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25 ABSTRACT

26 Childhood acute lymphoblastic leukaemia (ALL) with MLL rearrangement (MLL-r) is 

27 an aggressive disease still associated with a high mortality rate.  Recent investigations 

28 have identified co-operating mutations in the RAS pathway and although the functional 

29 consequences of these mutations are not yet fully understood, aberrant regulation of 

30 RAS pathway signalling at both transcriptional and protein levels is observed.  Studies 

31 investigating the efficacy of specific inhibitors of this pathway, e.g. MEK-inhibitors, 

32 have also achieved encouraging results.  In this context, this mini-review summarizes 

33 the available data surrounding MLL-r infant ALL with RAS mutation in relation to other 

34 well-known features of this intriguing disease.
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44 1. Introduction

45 It is no longer a surprise when a new study reports that children with the most common 

46 type of childhood cancer, acute lymphoblastic leukaemia (ALL), have a survival rate of 

47 85% or more [1].  Indeed the survival rates have increased for girls and boys of varied 

48 ethnic groups and age groups except in infants (≤1 year-old).  Among these very young 

49 children, even those enrolled in the most recent and specific therapeutic protocols, only 

50 ~50% achieve long-term event-free survival (EFS) [2].  The main cause of this dismal 

51 outcome in infants with ALL (iALL) is the high prevalence of rearrangement of the 

52 mixed-lineage leukaemia gene (MLL, also known as KMT2A).  The presence or absence 

53 of an MLL rearrangement (MLL-r) is paramount both to provide a realistic prognosis 

54 and to determine a high-risk treatment strategy.  These features have been recognised 

55 for many years but, unfortunately, have not yet been converted into significantly better 

56 therapeutic strategies and improved outcomes.  Recent studies consistently show that 

57 KRAS and/or NRAS mutations (RASmut) are recurrent within patients with MLL-r, with 

58 MLL-AF4+ B-cell precursor ALL (BCP-ALL) being the most targeted subset.  This is 

59 of particular translational interest since the RAS signalling pathway offers an alternative 

60 therapeutic strategy for MLL-r ALL patients.

61

62 2. MLL-associated childhood acute lymphoblastic leukaemia

63 Childhood ALL characterized by MLL-r is a disease associated with aggressive clinical 

64 features.  It is remarkable that 80% of iALL cases harbour an MLL-r, whereas MLL-r is 

65 only occasionally observed in older children with ALL (~5%) [3-5].  The genetic lesion 

66 leads to an extremely aggressive subset of leukaemia, frequently associated with early 

67 age onset, high white blood cell count (WBC), hepatosplenomegaly and central nervous 
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68 system (CNS) involvement.  While children diagnosed with other subtypes of 

69 leukaemia experience good prognosis (80-90% overall survival rates, OS), children with 

70 MLL-r present a high mortality rate (~50%) [2, 6].  Worldwide, this rare group of 

71 patients remains a major challenge for paediatric oncology.

72

73 2.1.  A spectrum of MLL rearrangements in childhood acute lymphoblastic leukaemia

74 Chromosomal abnormalities involving the MLL gene are very heterogeneous including 

75 reciprocal translocations, complex rearrangements, internal duplications, inversions and 

76 deletions, among others.  The majority of the rearrangements are cytogenetically 

77 unbalanced [7, 8].  To date, more than 80 different direct MLL-r and about 120 

78 reciprocal MLL-r have been reported and characterized at the molecular level [8].  

79 Despite this broad cytogenetic spectrum, the most frequent partners in childhood ALL 

80 are limited to three: AF4/AFF1, AF9/MLLT3 and ENL/MLLT1, with the MLL-AF4 

81 fusion being associated with a very early age at diagnosis, pro-B ALL phenotype and 

82 very poor outcome.

83 The distribution of chromosomal breakpoints has also been the subject of 

84 investigation.  The breakpoint cluster region located between MLL exon 9 and intron 11 

85 is responsible for 93.5% of breaks.  The localization of breakpoints varies according to 

86 age, type of leukaemia and MLL partner gene [9], indicating that the underlying 

87 molecular mechanisms that drive the rearrangements are also different.  Of note, we 

88 previously showed that the OS of children with breakpoints in MLL intron 11 was worse 

89 compared to other locations [6].

90
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91 2.2.  The lack of multiple genetic abnormalities in MLL-r ALL

92 Studies evaluating iALL have demonstrated that twin pairs with a monochorionic 

93 placenta and concordant leukaemia share identical genomic MLL-r [10, 11].  In non-

94 twined siblings, the genomic breakpoint sequence is detectable in neonatal blood spots 

95 [12].  Collectively, these findings provide strong evidence for an in utero origin of this 

96 disease and also, given the short latency period, suggest that MLL-r may be the only 

97 required genetic hit necessary to induce overt leukaemia or that very few additional 

98 mutations are required.  In agreement, data obtained from genome-wide studies has 

99 consistently shown that secondary genetic alterations are rarely found in MLL-r ALL 

100 [13-15].  More recently, this deficit of additional mutations, when compared to other 

101 types of human cancer, led to the conclusion that iALL with MLL-r display one of the 

102 lowest somatic mutation rates [7].  This frank discovery supports the repeated assertion 

103 that this single genetic lesion is sufficient for malignant transformation [16, 17].

