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The NMDA receptor regulates competition
of epithelial cells in the Drosophila wing
Agnes R. Banreti1,2✉ & Pascal Meier 1✉

Cell competition is an emerging principle that eliminates suboptimal or potentially dangerous

cells. For ‘unfit’ cells to be detected, their competitive status needs to be compared to

the collective fitness of cells within a tissue. Here we report that the NMDA receptor controls

cell competition of epithelial cells and Myc supercompetitors in the Drosophila wing disc.

While clonal depletion of the NMDA receptor subunit NR2 results in their rapid elimination

via the TNF/Eiger>JNK signalling pathway, local over-expression of NR2 causes NR2 cells to

acquire supercompetitor-like behaviour that enables them to overtake the tissue through

clonal expansion that causes, but also relies on, the killing of surrounding cells. Consistently,

NR2 is utilised by Myc clones to provide them with supercompetitor status. Mechanistically,

we find that the JNK>PDK signalling axis in ‘loser’ cells reprograms their metabolism, driving

them to produce and transfer lactate to winners. Preventing lactate transfer from losers to

winners abrogates NMDAR-mediated cell competition. Our findings demonstrate a functional

repurposing of NMDAR in the surveillance of tissue fitness.
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Cell competition is an evolutionary conserved quality con-
trol process, which ensures that suboptimal, but otherwise
viable, cells do not accumulate during development and

aging1. How relative fitness disparities are measured across
groups of cells, and how the decision is taken whether a particular
cell will persist in the tissue (‘winner cell’) or is killed (‘loser cell’)
is not completely understood. This is an important issue as
competitive behaviour can be exploited by cancer cells1.

Various types of cell competition exist2. While structural cell
competition is triggered upon loss of cellular adhesion or changes
in epithelial apico-basal polarity, metabolic cell competition
occurs in response to alterations in cellular metabolic states.
Growth signalling pathways involved in metabolic cell competi-
tion seem to funnel through Myc, which functions as an essential
signalling hub in many types of cancers. Myc regulates expression
of components that control proliferation, cell death, differentia-
tion, and central metabolic pathways. Particularly, acute changes
in cellular metabolism appear to be critical for the winner phe-
notype during Myc supercompetition in Drosophila3, where
robustly growing Myc-expressing cells are able to not only out-
grow but also actively trigger the elimination of nearby wild-type
cells from the tissue.

Recent in vivo data demonstrate that some tumours can uptake
lactate and preferentially utilize it over glucose to fuel tri-
carboxylic acid (TCA) cycle and sustain tumour metabolism4.
Moreover, the growth-promoting effect of stromal cells is
impaired by glycolytic inhibition, suggesting that the stroma
provides nutritional support to malignant cells by transferring
lactate from cancer-associated fibroblasts (CAFs) to cancer
cells5,6. Such energy transfer from glycolytic stromal cells to
epithelial cancer cells closely resembles the physiological pro-
cesses of metabolic cooperativity, such as in ‘neuron-astrocyte
metabolic coupling’ in the brain, and the ‘lactate shuttle’ in the
skeletal muscle7,8. Activation of glycolysis in astrocytes and MCT-
mediated transfer of lactate to neurons supports neuron mito-
chondrial oxidative phosphorylation and energy demand9. These
observations raise the intriguing possibility that lactate serves as
fuel to complement glucose metabolism during cell competition.

We report here that the NMDA receptor controls the com-
petitiveness of epithelial cells in the Drosophila wing discs. While
tissue-wide depletion of NR2 has no effect on cell viability and
growth, clonal depletion of NR2 results in their rapid elimination
via the TNF>JNK signalling pathway. Conversely, local over-
expression of NR2 causes NR2-overexpressing cells to acquire
supercompetitor-like behaviour that enables them to overtake the
tissue. These data indicate that relative levels of NR2 underpins
cell competitive behaviour in the wing epithelia. Moreover, we
find that Myc-induced supercompetition also depends on upre-
gulation of NMDAR. Genetic depletion of NR2 abrogates Myc-
induced supercompetition. Mechanistically, we find that the
JNK>PDK signalling axis in ‘loser’ cells (lower NMDAR) results
in phosphorylation and inactivation of PDH, the enzyme that
converts pyruvate to Acetyl-CoA to fuel the TCA in the mito-
chondria. In such loser cells, phospho-dependent inactivation of
PDH causes mitochondrial shutdown and metabolic reprogram-
ming, thus loser cells produce and secrete lactate to winners.
Preventing lactate transfer from losers to winners removes fitness
disparities and abrogates NMDAR-mediated cell competition.
Together our data are consistent with the notion that NMDAR
underpins cell competition and that targeting NMDAR converts
Myc supercompetitor clones into superlosers.

