global Screening Array platform for melanoma 
(2093 cases), prostate cancer (2012 cases), and pancreatic 
cancer (578 cases) and 57,501 cancer-free controls in the 
PLCO GWAS [39] data. We then chose 50 random samples 
of controls at each controls/case ratio. Increasing from 4 to 
10-25 controls/case reduced the p-value 108-fold and 991-
fold (respectively; melanoma rs605965), 22-fold and 96-fold 
(respectively; melanoma rs871024), and fourfold and 13-fold 
(respectively; prostate cancer rs6983267). For pancreatic can-
cer rs635634, increasing from 4 to 10-25-50 controls/case 
reduced the p-value 14-fold, 36-fold, and 65-fold (respectively) 
and the fraction of the 50 random samples yielding genome-
wide significance increased from 24% to 58%, 90%, and 100% 
(respectively). In these examples, increasing from 4 to 10 or 25 
controls/case reduced the p-value up to 1–2 orders of magni-
tude and for 1 SNP (rs635634) increased the chance of achiev-
ing genome-wide significance from 24% to 58–90%.

Conclusions
We demonstrated that, as type-1 error α decreases, the 
increase in power as the controls/case ratio increases is 
larger, and the ratio reduction in the expected p-value 

is smaller, than for α = 0.05. Thus recruiting just 2 con-
trols/case has increasingly greater value over 1 control/
case as α decreases. At small α typical for thousands or 
millions of comparisons, versus 4 controls/case, recruit-
ing 10–50 controls/cases can increase power, reduce 
the expected p-value by 1–2 orders of magnitude, and 
reduce the minimum detectable OR. Hence increasing 
controls/case could identify more novel associations 
and provide greater reassurance in previously reported 
associations. These benefits of increasing the controls/
case ratio increase as the number of cases increases, 
although the amount of benefit depends on exposure 
frequencies and true OR. Although our example is 
genetic association studies, our findings apply to any 
study that uses small α to simultaneously assess many 
associations, such as -omic, consortial, or database 
studies.

We derived the fractional reduction, toward the null, of 
the minimum detectable OR for J controls/case versus 1 
control/case, which asymptotes to a 29.3% reduction for 
large number of controls/case. This reduction depends only 
on specifying the minimum detectable OR for 1 control/
case, regardless of the combination of α, power, marker 
frequencies, or sample sizes that imply that OR. Hence this 
reduction also applies to “regular” α = 0.05 epidemiology 
and, to our knowledge, has not previously been derived.

Our findings are consonant with a previous sugges-
tion to use 10 controls/case in GWAS specifically for 
α = 1 × 10–7  [16]. However, the general point that power 
gains from raising the controls/case ratio increase with 
smaller α, to our knowledge, has not been previously rec-
ognized. We demonstrate that the percent reduction in 
expected p-value by raising controls/case increases with 

Table 3  P-values for 4 SNPs as the number of controls per case increases in the PLCO GWAS Explorer data, by averaging 50 random 
samples of controls at each level of controls per case†. For the pancreatic SNP rs635634, we also calculate the percent of the 50 
random samples that were statistically significant at p < 5 × 10–8

†  We chose individuals with SNPs genotyped on the Illumina Global Screening Array platform. We include the top 2 SNPs for melanoma (2093 cases; rs605965: 
OR = 1.47, MAF = 4.2%; rs871024: OR = 1.26, MAF = 49.6%), the top SNP for prostate cancer (2012 cases; rs6983267: OR = 0.86, MAF = 50%) and the top SNP for 
pancreatic cancer (578 cases; rs635634: OR = 1.48, MAF = 18.5%). There were 57,501 cancer-free controls and thus melanoma and prostate cancer had a maximum of 
25 controls per case in the data

Melanoma rs605965 Melanoma rs871024 Prostate rs6983267 Pancreas rs635634

Controls 
per case

P-value P-value ratio vs 4 
controls per case

P-value P-value ratio vs 4 
controls per case

P-value P-value ratio vs 4 
controls per case

P-value P-value ratio vs 4 
controls per case

% Significant

1 2E-07 3E-07 2E-04 1E-04 2%

2 2E-09 3E-09 3E-05 5E-06 4%

3 7E-11 3E-10 7E-05 1E-06 14%

4 1E-11 1 6E-11 1 5E-05 1 4E-07 1 24%

5 1E-12 10 3E-11 2 4E-05 1 2E-07 2 30%

10 1E-13 108 3E-12 22 1E-05 4 3E-08 14 58%

25 1E-14 991 6E-13 96 4E-06 13 1E-08 36 90%

50 - - - - - - 6E-09 65 100%

100 - - - - - - 5E-09 85 100%
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more cases. Thus the value of raising controls/case is 
greater when there are more cases, which, to our knowl-
edge, has not been previously recognized. We provided 
rules of thumb to assess the order-of-magnitude of the 
expected p-value and the reduction in minimum detecta-
ble OR. Our findings apply to rare or common disease, are 
agnostic of genetic architecture (except requiring Hardy–
Weinberg Equilibrium), and could be helpful to note in 
primers for GWAS study design [40].

Our calculations apply to the ideal scenario where 
controls are completely appropriate to the cases. If one 
borrows controls, small biases induced by borrowing inap-
propriate controls could negate power and p-value gains 
[41]. In exome/genome-wide analysis, at a minimum, there 
should be strict control for population structure [42]. Con-
trols should be matched to cases with the same genotyping 
platform, the same variant calling, quality-control metrics 
and analysis pipeline, and imputed together with the same 
variants and reference panel [43]. Close attention should 
be paid to possible structural differences in the data caused 
by different laboratories and/or study populations [17–20]. 
These issues are generic to borrowing controls, irrespec-
tive of whether one borrows 1 or 100 control(s)/case.

A particular issue for GWAS is the importance of using 
the same genotyping platform for cases and controls to 
ensure comparable genotyping. If the GWAS has access 
to plentiful comparable controls, but which have been 
genotyped on a different platform, re-genotyping cases 
with the same platform as the plentiful controls could 
meaningfully increase power. This may be particularly 
useful for rare diseases, where it is hard to increase power 
by simply collecting many more cases.

Our calculations apply to planning a single study, not 
a discovery-replication 2-stage study that must account 
for “winner’s curse” and other issues [44]. Agreeing with 
prior work [45, 38, 22], we found that when there are few 
cases exposed to a rare marker, simple asymptotics may 
not apply and increasing the number of controls will not 
remedy the situation. When this situation occurs, more 
precise analysis is required [46].

We note that choice of α is crucial. Although Bonfer-
roni adjustments are popular, they can be too conserva-
tive when test statistics are correlated. One approach is 
to use a parametric bootstrap on real data to assess the 
false-positive rate to determine α [12]. More research in 
this area is necessary.

Finally, determining the optimum number of controls is 
especially important for relatively understudied popula-
tions, for whom there are fewer cohorts/biobanks to borrow 
controls from. Our findings suggest that cohorts/biobanks 
of understudied populations should consider testing all con-
trols to promote sharing of all appropriate controls across 
large-scale association studies for understudied populations.
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