104

105 3. A renaissance for RAS mutation investigation in MLL-r leukaemia

106 The genes that encode RAS proteins have been recognised as powerful drivers of cancer 

107 for more than three decades.  The first screening of RASmut in MLL-r ALL samples 

108 dates from 1998, when Mahgoub and colleagues hypothesized that this pathway might 

109 play a role in this leukaemia subtype.  Despite an analysis of 13 samples, RASmut were 

110 absent in that series [18].  The debate remained subdued in the literature until 2006, 

111 when Liang et al. reported that 10 of 20 MLL-r ALL samples harboured a RASmut [19].

112 Despite the very low frequencies of copy number abnormalities in MLL-r 

113 leukaemia observed through genome-wide analysis [13, 15], consecutive experimental 

114 models showed that MLL fusion proteins synergistically cooperate with activation of 
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115 RAS in leukaemogenesis [20-22].  These data helped renew the search to determine the 

116 frequency of RASmut in MLL-r ALL.  Driessen et al. screened 109 iALL samples for 

117 NRAS and KRAS and found that the mutations were significantly more frequent (23.7% 

118 versus 7.8%) in infants with MLL-AF4 [23].  Similarly, Prelle and colleagues 

119 investigated 80 paediatric leukaemia samples and observed similar results, finding 

120 RASmut in 26% of MLL-AF4 cases and in 10% of patients with other MLL-r [24].  In 

121 conjunction these studies led to important conclusions regarding frequency of RASmut 

122 in MLL-r ALL: that they are recurrent and the mutations are especially associated with 

123 the MLL-AF4 subset.

124

125 3.1.  Frequencies of RAS mutations obtained through next-generation sequencing

126 The aforementioned studies used conventional Sanger sequencing to determine the 

127 frequency of RASmut in MLL-r leukaemia.  The advent of next generation sequencing 

128 (NGS) technologies has allowed the delivery of massive and accurate genome 

129 information [25].  Taking advantage of such revolutionary technology, Andersson et al. 

130 performed a detailed paired-end genome-wide analysis on diagnostic and matched 

131 remission samples of 22 iALL with MLL-r.  They observed that 100% of the mutant 

132 alleles in tyrosine kinase-phosphoinositide 3-kinase (PI3K)-RAS pathways were 

133 expressed.  The authors confirmed the data in a validation cohort to show that 16 of 47 

134 (34%) infant MLL-r cases and 11 of 23 (48%) cases positive for MLL-AF4 harboured an 

135 activating mutation in RAS pathway genes [7].

136 In 2016, Trentin and colleagues also used NGS technology to screen RASmut in 

137 MLL-AF4 positive paediatric and iALL patients, the most frequently targeted subgroup.  

138 Using ultra deep sequencing, they described RASmut in 63.9% diagnostic samples of 
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139 patients with MLL-AF4 positive ALL [26].  To date, this is the highest reported 

140 frequency of RASmut in MLL-r cases, and this result is fully explained by the sample 

141 cohort (restricted to MLL-AF4 subgroup) as well as the sensitivity of the sequencing 

142 method applied.  Nevertheless, 36 out of 49 reported mutations (73.5%) were present in 

143 minor clones (mutant allele frequency, MAF < 10%).

144 In summary, the frequency of RASmut in infants and children with MLL-r BCP-

145 ALL varies from 25-60% of cases, depending on selection criteria and sequencing 

146 method applied.  A consensual assumption is that this prevalence is markedly increased 

147 in patients with the MLL-AF4 fusion (Figure 1).  Despite these differences, the striking 

148 conclusion is that this pathway is indeed an important target of disruption in patients 

149 with MLL-r ALL.

150

151

152 Figure 1. Frequency of KRAS/NRAS mutations in cases with any MLL-rearrangement or 

153 cases with the specific MLL-AF4 gene fusion.  The frequencies are shown according to the 

154 screening method.  When analysed by Sanger sequencing, RAS mutations are expected in 10% 

155 or 25% of cases with MLL-r or MLL-AF4, respectively.  Using next generation sequencing, RAS 

156 mutations are expected in 35% or 50% of cases with MLL-r or MLL-AF4, respectively.
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157

158 3.2.  The subclonality of RAS mutations

159 Although using different design strategies, the studies that addressed the question 

160 whether RASmut in MLL-r ALL were either clonal or subclonal arrived at the same 

161 conclusion: the mutations are present in minor clones at diagnosis.  Driessen et al. 

162 sequenced PCR-amplified DNA fragments cloned from three patient samples and found 

163 that in all of them the percentage of mutated fragments was lower than 50%, suggesting 

164 the subclonal nature of the mutations [23].  Using pyrosequencing, a quantitative 

165 sequencing method, we observed that in 19 out of 20 MLL-r iALL cases the percentage 

166 of RASmut alleles at diagnosis was lower than expected for a clonal alteration [27].  In 

167 concordance, the observation that 65% of the activating tyrosine kinase-PI3K-RAS 

168 mutations found in 22 MLL-r cases had MAFs <30% led Andersson et al. to conclude 

169 that these mutations were present in minor clones.  The authors also suggested that an 

170 activating mutation in RAS signalling pathways is not crucial for the establishment of 

171 the leukaemia, but rather contributes to growth advantage.  Of note, regardless of the 

172 MAFs, all cases that were also analysed by RNA-seq expressed the activating mutant 

173 allele [7].