Results
NR2 drives cell competition. In Drosophila, polarity-deficient
mutant cells for discs large 1 (dlg1) are eliminated by wild-type

neighbours through cell competition10. dlg1 is the highly con-
served homologue of mammalian PSD-95 and SAP97. In mam-
mals, PSD-95 and SAP97 directly bind to NR2B11,12, a subunit of
the N-methyl-D-aspartate receptor (NMDAR). We, therefore,
investigated whether NMDAR takes part in cell competition.
While mammals encode seven different NMDAR subunits, Dro-
sophila encodes only two NMDAR subunits (NR1 and NR2)
(Fig. 1a), which simplifies their study. Consistent with previous
reports13,14, we find that Drosophila NR2 is expressed in the
central nervous system, imaginal eye and wing discs as well as
salivary gland and fat body (Supplementary Fig. 1a–c)14–16. To
study the role of NR2 in cell competition in wing discs, we
generated mosaic tissues of two clonal populations. This con-
fronts wild-type cells (WT) with clones of cells in which the gene-
of-interest (goi) is depleted by RNAi (marked by GFP (green
fluorescent protein)) (Fig. 1b, left panel). We also, generated
homotypic settings in which the goi is depleted tissue-wide, and
where we created GFP-marked ‘non-competitive clones’ to eval-
uate intrinsic competition (Fig. 1b, right panel). Comparison of
clonal occupancy in hetero- versus homotypic genetic back-
grounds of age-matched larvae allows the exclusion of genes
that compromise cell viability in general. Interestingly, clonal
knockdown of NR2 (subsequently referred to as NR2 clones)
using five different RNAi constructs (Fig. 1a, c, d) resulted in the
loss of NR2 clones (Fig. 1c, d). Likewise, and as previously
demonstrated17,18, clonal knockdown of dlg1 or scribble (scrib)
resulted in their elimination (Fig. 1d and Supplementary Fig. 2a).
In contrast, clonal depletion of LacZ, which served as RNAi
control, had no effect (Fig. 1c, d). Importantly, RNAi-mediated
depletion of NR2 or dlg1 had no effect on clonal occupancy under
homotypic condition, such as upon tissue-wide NR2 depletion
using nubbin-Gal4 (Fig. 1e, f, and Supplementary Fig. 2b) or
hedgehog (hh-Gal4) (Supplementary Fig. 2c) that drive expression
of the RNAi constructs in the entire wing pouch or posterior
compartment of the Drosophila wing imaginal disc, respectively.
The observation that NR2-depleted cells are lost from the tissue
when surrounded by WT cells, but are present under homotypic
conditions, suggests that clonal depletion of NR2 triggers com-
petitive interactions, resulting in the loss of otherwise viable cells.

Homotypic clonal analysis demonstrated that the intrinsic
growth rate of NR2 clones is equivalent to the one of control LacZ
cells (Fig. 1g), highlighting that NR2 depletion does not impair
cell viability or growth in general. Further, treatment with AP5
((2R)-amino-5-phosphonopentanoate), a selective inhibitor of
NR219, suppressed the loss of NR2 clones in a heterotypic genetic
background (losers among winners) (Supplementary Fig. 3a, b),
phenocopying a homotypic setting. This illustrates that the
competitive behaviour between NR2-losers and WT-winners is
due to a relative difference in NR2 activity among competing
clones. AP5-medited global inhibition of NR2 thereby seems to
eradicate the fitness disparity among competing clones.

Next, we examined the consequence of clonal over-expression
of NR2. As shown in Fig. 1h, i, NR2 over-expressing clones
overgrew at the expense of wild-type surrounding cells. This
suggests that elevated expression of NR2 causes NR2 cells to
acquire supercompetitor-like behaviour that enables them to
overtake the tissue. Of note, clonal over-expression of NR2 did
not alter developmental timing, organ or larval size (Fig. 1j).
Together, our data indicate that relative levels of NR2 underpins
cell competitive behaviour in the wing epithelia.

NR2 loser clones are eliminated by TNF > JNK-mediated
apoptosis. To study the elimination process of NR2-depleted
cells, we examined the possible involvement of the Grindel-
wald>JNK signalling axis20. We noticed intense staining of

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16070-6

2 NATURE COMMUNICATIONS |         (2020) 11:2228 | https://doi.org/10.1038/s41467-020-16070-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


activated JNK [p-JNK] (Fig. 2a), induction of the JNK activity
reporter PucLacZ (Supplementary Fig. 4a) and high expression
level of the JNK target gene MMP1 in and around NR2 clones
(Fig. 2b), suggesting an involvement of JNK signalling. Con-
sistently, while NR2-depleted cells were readily eliminated, such
clones survived upon simultaneous, clonal depletion of the Dro-
sophila TNF-receptor superfamily member grindelwald (grnd)

(grnd-RNAi), hemipterous (hep) (hep-RNAi) or inactivation of
basket (bsk) (UAS-bsk-dominant negative (DN)). This demon-
strates that NR2-depleted clones are eliminated in a grnd- and
JNK-dependent manner (Fig. 2c). JNK signalling in NR2-depleted
clones ultimately resulted in caspase-mediated cell death because
expression of the caspase inhibitors p35 and DIAP1 suppressed
the elimination of NR2-depleted clones (Fig. 2c). Consistently, we
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observed cells positive for cleaved caspase staining (Supplemen-
tary Fig. 4b). Clonal depletion of NR2 (RNAi) sometimes lead to
distortions of the disc, which most likely was due to the large
amount of cell death (loser clone elimination) that occurs in these
discs.

Metabolic reprogramming and lactate production by losers.
We noticed that NR2-depleted clones appeared to have mito-
chondria that were less active and smaller in size (Fig. 3a, b). To
explore this further, we investigated whether JNK signalling
might influence mitochondrial function in NR2-depleted clones.
Intriguingly, we noticed prominent JNK-dependent phosphor-
ylation of Pyruvate Dehydrogenase (PDH), a key enzyme that
catalyses the conversion of pyruvate into acetyl-CoA to be con-
sumed in mitochondria under heterotypic (Fig. 3c and Supple-
mentary Fig. 5a–d) but not homotypic settings (Supplementary
Fig. 5e). Previous reports indicated that JNK signalling can lead to
activation of the mitochondrial Pyruvate Dehydrogenase Kinase
(PDK), which in turn can phosphorylate and inactivate PDH21.
Upon phosphorylation of PDH, pyruvate is no longer converted
to acetyl-CoA and therefore no longer available for the TCA in
mitochondria, leading to metabolic reprogramming22. To test the
importance of PDK-mediated phosphorylation of PDH (p-PDH)
for the elimination of NR2-RNAi loser clones we co-depleted
PDK in such clones. Interestingly, co-depletion of PDK fully
rescued the elimination of NR2 loser clones (Fig. 3d, e) and
abrogated the appearance of cleaved DCP1 positive cells (Sup-
plementary Fig. 5f). Likewise, Gal4-driven expression of PDH in
NR2 loser clones blocked their elimination (Fig. 3e and Supple-
mentary Fig. 6a). In both settings, surviving NR2-depleted clones
were negative for anti-p-PDH staining (Fig. 3d and Supplemen-
tary Fig. 6a). Local over-expression of PDH abrogated JNK sig-
nalling (Supplementary Fig. 6b), highlighting the presence of a
feedback regulatory loop. Together, these data indicate that PDK-
mediated phosphorylation and inactivation of PDH contributes
to the death of NR2-depleted loser clones.

Loser cells transfer their lactate to winners. Since inactivation of
PDH results in aerobic glycolysis, we assessed whether metabolic
reprogramming of NR2-RNAi loser cells might cause elevated
lactate production and secretion (Fig. 4a). To detect relative
differences in lactate levels in loser and winner cells, we used a

genetically encoded lactate reporter (UAS-lactate FRET)23, which
we expressed throughout the entire tissue (nub-Gal4, UAS-
lactate FRET). Clonal analysis was conducted via the LexA/lexO
binary system24. We found that NR2-RNAi loser clones had
substantially lower levels of intracellular lactate than surround-
ing wild-type cells or control clones (Fig. 4b). Importantly,
blocking lactate exchange via RNAi-mediated knockdown of
monocarboxylate transporter 1 (Mct1) rescued lactate reduction
in loser cells. Co-depletion of Mct1 not only prevented reduction
of lactate in loser clones but also caused significant lactate
accumulation (Fig. 4c). No such changes in lactate levels were
seen under non-competitive control conditions (Fig. 4c). Ex vivo
treatment with MCT inhibitors (MCTi) also led to a relative
increase of lactate in losers, while it caused a corresponding
decrease of lactate in surrounding winners (Fig. 4d). Feeding
L-lactic acid (LLA) to animals, like treating them with MCTi,
suppressed lactate reduction in NR2loser clones (Fig. 4e).
Together, these data are consistent with the notion that NR2-
depleted loser cells are metabolically reprogrammed to produce
and secrete lactate.

The transfer of lactate underpins cell competition. Next, we
tested the role of lactate exchange in loser cell elimination.
Because lactate feeding restored intracellular lactate levels in
NR2-RNAi clones, we tested whether this might block cell
competition. Intriguingly, lactate feeding inhibited the elimina-
tion of NR2-RNAi clones (Fig. 5a–c). Consistent with the notion
that lactate transport from NR2 losers to winners is important for
loser/winner relationships and cell competition, we found that
blocking loser cells to produce and transport lactate to winner
cells rescued loser cell elimination. Accordingly, concomitant
down-regulation of the lactate dehydrogenase ImpL3 in NR2
loser clones, like co-knockdown of the lactate transporter Mct1,
rescued the elimination of NR2 clones (Fig. 5b, c). This effect was
specific to MCT1, as silencing the putative monocarboxylate
transporters CG13907 or CG3409 within loser clones had no
effect on NR2 loser cell elimination (Fig. 5c). Pharmacological
inhibition of MCT1 also blocked cell competition and the
elimination of NR2 loser clones (Fig. 5b, c). Consistent with these
results, we observed elevated levels of MCT1 in NR2-RNAi cells
(Supplementary Fig. 7). Together, these data suggest that pre-
venting loser cells from transferring lactate to their neighbours
inhibits cell competition.

Fig. 1 Clonal depletion of NR2 results in the elimination of otherwise viable cells. a The N-methyl-D-aspartate receptor (NMDAR) is a hetero-tetrameric
receptor consisting of two NR1 subunits and two NR2 subunits. Linear representation of the modular amino-terminal domain (ATD, green), ligand-binding
domain (LBD, blue), transmembrane domains (red) and C-terminal domain (grey). Indicated are the names and position of the respective NR2-RNAi
constructs used in this study. b Schematic representation of the genetic systems used to study cell competition in the Drosophila wing pouch. Left panel:
Heterotypic genetic system with GFP marking loser clones. Right panel: homotypic genetic system with GFP marking non-competitive clones. c Heterotypic
clonal analysis. The indicated genes-of-interest (goi) were knocked down in GFP-marked clones as depicted in a (left panel, see Methods for details).
Clones are marked by GFP (green). Specific genotypes of the discs shown in these panels, and all subsequent panels, can be found in Supplementary
Table 1. Scale bar 100 μm. Experiments were repeated four independent times. d Quantification of the heterotypic competition assay. Diagram shows the
average occupancy of the indicated RNAi clones per wing pouch. e Homotypic clonal analysis. The indicated genes-of-interest were knocked down
throughout the wing pouch as described in a (right panel). GFP-marked clones represent non-competitive clones. Scale bar 100 μm. f Quantification of the
homotypic competition assay. Diagram shows the average occupancy of non-competitive clones in the indicated wing pouches where the respective gene-
of-interest were knocked down. g Relative rates of growth under hetero- versus homotypic clonal settings. h Heterotypic clonal analysis. NR2 was over-
expressed in GFP-marked (green) clones. Specific genotypes of the discs shown in these panels, and all subsequent panels, can be found in Supplementary
Table 1. Scale bar 100 μm. Experiments were repeated four independent times. i Quantification of the heterotypic competition assay. Diagram shows the
average occupancy of the indicated clones per wing pouch. j Quantification of the average size of wing pouches of the indicated genotypes. Error bars
represent average occupancy of the indicated RNAi clones per wing pouch ± SD. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.1 by Mann–Whitney two-
tailed nonparametric U-test. (d: NR2-RNAi GD3196 vs dlg1-RNAi (ns) P value: 0.5588, NR2-RNAi HMS02176 vs dlg1-RNAi (ns) P value: 0.0719, NR2 TW vs
dlg1-RNAi (ns) P value: 0.7751; j: UAS-NR2 vs. LacZ-RNAi (ns) P value: 0.31). n depicts the number of wing discs. Experiments were repeated three
independent times, unless stated otherwise. See Supplementary Table 1 for genotypes.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16070-6