174 Irrefutable data about clonality came from studies that evaluated matched 

175 diagnosis and relapse samples and revealed a highly heterogeneous pattern of clonal 

176 evolution, with some cases showing the same RAS mutation at diagnosis and relapse 

177 and other cases showing gain or loss of RAS mutations at relapse [7, 26, 28, 29].  This 

178 profile supports the subclonal nature of RAS mutations and suggests that the treatment 

179 pressure can either positively or negatively select the RAS mutated clone at relapse.

180

181 3.3.  Contribution of RAS mutations to MLL-driven leukaemogenesis
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182 Although the functional consequences of RAS mutations in MLL-r patients, especially 

183 those only present in minor clones, are not yet fully understood, functional studies have 

184 been conducted in the past few years that attempt to evaluate the role played by RASmut 

185 in MLL-driven leukaemias.  It has been shown that these mutations result in over 

186 expression of RAS pathway signalling at both transcriptional and protein levels and that 

187 a potential collaboration between those two abnormalities may strongly contribute to the 

188 leukaemogenic process.

189 In that context, the transcription of Elk-1, a major effector of Ras signalling, was 

190 activated by the MLL-AF4 family fusion oncoproteins: MLL-AF4, MLL-LAF4 and 

191 MLL-AF5q31.  Interestingly, when either the MEK-inhibitor U0126 or a dominant 

192 negative mutant of Ras (HRas S17N) were used, this transcriptional activation was 

193 abrogated.  This data strongly links activation of Ras signalling to MLL-r 

194 leukaemogenesis [20].

195 Another investigation using a xenograft model with MLL-fusion mediated 

196 leukaemogenesis evaluated the cooperation between MLL-fusions (MLL-SEPT6 and 

197 MLL-ENL) and RAS mutations (NRAS G12V).  In summary, the authors suggested that 

198 the crosstalk between MLL-r and RASmut may occur, at least partially, due to the 

199 aberrant expression of Hoxa9, a critical and direct MLL transcriptional target [21].

200 Similarly, by developing an oncogenic aggressive murine model, Tamai et al. 

201 were able to generate an MLL-AF4+ KRas G12D transgenic mouse that developed B-

202 cell lymphoma and/or leukaemia in a 6-month latency period that resembled MLL-r 

203 leukaemia in humans.  Corroborating the study outlined above, leukaemogenesis was 

204 most likely accelerated by Hoxa9 overexpression, as a result of MLL-AF4 and KRasmut 

205 cooperation [22].
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206 More recently, it was observed that KRAS G12V either alone or combined with 

207 MLL-AF4 was unable to initiate leukaemia, however did enhance haematopoietic 

208 engraftment in immunodeficient mice and increased significantly the ability of cord 

209 blood-derived cells to infiltrate the CNS, both hallmarks of MLL-AF4+ BCP-ALL.  

210 Altogether, their results indicate that KRAS plays an important role in MLL-AF4-driven 

211 leukaemias maintenance, but not in disease initiation [30].

212

213 3.4.  Prognostic value of RAS mutations in patients with MLL-r ALL

214 The occurrence of MLL-r is the strongest prognostic marker to independently predict 

215 dismal outcome in iALL, the EFS rate in this leukaemia subgroup being considerably 

216 poor, ~28-36% [2].  Besides MLL-r, other molecular markers, such as RASmut, have 

217 been selected as prognostic predictors in infants.

218 In 2013, Driessen and colleagues showed that RASmut iALL cases exhibit a high 

219 WBC at diagnosis and glucocorticoid resistance in vitro, two factors linked to disease 

220 aggressiveness.  Moreover, in terms of 5-year OS and EFS, the presence of RASmut was 

221 independently associated with dismal prognosis [23].  A year later, our own group 

222 published data ratifying the prognostic value of RASmut in a Brazilian iALL series of 

223 cases.  Although not independently, the presence of RASmut was a predictor of adverse 

224 outcome.  Moreover RASmut was also found to be associated with the occurrence of 

225 MLL-AF4 translocation (OR 5.78; 95% CI 1.00 – 33.24) in those cases [31].

226 Another study defining the genomic landscape of iALL with MLL-r, observed a 

227 trend toward poorer OS and EFS in patients carrying RASmut, however in contrast to 

228 previous investigations, they found no statistical significance for this data. [7].  One 
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229 potential critique is the number of patients included in the survival analyses, only 33 

230 and 31 cases were evaluated for 10-year OS and EFS, respectively.  Even so, it is 

231 important to highlight that other studies also with small cohorts were still able to 

232 observe statistically significant results on their survival analyses.

233 The role of RAS mutations on MLL-r patients prognosis has also been recently 

234 evaluated by Trentin et al., who showed that, in agreement with previous reports, 

235 patients harbouring RAS mutations had worse outcomes than those with RAS wild-type 

236 [26].  Similar to the study mentioned above, the number of infant patients included was 

237 fairly small (n=22) and no significance was found.

238

239 4. Other high-risk groups with RAS mutations (hypodiploid ALL, iAMP21, T-

240 ALL)

241 In addition to MLL-r iALL, there are other high-risk groups of ALL in which RASmut 

242 are recurrently found and we discuss here three entities: hypodiploid ALL, 

243 intrachromosomal amplification of chromosome 21 (iAMP21) and T-cell acute 

244 lymphoblastic leukaemia (T-ALL).