4 NATURE COMMUNICATIONS |         (2020) 11:2228 | https://doi.org/10.1038/s41467-020-16070-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


N
R

2-
R

N
A

i
La

cZ
-R

N
A

i
N

R
2-

R
N

A
i

La
cZ

-R
N

A
i

Control

DAPI

WT LacZ-RNAi

NR2-RNAi; bsk-DN

c

Heterotypic clonal analysis

Heterotypic clonal analysis 

WT 

WT NR2-RNAi;LacZ-RNAi WT NR2-RNAi;grnd-RNAi

NR2-RNAi; hep-RNAiWT 

DAPI DAPI

DAPI

NR2-RNAi; p35, DIAP1WT 

Grindelwald

Hemipterous (Hep, JNKK)

Basket (JNK)

puckered, MMP1, u.a.

La
cZ

-R
N

A
i

La
cZ

-R
N

A
i

gr
nd

-R
N

A
i

U
A

S
-p

35
,

U
A

S
-D

ia
p1

U
A

S
-b

sk
-D

N

he
p-

R
N

A
i

P
ro

po
rt

io
n

of
 G

F
P

+
 c

lo
ne

s 
/ p

ou
ch

NR2-RNAi

0

0.2

0.4

0.6

0.8

**** ************

1423 9 11 12 27

goi:

:n

Control

a
Heterotypic assay 

GFP merge

Control

anti-pJNK DAPI

NR2-RNAi clones are eliminated in a JNK-dependent manner

JNK activation in clones depleted of NR2

b
Heterotypic assay

Phalloidin GFP anti-MMP1 Merge

MMP induction (JNK-dependent target gene)

Cell death

NR2 depletion (Loser)

NR2 depletion (Loser) 

NR2 depletion (Loser)
NR2 depletion
grnd depletion

NR2 depletion
bsk-DN overexpression

NR2 depletion
hep depletion

NR2 depletion
p35 and Diap1 overexpression

Fig. 2 NR2 loser clones are eliminated by apoptosis via the TNF>JNK signalling axis. a Confocal images of wing discs that were immunostained with anti-
phospho-JNK. Scale bar 50 μm. b Confocal images of wing discs that were immunostained with Phalloidin and anti-MMP1. Scale bar 50 μm. See
Supplementary Data Table for genotypes. c Heterotypic clonal analysis. Schematic representation of the TNF>JNK signalling pathway. The indicated genes-
of-interest (goi) were knocked down or misexpressed (UAS-bsk-DN or UAS-p35,UAS-Diap1) in GFP-marked clones as depicted in Fig. 1b (left panel). Clones
are marked by GFP (green). Scale bar 100 μm. Quantification of the heterotypic competition assay. Diagram (error bars) shows the average occupancy of the
indicated RNAi/over-expression clones per wing pouch ± SD. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.1 by two-tailed Mann–Whitney nonparametric
U-test. n depicts the number of wing discs. Experiments were repeated four independent times. See Supplementary Table 1 for genotypes.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16070-6 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2228 | https://doi.org/10.1038/s41467-020-16070-6 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Lactate-mediated metabolic coupling in Myc-supercompetition.
In mosaic wing imaginal discs, interactions between WT and Myc-
expressing cells cause them to acquire ‘supercompetitor’ behaviour
that increases their fitness and enables them to overtake the tissue
by killing their WT neighbours25,26. To address whether lactate-