245 By definition, hypodiploid ALL have fewer than 44 chromosomes and can be 

246 subdivided into three categories according to the number of chromosomes present: near-

247 haploid (24–31 chromosomes), low-hypodiploid (32–39) and high-hypodiploid cases 

248 (40–43 chromosomes).  Patients exhibiting 44-45 chromosomes are classified as near-

249 diploid and, unlike the other categories of hypodiploid ALL, do not present a poor 

250 prognosis.  Overall, the genetic profile of hypodiploid ALL is still poorly defined, but it 

251 is well recognised that this leukaemic subtype is characterised by whole-chromosomal 

252 losses and extremely sombre outcomes [32].  Considering the paucity of studies 
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253 evaluating the genetic basis of hypodiploid ALL, Holmfeldt et al. delineate the genomic 

254 landscape of 124 paediatric patients diagnosed with this high-risk subtype.  By using 

255 next generation sequencing, they described activation of both RAS- and PI3K-signalling 

256 pathways as the main molecular events in these cases.  Particularly regarding near-

257 haploid and low-hypodiploid subgroups, they showed a considerable recurrence of 

258 KRAS and NRAS abnormalities (copy number alterations and mutations) in 17.6% of the 

259 hypodiploid cases, with NRAS being the most affected gene.  As expected, mutations 

260 were found mainly in codons 12 and 13 of both RAS genes.  Evaluating the impact of 

261 those RAS abnormalities on patient survival, no significant differences were observed 

262 when comparing patients with and without mutations [33].

263 iAMP21 accounts for 2% of paediatric ALL and was identified more recently as 

264 a distinct cytogenetic subgroup characterised by the presence of additional copies of 

265 RUNX1.  In fact, the international classification of iAMP21 is accepted as the presence 

266 of 3 or more extra copies of RUNX1 on a single abnormal chromosome 21, i.e. 5 or 

267 more RUNX1 signals per cell.  Patients with iAMP21 have a very dismal outcome when 

268 treated with standard therapy and the relapse rate is very high.  Recently however, 

269 protocols such as the United Kingdom acute lymphoblastic leukaemia protocol 

270 (UKALL), has been treating those patients in the more intensive/high-risk treatment 

271 arm (in spite of other risk factors) and the initial results seem very promising [34].  The 

272 mutational landscape of the RAS pathway was also recently investigated in a series of 

273 44 diagnostic samples of iAMP21 ALL.  The study revealed a very high frequency 

274 (60%) of RAS pathway abnormalities (mutations involved NRAS, KRAS, FLT3, 

275 PTPN11, BRAF and NF1).  Moreover these mutations were genetically heterogeneous 

276 and resulted in some clonal heterogeneity, with mutations co-existing within a gene or 
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277 individual patient sample in different patterns.  Unfortunately, the prognostic impact of 

278 those RAS mutations was not evaluated in these series of iAMP21 cases [35].

279 T-ALL is an aggressive haematological malignancy characterised by high WBC 

280 count, presence of mediastinal mass, CNS involvement, ~20% relapse rate and older 

281 age for the paediatric group.  A significant number of cases fall into the high-risk group 

282 [36, 37].  In terms of genomic profile, NOTCH1 mutations and CDKN2A/B deletions 

283 are the main abnormalities affecting more than 50% of the T-ALL cases.  In light of 

284 currently available genomic data, it is possible to estimate that for each T-ALL case ~10 

285 genomic abnormalities are present, however the contribution and the role of all these 

286 lesions for the pathogenesis and prognosis of T-ALL is not yet fully understood [38].  

287 The occurrence of RAS mutations in T-ALL has been reported in the literature for the 

288 last few decades [39], especially in the early T-cell precursor ALL (ETP-ALL) 

289 subgroup [40].  However, in the past, most studies were experimental and used murine 

290 models to investigate the role of RAS mutations in leukaemogenesis [41].  More 

291 recently, Oshima et al. aiming to identify the mutational landscape of relapsed ALL 

292 observed a high frequency of RAS pathway (NRAS, KRAS and PTPN11) mutations 

293 (44%).  Particularly for the T-ALL cases they found 12% of KRAS mutations and 27% 

294 of NRAS in those relapse samples.  They also revealed that ALL relapse emerges from 

295 subclonal populations sharing only part of the mutations present in the dominant 

296 leukaemic clone found at diagnosis [29].  A recent study attempting to identify genes 

297 that could predict the ultra-high-risk group of relapse T-ALL, showed that RAS 

298 mutations were significantly enriched in this subgroup.  Moreover, all relapsed patients 

299 with RASmut evolved to death, resulting in a significantly worse EFS in this particular 

300 subgroup (p=0.0059) [42].
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301 In summary, a variety of studies investigating different high-risk ALL subgroups 

302 showed that mutations affecting the RAS pathway are major genetic events present in a 

303 significant fraction of high-risk cases.  Despite the fact that some studies, including our 

304 own in paediatric T-ALL [39], failed to show RASmut either as an independent 

305 prognostic factor or as OS and EFS statistically significant results, we should not rule 

306 out the importance of these RAS mutations in the leukaemogenesis of these aggressive 

307 subsets of ALL.

308

309 5. New therapeutic strategies using targeted therapy

310 Treating aggressive leukaemias classified as high-risk cases, such as MLL-r iALL, 

311 remains a major challenge in paediatric haematology worldwide, therefore the 

312 development of new therapeutic strategies is imperative.  In this regard, many 

313 international collaborative efforts have been initiated and are currently in progress 

314 through the use of novel targeted therapies based on iALL molecular biology.

315 Particularly for MLL-r iALL, currently there are four main lines of new targeted 

316 therapy under investigation: Clofarabine, FLT3-inhibitors, epigenetic modifiers and 

317 MEK-inhibitors.  Clofarabine is a nucleoside analogue and, since infant leukaemic cells 

318 are known to be sensitive to this class of drug, its implementation in the current 

319 leukaemia protocols might prove to be beneficial in the treatment of those high-risk 

320 patients.  FLT3-inhibitors, such as Lestaurtinib (CEP-701), Midostaurin (PKC412) and 

321 Quizartinib (AC220), act against the high-levels of FLT3 expression.  The inclusion of 

322 these inhibitors in the clinic could potentially benefit 80% of MLL-r iALL cases, since 

323 this is the frequency of patients that exhibit FLT3 overexpression.  Epigenetic modifiers 

324 seem to be the most appealing class of drugs to treat MLL-r iALL, since this leukaemia 
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325 subtype is characterised by globally aberrant methylation profiles.  These modifiers can 

326 be subdivided into 4 classes: demethylating agents (Azacitidine, Decitabine), histone 

327 deacetylase inhibitors (Vorinostat, Panobinostat), DOT1L-inhibitor (EPZ-5676) and 

328 BET protein inhibitors (OTX-015).  A promising international collaborative trial for 

329 iALL involving the use of epigenetic modifiers is underway and will involve the 

330 Interfant, COG, and JPLSG groups [43].

331 MEK-inhibitors are also a new class of drugs that have great potential to be used 

332 in combined therapy approaches in MLL-r iALL patients that harbour RAS pathway 

333 abnormalities (Figure 2).  Currently the following MEK-inhibitors are being tested in 

334 advanced stages of clinical trial: Trametinib (GSK1120212), Pimasertib 

335 (MSC1936369B) and Selumetinib (AZD6244, ARRY-142886).  In theory these types 

336 of inhibitor should result in less “off target” activity, inhibiting the pathway despite the 

337 mechanism of upstream activation.  Data coming from in vitro and in vivo models of 

338 both FLT3-mutant and RAS-mutant acute leukaemias have shown very encouraging 

339 results [44, 45].  In 2016, Kerstjens et al. investigated the effects of MEK-inhibitors in 

340 MLL-r iALL cells carrying RAS mutations.  They showed that after treatment with 

341 Trametinib, Selumetinib and MEK162 those cells exhibited an increased apoptosis and 

342 enhanced prednisolone sensitivity.  At first, one may argue that considering the 

343 subclonal nature of RASmut, targeting of minor clones could be a questionable 

344 approach.  However, they have also observed that the use of MEK inhibitor enhances 

345 overall sensitivity to prednisolone treatment of both RAS wild-type and RASmut MLL-r 

346 ALL cells [46].  Additionally, three other studies have observed the same sensitizing 

347 effect of MEK inhibitors in the response to glucocorticoids (methylprednisolone, 

348 prednisolone and dexamethasone) [47-49].
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350 Figure 2.  Schematic representation of RAS signalling pathway showing the use of MEK-

351 inhibitors.  The occurrence of RAS mutations results in abnormal activation of RAS pathway 

352 proteins, such as MEK1/2, which can be targeted by specific inhibitors (Trametinib, Pimasertib 

353 and Selumetinib).

354

355 6. Closing remarks

356 Infant ALL is a rare entity but the aggressive nature and high mortality rate of the 

357 disease, especially for those cases with MLL-r, challenge both researchers and clinicians 

358 to unravel its complex molecular biology.  RAS mutations in infants and children with 

359 MLL-r BCP-ALL play an important role in the maintenance of disease and despite 

360 intensive current treatment regimens the majority of patients with iALL still relapse and 

361 die.

362 The latest international and collaborative studies investigating the efficacy of 

363 specific inhibitors of the RAS pathway are already producing encouraging results.  We 
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364 hope that in the near future these combined therapeutic approaches will act 

365 synergistically both to increase survival rates and reduce treatment-related toxicities.

366

367 Conflict of interest

368 The authors declare no conflict of interest.

369

370 Transparency document

371 The Transparency document associated with this article can be found, in the online 

372 version.

373

374 Acknowledgements

375 MBM and ME would like to thank Dr Maria S. Pombo-de-Oliveira, Head of the 

376 Paediatric-Haematology Oncology Program at INCA-Brazil, who helped to introduce 

377 them to childhood leukaemia.  ME is very grateful to Prof Rolf Marschalek, who has 

378 provided constructive advice on this scientific topic.  The authors apologise for the 

379 inevitable omissions due to space restriction in this mini-review.

380 MBM is supported by the Ministry of Health (INCA-Brazil).  AMF is supported 

381 by The Institute of Cancer Research (ICR), London.  ME is supported by Brazilian 

382 National Counsel of Technological and Scientific Development-CNPq (PQ-

383 2014#304142/2014-0) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do 

384 Estado do Rio de Janeiro-FAPERJ-JCNE (E_26/201.539/2014) research scholarships.

385



BBA Reviews on Cancer - Mini-Review

18

387 References

388 [1] C.H. Pui, D. Pei, D. Campana, C. Cheng, J.T. Sandlund, W.P. Bowman, M.M. 