mediated metabolic coupling might also influence loser/Myc-
supercompetitor relationships we first monitored the phosphor-
ylation status of PDH in competing cell populations. Under
control conditions, no p-PDH staining was apparent in WT cells
(Fig. 6a). However, prominent p-PDH staining was detectable in
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WT cells that were juxtaposed to Myc winner clones (Fig. 6a–c
and Supplementary Fig. 8a, b) but not homotypic controls (Sup-
plementary Fig. 8c). Accordingly, elevated intracellular lactate
level was detected in Myc cells juxtaposed to loser clones (Fig. 6d).
Consistent with the notion that loser cells produce and
transfer lactate to winners, we found that ex vivo treatment with
MCT inhibitors (MCTi), which blocks lactate exchange, led
to a time-dependent relative increase of lactate in losers, while
it caused a corresponding relative decrease of lactate in Myc
winners (Fig. 6e). This indicates that Myc supercompetitor cells
receive and consume lactate from losers. Accordingly, lactate
feeding suppressed Myc-mediated supercompetition (Supple-
mentary Fig. 8d, e). Moreover, we found that pharmacological
inhibition of MCT1 suppressed Myc supercompetition (Supple-
mentary Fig. 8d–g). Consistently, we found that Myc clones
seemed to have highly active mitochondria whose activity was
dependent on NR2 (Fig. 6f). Together, our data indicate that loser
cells produce and secrete lactate, while winner clones receive and
consume lactate. Our data are in agreement with recent studies4,27,
demonstrating that in vivo some cancer cells preferentially con-
sume lactate instead of generating lactate as a waste product28.

NR2 is required for the supercompetitior status of Myc cells.
To test the potential role of NR2 for the supercompetitor status of
Myc-expressing cells, we first examined the levels of NR2 in Myc
clones. As shown in Fig. 7a–e, Myc supercompetitor clones
exhibited higher levels of NR2 than surrounding wild-type
neighbours, both in the wing disc as well as fat body. Further-
more, endogenous variation in the expression levels of NR2
(monitored by NR2-Gal4; UAS-GFP) showed a correlation with
Myc expression levels (anti-Myc immunostaining) (Fig. 7f–g).
The upregulation of NR2 was competition-dependent, as in a
homotypic context, no difference in NR2 expression was observed
between Myc expressing cells (driven with hh-Gal4) and wild-
type cells (Supplementary Fig. 9).

To test whether NR2 contributes to the supercompetitor status
of Myc during cell competition, we depleted NR2 in Myc
supercompetitor clones. While clonal expression of Myc on its
own resulted in large clones, such Myc winners were eliminated
when NR2 was simultaneously knocked down in these clones
(Fig. 8a, b). Importantly, Myc-expressing NR2 clones were
eliminated only in heterotypic settings, when surrounded by
WT cells. Accordingly, tissue-wide (nub-Gal4) expression of Myc;
NR2-RNAi did not lead to the elimination of GFP+ non-
competitive clones, demonstrating that such Myc;NR2-RNAi
clones are intrinsically viable (Fig. 8c), but when surrounded by
WT cells are eliminated via cell competition and caspase-
mediated cell death (Fig. 8d). Importantly, under conditions
where NR2 was depleted tissue-wide, Myc clones no longer
acquired supercompetitor status. Accordingly, wild-type cells

(marked with GFP) were no longer eliminated by Myc clones
(Fig. 8e, f). Likewise, treatment with the NMDAR inhibitor
AP5 suppressed Myc supercompetition (Fig. 8g, h). These data
are consistent with the notion that NR2 contributes to the
supercompetitor status of Myc clones.

Discussion
The elimination of unfit cells via competitive interactions plays an
important role for the maintenance of tissue health during
development and adulthood1,2,29–31. Our data indicate that the
NMDA receptor NR2 influences the competitive behaviour of
epithelia cells and Myc supercompetitors in the Drosophila wing
disc. We find that genetic depletion of NR2 reprograms meta-
bolism via TNF-dependent and JNK-mediated activation of PDK,
which in turn phosphorylates and inactivates PDH. This causes a
shutdown of pyruvate catalysis and results in a switch to aerobic
glycolysis. Upon phospho-dependent inhibition of PDH, pyruvate
is reduced to lactate via LDH, and secreted32. While lactate exits
cells to avoid acidification, it can be recaptured and used as
carbon source by other cells, leading to metabolic compartmen-
talisation between adjacent cells. In normal physiology as well as
in murine and human tumours, lactate is an important energy
source that fuels mitochondrial metabolism4,27. For example,
lactate produced and secreted by astrocytes is transported to
neighbouring neurons where it is used as source of energy to
support neuronal function33. This is akin of the ‘reverse Warburg
effect’6, also named ‘two-compartment metabolic coupling’
model, where cancer-associated fibroblasts (CAFs) undergo
aerobic glycolysis and production of high energy metabolites,
especially lactate, which is then transported to adjacent cancer
cells to sustain their anabolic need6.

Our data suggest that the epithelial NMDA receptor is
responsible for fitness surveillance and to provide Myc clones
with supercompetitor status. Cells with decreased epithelial
NMDA receptor are metabolically reprogrammed to transfer
their carbon fuel to their neighbours. According to our model,
differential NMDAR signalling in adjacent cells triggers lactate-
mediated metabolic coupling, and underpins cell competition in
epithelia. Consistently, preventing loser cells from ‘transferring’
lactate to their neighbours, via inhibition of MCT1, Impl3 or
PDK, removes the fitness disparity and nullifies cell competition.
Likewise, exposure to elevated levels of systemic lactate, blocks
elimination of NR2 loser clones. This suggests that cell compe-
tition may be based on NMDAR-mediated metabolic coupling
between winners and losers. Importantly, this metabolic coupling
only occurs under competitive conditions. Consistently, NR2
losers are only eliminated if they are surrounded by cells with
functional NMDAR. This is evident as tissue-wide inhibition of
NMDAR by AP5, a selective inhibitor of NR2, blocks elimination
of NR2 loser clones in a heterotypic genetic setting.