389 Hudson, R.C. Ribeiro, S.C. Raimondi, S. Jeha, S.C. Howard, D. Bhojwani, H. Inaba, 

390 J.E. Rubnitz, M.L. Metzger, T.A. Gruber, E. Coustan-Smith, J.R. Downing, W.H. 

391 Leung, M.V. Relling, W.E. Evans, A revised definition for cure of childhood acute 

392 lymphoblastic leukemia, Leukemia 28 (2014) 2336-2343.

393 [2] R. Pieters, M. Schrappe, P. De Lorenzo, I. Hann, G. De Rossi, M. Felice, L. Hovi, T. 

394 LeBlanc, T. Szczepanski, A. Ferster, G. Janka, J. Rubnitz, L. Silverman, J. Stary, M. 

395 Campbell, C.K. Li, G. Mann, R. Suppiah, A. Biondi, A. Vora, M.G. Valsecchi, A 

396 treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia 

397 (Interfant-99): an observational study and a multicentre randomised trial, Lancet 370 

398 (2007) 240-250.

399 [3] A. Biondi, G. Cimino, R. Pieters, C.H. Pui, Biological and therapeutic aspects of 

400 infant leukemia, Blood 96 (2000) 24-33.

401 [4] H. Inaba, M. Greaves, C.G. Mullighan, Acute lymphoblastic leukaemia, Lancet 381 

402 (2013) 1943-1955.

403 [5] C.H. Pui, W.L. Carroll, S. Meshinchi, R.J. Arceci, Biology, risk stratification, and 

404 therapy of pediatric acute leukemias: an update, J Clin Oncol 29 (2011) 551-565.

405 [6] M. Emerenciano, C. Meyer, M.B. Mansur, R. Marschalek, M.S. Pombo-de-Oliveira, 

406 L. Brazilian Collaborative Study Group of Infant Acute, The distribution of MLL 

407 breakpoints correlates with outcome in infant acute leukaemia, Br J Haematol 161 

408 (2013) 224-236.

409 [7] A.K. Andersson, J. Ma, J. Wang, X. Chen, A.L. Gedman, J. Dang, J. Nakitandwe, L. 

410 Holmfeldt, M. Parker, J. Easton, R. Huether, R. Kriwacki, M. Rusch, G. Wu, Y. Li, H. 

411 Mulder, S. Raimondi, S. Pounds, G. Kang, L. Shi, J. Becksfort, P. Gupta, D. Payne-



BBA Reviews on Cancer - Mini-Review

19

412 Turner, B. Vadodaria, K. Boggs, D. Yergeau, J. Manne, G. Song, M. Edmonson, P. 

413 Nagahawatte, L. Wei, C. Cheng, D. Pei, R. Sutton, N.C. Venn, A. Chetcuti, A. Rush, D. 

414 Catchpoole, J. Heldrup, T. Fioretos, C. Lu, L. Ding, C.H. Pui, S. Shurtleff, C.G. 

415 Mullighan, E.R. Mardis, R.K. Wilson, T.A. Gruber, J. Zhang, J.R. Downing, P. St. Jude 

416 Children's Research Hospital-Washington University Pediatric Cancer Genome, The 

417 landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic 

418 leukemias, Nat Genet 47 (2015) 330-337.

419 [8] C. Meyer, J. Hofmann, T. Burmeister, D. Groger, T.S. Park, M. Emerenciano, M. 

420 Pombo de Oliveira, A. Renneville, P. Villarese, E. Macintyre, H. Cave, E. Clappier, K. 

421 Mass-Malo, J. Zuna, J. Trka, E. De Braekeleer, M. De Braekeleer, S.H. Oh, G. Tsaur, L. 

422 Fechina, V.H. van der Velden, J.J. van Dongen, E. Delabesse, R. Binato, M.L. Silva, A. 

423 Kustanovich, O. Aleinikova, M.H. Harris, T. Lund-Aho, V. Juvonen, O. Heidenreich, J. 

424 Vormoor, W.W. Choi, M. Jarosova, A. Kolenova, C. Bueno, P. Menendez, S. Wehner, 

425 C. Eckert, P. Talmant, S. Tondeur, E. Lippert, E. Launay, C. Henry, P. Ballerini, H. 

426 Lapillone, M.B. Callanan, J.M. Cayuela, C. Herbaux, G. Cazzaniga, P.M. Kakadiya, S. 

427 Bohlander, M. Ahlmann, J.R. Choi, P. Gameiro, D.S. Lee, J. Krauter, P. Cornillet-

428 Lefebvre, G. Te Kronnie, B.W. Schafer, S. Kubetzko, C.N. Alonso, U. zur Stadt, R. 

429 Sutton, N.C. Venn, S. Izraeli, L. Trakhtenbrot, H.O. Madsen, P. Archer, J. Hancock, N. 

430 Cerveira, M.R. Teixeira, L. Lo Nigro, A. Moricke, M. Stanulla, M. Schrappe, L. Sedek, 

431 T. Szczepanski, C.M. Zwaan, E.A. Coenen, M.M. van den Heuvel-Eibrink, S. Strehl, 

432 M. Dworzak, R. Panzer-Grumayer, T. Dingermann, T. Klingebiel, R. Marschalek, The 

433 MLL recombinome of acute leukemias in 2013, Leukemia 27 (2013) 2165-2176.

434 [9] C. Meyer, T. Burmeister, D. Groger, G. Tsaur, L. Fechina, A. Renneville, R. Sutton, 

435 N.C. Venn, M. Emerenciano, M.S. Pombo-de-Oliveira, C. Barbieri Blunck, B. Almeida 

436 Lopes, J. Zuna, J. Trka, P. Ballerini, H. Lapillonne, M. De Braekeleer, G. Cazzaniga, L. 



BBA Reviews on Cancer - Mini-Review

20

437 Corral Abascal, V.H.J. van der Velden, E. Delabesse, T.S. Park, S.H. Oh, M.L.M. Silva, 

438 T. Lund-Aho, V. Juvonen, A.S. Moore, O. Heidenreich, J. Vormoor, E. Zerkalenkova, 

439 Y. Olshanskaya, C. Bueno, P. Menendez, A. Teigler-Schlegel, U. Zur Stadt, J. Lentes, 

440 G. Gohring, A. Kustanovich, O. Aleinikova, B.W. Schafer, S. Kubetzko, H.O. Madsen, 

441 B. Gruhn, X. Duarte, P. Gameiro, E. Lippert, A. Bidet, J.M. Cayuela, E. Clappier, C.N. 

442 Alonso, C.M. Zwaan, M.M. van den Heuvel-Eibrink, S. Izraeli, L. Trakhtenbrot, P. 

443 Archer, J. Hancock, A. Moricke, J. Alten, M. Schrappe, M. Stanulla, S. Strehl, A. 

444 Attarbaschi, M. Dworzak, O.A. Haas, R. Panzer-Grumayer, L. Sedek, T. Szczepanski, 

445 A. Caye, L. Suarez, H. Cave, R. Marschalek, The MLL recombinome of acute 

446 leukemias in 2017, Leukemia (2017).

447 [10] A.M. Ford, S.A. Ridge, M.E. Cabrera, H. Mahmoud, C.M. Steel, L.C. Chan, M. 

448 Greaves, In utero rearrangements in the trithorax-related oncogene in infant leukaemias, 

449 Nature 363 (1993) 358-360.

450 [11] M.F. Greaves, A.T. Maia, J.L. Wiemels, A.M. Ford, Leukemia in twins: lessons in 

451 natural history, Blood 102 (2003) 2321-2333.

452 [12] K.B. Gale, A.M. Ford, R. Repp, A. Borkhardt, C. Keller, O.B. Eden, M.F. Greaves, 

453 Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in 

454 neonatal blood spots, Proc Natl Acad Sci U S A 94 (1997) 13950-13954.

455 [13] M. Bardini, M. Galbiati, A. Lettieri, S. Bungaro, T.A. Gorletta, A. Biondi, G. 

456 Cazzaniga, Implementation of array based whole-genome high-resolution technologies 

457 confirms the absence of secondary copy-number alterations in MLL-AF4-positive infant 

458 ALL patients, Leukemia 25 (2011) 175-178.

459 [14] S.E. Dobbins, A.L. Sherborne, Y.P. Ma, M. Bardini, A. Biondi, G. Cazzaniga, A. 

460 Lloyd, D. Chubb, M.F. Greaves, R.S. Houlston, The silent mutational landscape of 



BBA Reviews on Cancer - Mini-Review

21

461 infant MLL-AF4 pro-B acute lymphoblastic leukemia, Genes Chromosomes Cancer 52 

462 (2013) 954-960.

463 [15] C.G. Mullighan, S. Goorha, I. Radtke, C.B. Miller, E. Coustan-Smith, J.D. Dalton, 

464 K. Girtman, S. Mathew, J. Ma, S.B. Pounds, X. Su, C.H. Pui, M.V. Relling, W.E. 

465 Evans, S.A. Shurtleff, J.R. Downing, Genome-wide analysis of genetic alterations in 

466 acute lymphoblastic leukaemia, Nature 446 (2007) 758-764.

467 [16] M. Greaves, When one mutation is all it takes, Cancer Cell 27 (2015) 433-434.

468 [17] R. Marschalek, Mechanisms of leukemogenesis by MLL fusion proteins, Br J 

469 Haematol 152 (2011) 141-154.

470 [18] N. Mahgoub, R.I. Parker, M.R. Hosler, P. Close, N.J. Winick, M. Masterson, K.M. 

471 Shannon, C.A. Felix, RAS mutations in pediatric leukemias with MLL gene 

472 rearrangements, Genes Chromosomes Cancer 21 (1998) 270-275.

473 [19] D.C. Liang, L.Y. Shih, J.F. Fu, H.Y. Li, H.I. Wang, I.J. Hung, C.P. Yang, T.H. 

474 Jaing, S.H. Chen, H.C. Liu, K-Ras mutations and N-Ras mutations in childhood acute 

475 leukemias with or without mixed-lineage leukemia gene rearrangements, Cancer 106 

476 (2006) 950-956.

477 [20] M.H. Ng, R.K. Ng, C.T. Kong, D.Y. Jin, L.C. Chan, Activation of Ras-dependent 

478 Elk-1 activity by MLL-AF4 family fusion oncoproteins, Exp Hematol 38 (2010) 481-

479 488.

480 [21] R. Ono, H. Kumagai, H. Nakajima, A. Hishiya, T. Taki, K. Horikawa, K. Takatsu, 

481 T. Satoh, Y. Hayashi, T. Kitamura, T. Nosaka, Mixed-lineage-leukemia (MLL) fusion 

482 protein collaborates with Ras to induce acute leukemia through aberrant Hox expression 

483 and Raf activation, Leukemia 23 (2009) 2197-2209.