Fig. 3 The TNF>JNK>PDK>PDH signalling axis reprograms the metabolism of NR2 loser clones. a Quantification of the heterotypic competition assay.
Diagram shows the average signal intensity of TMRM staining in RNAi clones and immediately adjacent wild-type cells per wing pouch ± SD. ****P <
0.0001, ***P < 0.001, **P < 0.01, *P < 0.1 by two-tailed Mann–Whitney nonparametric U-test. WT surrounding vs. NR2-RNAi clones ***P value: 0.0003). n
depicts the number of cells. See Supplementary Data Table for genotypes. b Quantification of the heterotypic competition assay. Diagram shows the
average signal intensity of MitoTracker Red staining in RNAi clones and immediately adjacent wild-type cells per wing pouch ± SD. ****P < 0.0001, ***P <
0.001, **P < 0.01, *P < 0.1 by two-tailed Mann–Whitney nonparametric U-test. (NR2-RNAi vs. WT P value: ***0.0007). n depicts the number of cells. See
Supplementary Data Table for genotypes. c Phospho-PDH-specific immunostaining of clones expressing genes-of-interest (goi) and UAS-LacZ. LacZ
expression is revealed by anti-βGal staining. Scale bar 25 μm. Experiments were repeated three independent times. d Heterotypic clonal analysis. The
indicated gene-of-interest (goi) was knocked down (UAS-PDK-RNAi) in GFP-marked NR2-RNAi clones, and stained for anti-phospho-PDH (ii). Clones are
marked by GFP (green). Scale bar 100 μm (i) or 50 μm (ii). e Quantification of the heterotypic competition assay. Diagram (error bars) shows the average
occupancy of the indicated RNAi clones per wing pouch ± SD. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.1 by two-tailed Mann–Whitney nonparametric
U-test. n depicts the number of wing discs. Experiments were repeated four independent times. See Supplementary Data Table for genotypes. f Schematic
representation of the metabolic reprograming of loser cells by the TNF>JNK>PDK>PDH signalling pathway.
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We find that NR2 is upregulated in Myc expressing clones and
that Myc cells co-opt epithelial NR2 to promote cell competition,
subduing their neighbouring wild-type cells that become re-
classified as ‘unfit’. Interestingly, Myc clones lose their super-
competitor status upon tissue-wide depletion of NR2. Under this

condition, WT cells are no longer eliminated and survive among
Myc supercompetitors. This indicates that NR2 underpins Myc-
induced supercompetition. Given that Myc is a major driver of
cancer cell growth, and is a hallmark of the disease in nearly seven
out of ten cases, blocking Myc’s function would be a powerful
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approach to treat many types of cancer. However, the properties
of the Myc protein itself make it difficult to design a drug against
it. Since the NMDAR signalling circuit is hijacked in many types
of human cancers34, and its expression level is associated with
poor patient survival, it is attractive to speculate that targeting
NMDAR may be a promising strategy to improve patient care.

Methods
Fly strains. The following strains were used: UAS-LacZ-RNAi35 (from M. Miura),
UAS-dlg1 GD41136-RNAi (Vienna Drosophila Resource Center, VDRC), NR2:Gfp36,
UAS-scribTRIP.GL00638-RNAi (Bloomington Drosophila Stock Centre, BDSC), UAS-
NR2TW-RNAi15 and UAS-NR2 (from A.S. Chiang), UAS-NR2TRIPJF02044-RNAi
(Bloomington Drosophila Stock Centre, BDSC), UAS-NR2TRIPHMS02012-RNAi

(BDSC), UAS-NR2TRIPHMS02176-RNAi (BDSC), UAS-NR2GD3196-RNAi (VDRC),
UAS-grndKK109939-RNAi (VDRC), UAS-hepGD26929-RNAi (VDRC), UAS-bsk-DN
(BDSC: 6409), UAS-bsk.B (WT bsk, BDSC: 9310), UAS-p35,UAS-DIAP1 (PMID:
10675329), pucE69(puc-LacZ)37, Pdk-RNAiTRiPGL00009 (BDSC: 35142), UAS-Pdh
(BDSC: 58765), UAS-lactateFRET23 (from B. Hudry), UAS-Mct1KK108618-RNAi
(VDRC), UAS-impL3GD31192-RNAi (VDRC), UAS-impL3KK110190-RNAi (VDRC),
UAS-CG13907KK107339-RNAi (VDRC), UAS-CG3409GD37139-RNAi (VDRC), UAS-
Myc (BDSC: 9674), nub-Gal4 (BDSC: 25754), hh-Gal4 (BDSC:45946 III), NR2
[MI09281-GFSTF.2] (BDSC: 60566), NR2-Gal4 (BDSC: 76705), nub-LexA (BDSC:
54415 and BDSC: 54963), LexO-NR2-RNAi (generated for this study), LexO-RFP-
RNAi (generated for this study), LexO-LacZ (BDSC: 7226), for the generation of
GFP-marked clones the following strains were used: y,w,hs-flp;;Act > CD2 >Gal4,
UAS-nEGFP38 (from T. Neufeld) (“>” denotes FRT sites) and Ubi-p63E > STOP >
Stringer(nEGFP) (BDSC: 32251), w; tub >myc y+ >Gal4, UAS-GFP/CyO
(from L. Johnston), w; tub>CD2>lexA, lexO-mCherry39, w; tub >myc > lexA,

Fig. 4 Loser cells transfer their lactate to winners. a Schematic model of NR2-dependent regulation of lactate-mediated metabolic coupling during cell
competition. b Heterotypic clonal analysis. The indicated genes-of-interest (goi) were knocked down. Lactate FRET signal was monitored in clones and in
surrounding cells in the wing pouch. Clones are outlined with dashed lines and marked by RFP (red). Scale bars 20 μm. For genotypes see Supplementary
Table 1. Experiments were repeated three independent times. c Heterotypic clonal analysis. The indicated genes-of-interest (goi) were knocked down.
Lactate FRET signal was monitored in clones and in surrounding cells in the wing pouch. Diagram shows the relative FRET signal intensity of the indicated
RNAi clones per wing pouch ± SD. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.1 by two-tailed Mann–Whitney nonparametric U-test. n depicts the
number of wing discs. For genotypes see Supplementary Table 1. d Heterotypic clonal analysis. Relative normalized lactate FRET signal intensity of clonal
cells and surrounding cells of the wing pouch was monitored for 10min following the administration of MCT inhibitor, ex vivo. Diagrams (error bars) show
the average of the relative FRET signal intensity of the indicated clones (control or NR2-RNAi) and that of immediately adjacent wild-type cells per wing
pouch, as a function of time ± SD. e Heterotypic clonal analysis. The indicated genes-of-interest (goi) were knocked down. Lactate FRET signal was
monitored in clones and in surrounding cells in the wing pouch. Lactate feeding and treatment with MCT inhibitor was conducted as outlined in the
Methods section. Diagram (error bars) shows the relative FRET signal intensity of the indicated RNAi clones per wing pouch, using the indicated conditions
± SD. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.1 by two-tailed Mann–Whitney nonparametric U-test. n depicts the number of wing discs. For
genotypes see Supplementary Table 1.
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Fig. 6 Lactate-mediated metabolic coupling occurs during loser and Myc supercompetition. a Confocal images of dissected wing pouches stained for
anti-phospho-PDH (reading out its inactivation). Scale bar 50 μm. Experiments were repeated three independent times. b Fluorescent intensities of
phospho-PDH (black) and GFP (green) are measured by ImageJ software at the yellow line. c Pearson’s correlation analysis of phospho-PDH and GFP.
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lexO-mCherry39, and yw; Act > y >UAS-LacZ (from B. Hudry). See Supplementary
Table 1 for genotypes.

Generation of lexO transgenic lines. In all, 21 bp short hairpin sequences tar-
geting NR2 (CACTTCAAGTTCACTATCCTA) or RFP (CGAGTTCATCTA-
CAAGGTGAA) were chemically synthesised and cloned into pJFRC19 vector.

Transgenes were inserted by phiC31-mediated recombination into the attp-9A
docking site on the 3rd chromosome (75A10) (BDSC: 9725).

Fly husbandry. Fly stocks were reared on a standard corn meal/agar diet (6.65%
corn meal, 7.15% dextrose, 5% yeast, 0.66% agar, supplemented with 2.2% nipagin
and 3.4 ml/l propionic acid). All experimental flies were kept at RT on a 12 h
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light/dark cycle. Fly crosses were set up and kept at RT. Flies were transferred to
fresh vials every day, and fly density was kept to a maximum of 15 flies per vial. For
clonal flip-out experiments (homotypic and heterotypic assays), flies were allowed
to lay eggs in fresh tubes for 3 h. In all, 48 h after egg laying (AEL) larvae were
incubated at 37 °C for 10 min to induce transgene expression. Following tem-
perature shift, animals were kept at RT. Imaginal wing discs were dissected 48 (for
ex vivo lactate FRET experiments) or 72 h after heat-shock-mediated induction of
clones.

Homotypic and heterotypic cell competition assays. For the homotypic assays,
hsFlp;nub-Gal4;ubi-p63 > STOP > Stringer(nEGFP) flies were crossed to flies car-
rying the respective UAS-based transgenes. nub-Gal4 drives expression of the UAS-
transgene in the entire wing pouch. Heat shock generates nEGFP-positive non-
competitive clones, which have the same genotype as the surrounding wing pouch.
For heterotypic assays, hsFlp;;act>CD2>Gal4,UAS-nEGFP or hsFlp; tub>CD2>lexA,
lexO-mCherry flies were crossed to flies carrying the respective UAS- or lexO-based
transgenes. Heat shock generates flip-out clones, removing the >CD2> cassette,
which allows expression of the UAS-based transgenes. Such clones are marked by
nEGFP or mCherry expression, respectively. Heterotypic supercompetition assays:
based on a similar principle, hsFlp; tub>myc y+ >Gal4, UAS-GFP/CyO or hsFlp;
tub>myc >lexA, lexO-mCherry stocks were crossed to UAS- or LexO-based trans-
genes and heat shock generates flip-out clones, removing the tub>myc y+> or
>myc>cassettes, respectively.

Immunohistochemistry. Larval tissues were stained using standard immunohis-
tochemical procedures. Briefly, discs were dissected in PBS, fixed at room tem-
perature for 20 min in 3.7% formaldehyde/PBS and washed in 2% Triton-X100/
PBS. All subsequent incubations were performed in 2% Triton X-100/PBS at 4 °C.
Samples were mounted either in Vectashield or Vectashield containing DAPI
(Vector Labs). The following primary antibodies were used: mouse anti-dNR215

(1:100, from Ann-Shyn Chiang, mouse anti-dlg1 (1:50, 4F3, DSHB, University of
Iowa, Iowa City, IA, USA), mouse anti-GFP (11814460001, Roche), mouse anti-
MMP1 (1:50, 5H7B11, DSHB, University of Iowa, Iowa City, IA, USA), rabbit anti-
cleaved DCP1 (Asp216) (1:200,Cell Signaling), mouse p-JNK (1:100, 9255,Cell
Signaling Technology Inc., Danvers, MA, USA), PHA-555 (Phalloidin-555,
A34055, Invitrogen/Molecular probes), mouse polyclonal anti-MCT1 (1:100,
ab90582, Abcam), rabbit polyclonal anti-Myc (1:100, d1-717, sc-28207 Santa Cruz
Biotechnology), rabbit polyclonal anti-p-PDHE1 (1:200, Pyruvate Dehydrogenase
E1-alpha subunit (phospho S293), ab92696, Abcam). Note, the phosphorylation
site surrounding S296 of human PDHE1 is conserved in Drosophila PDHE1, which
is encoded by lethal(1)G0334 (CG7010) (e-value 5e-36, query coverage of 99%).
Fluorescent secondary antibodies (1:2000, FITC-, Cy3- and Cy5-conjugated) were
obtained from Jackson Immunoresearch.

TMRM and MitoTracker Red stainings. Mitochondria were stained with 500 nM
Tetramethylrhodamine Methyl Ester (TMRM) for 20 min. TMRM staining was
recorded with excitation at 543 nm and a 560–615 nm band-pass emission filter.
MitoTracker Red CMXRos (M7512, LifeTechnologies) was used at 300 nM in PBS
1% Tween 20 for 10 min.

Lactate feeding and treatments with inhibitors. Following heat shock-mediated
clone induction, larvae were placed on standard food containing L-lactate (30 mM,
71718-10G, Sigma Aldrich), the NR2 antagonists AP5 (5 μM, A8054, Sigma
Aldrich), PEAQX tetrasodium hydrate (0.015 μM, 1999, Sigma Aldrich),
Ifenprodil-tartarate salt (15 μM, I2892, Sigma Aldrich) or the MCT1 inhibitor AR-
C155858 (100 nM, Bio-Techne (Tocris)) for 48 h. For ex vivo experiments with
dissected wing discs, MCT1 inhibitor was added in a final concentration of 10 nM
into M16 Medium (M7292, Sigma Aldrich).

Lactate measurements using FRET-based metabolite sensor. Imaging experi-
ments were performed using dissected imaginal wing discs. A genetically encoded
lactate reporter (UAS-lactate FRET)23, was co-expressed within clones expressing
gene-of-interest (goi) or UAS-lacZ-RNAi. Alternatively, the sensor was expressed

tissue wide, under the control of nubbin (nub-Gal4 >UAS-lactate FRET). In the
latter case, clonal analysis was conducted via the lexA/lexO binary system24, which
allowed side-by-side comparison of the lactate FRET signal in clones expressing the
lexO-goi or lexO-LacZ and surrounding wild-type cells. The dissected tissues were
placed into an open μ-slide (chambered coverslip, ibidi #80826). Fluorescent
images were acquired using a ×20, ×40 or ×63 Zeiss objectives on a Zeiss 780
confocal microscope. An Argon laser and MBS458/514 beamline splitter were used
with the following filter sets: excitation 458 nm, emission 485-526 nm (mTFP
channel); excitation 458 nm, emission 526–625 nm (FRET channel) and excitation
514 nm, emission 526–625 nm (Venus channel). For data analysis, regions-of-
interest (ROI) were delimited and the average intensity of both mTFP and Venus
channels over each ROI were calculated. As the FRET (from mTFP to Venus)
inversely correlates, with lactate concentration, to obtain a signal that positively
correlates with lactate concentration, the signal intensity of mTFP was divided by
Venus signal intensity.

Quantifications. Imaginal discs were imaged at ×20 magnification. Seven Z-
stacks were taken for each disc. After imaging, channels were split and max-
imum Z-projection was analysed. Using DAPI channel images, a line was drawn
around the pouch area and measured using ImageJ. The sum areas of GFP-
positive clones were measured using the GFP channel. Threshold was adjusted
with the Huang auto-thresholding algorithm to subtract background. The area
above the threshold was analysed. Data were collected from at least three
independent experiments, and 10 wing discs per genotype and/or condition were
analysed, unless stated otherwise. The relative occupancy of GFP-positive clones
was quantified, and expressed as proportion of GFP-positive clones per pouch
(±S.D.).

Statistics and data presentation. All statistical analyses were carried out using
GraphPad Prism7. Comparisons between two genotypes/conditions were analysed
with the Mann–Whitney nonparametric two-tailed rank U-test or Pearson’s cor-
relation test. Confocal images belonging to the same experiment, and displayed
together, were acquired using the same settings. For the purpose of visualization,
the same level and channel adjustments were applied using ImageJ. Of note, all
quantitative analyses were carried out on unadjusted raw images or maximum
projections. Values are presented as average ± standard deviation (S.D.), P-values
from Mann–Whitney U-test (non-significant (ns): P > 0.05; *: 0.05 > P > 0.1; **:
0.1 > P > 0.01; ***: 0.01 > P > 0.001;****: P > 0.0001 and from Pearson’s analysis
α= 0.05.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
the article and its Supplementary Information files or from the corresponding author
upon reasonable request.

The original data underlying the following figures are provided as a Source Data file:
Figs.1d, 1f, 1g, 1i, 2c, 3a, b, 3e, 4c–e, 5c, 6b–f, 7e, 8b, c, f, h and Supplementary Figs. 3, 5,
7c–e, 8d, e, 8f, g.
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