484 [22] H. Tamai, K. Miyake, M. Takatori, N. Miyake, H. Yamaguchi, K. Dan, T. 

485 Shimada, K. Inokuchi, Activated K-Ras protein accelerates human MLL/AF4-induced 



BBA Reviews on Cancer - Mini-Review

22

486 leukemo-lymphomogenicity in a transgenic mouse model, Leukemia 25 (2011) 888-

487 891.

488 [23] E.M. Driessen, E.H. van Roon, J.A. Spijkers-Hagelstein, P. Schneider, P. de 

489 Lorenzo, M.G. Valsecchi, R. Pieters, R.W. Stam, Frequencies and prognostic impact of 

490 RAS mutations in MLL-rearranged acute lymphoblastic leukemia in infants, 

491 Haematologica 98 (2013) 937-944.

492 [24] C. Prelle, A. Bursen, T. Dingermann, R. Marschalek, Secondary mutations in 

493 t(4;11) leukemia patients, Leukemia 27 (2013) 1425-1427.

494 [25] M.L. Metzker, Sequencing technologies - the next generation, Nat Rev Genet 11 

495 (2010) 31-46.

496 [26] L. Trentin, S. Bresolin, E. Giarin, M. Bardini, V. Serafin, B. Accordi, F. Fais, C. 

497 Tenca, P. De Lorenzo, M.G. Valsecchi, G. Cazzaniga, G.T. Kronnie, G. Basso, 

498 Deciphering KRAS and NRAS mutated clone dynamics in MLL-AF4 paediatric 

499 leukaemia by ultra deep sequencing analysis, Sci Rep 6 (2016) 34449.

500 [27] M. Emerenciano, C. Barbosa Tda, B. de Almeida Lopes, C. Meyer, R. Marschalek, 

501 M.S. Pombo-de-Oliveira, Subclonality and prenatal origin of RAS mutations in 

502 KMT2A (MLL)-rearranged infant acute lymphoblastic leukaemia, Br J Haematol 170 

503 (2015) 268-271.

504 [28] X. Ma, M. Edmonson, D. Yergeau, D.M. Muzny, O.A. Hampton, M. Rusch, G. 

505 Song, J. Easton, R.C. Harvey, D.A. Wheeler, J. Ma, H. Doddapaneni, B. Vadodaria, G. 

506 Wu, P. Nagahawatte, W.L. Carroll, I.M. Chen, J.M. Gastier-Foster, M.V. Relling, M.A. 

507 Smith, M. Devidas, J.M. Guidry Auvil, J.R. Downing, M.L. Loh, C.L. Willman, D.S. 

508 Gerhard, C.G. Mullighan, S.P. Hunger, J. Zhang, Rise and fall of subclones from 

509 diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia, Nat Commun 6 

510 (2015) 6604.



BBA Reviews on Cancer - Mini-Review

23

511 [29] K. Oshima, H. Khiabanian, A.C. da Silva-Almeida, G. Tzoneva, F. Abate, A. 

512 Ambesi-Impiombato, M. Sanchez-Martin, Z. Carpenter, A. Penson, A. Perez-Garcia, C. 

513 Eckert, C. Nicolas, M. Balbin, M.L. Sulis, M. Kato, K. Koh, M. Paganin, G. Basso, J.M. 

514 Gastier-Foster, M. Devidas, M.L. Loh, R. Kirschner-Schwabe, T. Palomero, R. 

515 Rabadan, A.A. Ferrando, Mutational landscape, clonal evolution patterns, and role of 

516 RAS mutations in relapsed acute lymphoblastic leukemia, Proc Natl Acad Sci U S A 

517 113 (2016) 11306-11311.

518 [30] C. Prieto, R.W. Stam, A. Agraz-Doblas, P. Ballerini, M. Camos, J. Castano, R. 

519 Marschalek, A. Bursen, I. Varela, C. Bueno, P. Menendez, Activated KRAS Cooperates 

520 with MLL-AF4 to Promote Extramedullary Engraftment and Migration of Cord Blood 

521 CD34+ HSPC But Is Insufficient to Initiate Leukemia, Cancer Res 76 (2016) 2478-

522 2489.

523 [31] T.C. Barbosa, F.G. Andrade, B.A. Lopes, C.F. de Andrade, M.B. Mansur, M. 

524 Emerenciano, M.S. Pombo-de-Oliveira, Impact of mutations in FLT3, PTPN11 and 

525 RAS genes on the overall survival of pediatric B cell precursor acute lymphoblastic 

526 leukemia in Brazil, Leuk Lymphoma 55 (2014) 1501-1509.

527 [32] S.C. Raimondi, Cytogenetics of acute leukemias, in: Childhood Leukemias (Ed. 

528 C.H. Pui) Cambridge University Press (2012) 135-167.

529 [33] L. Holmfeldt, L. Wei, E. Diaz-Flores, M. Walsh, J. Zhang, L. Ding, D. Payne-

530 Turner, M. Churchman, A. Andersson, S.C. Chen, K. McCastlain, J. Becksfort, J. Ma, 

531 G. Wu, S.N. Patel, S.L. Heatley, L.A. Phillips, G. Song, J. Easton, M. Parker, X. Chen, 

532 M. Rusch, K. Boggs, B. Vadodaria, E. Hedlund, C. Drenberg, S. Baker, D. Pei, C. 

533 Cheng, R. Huether, C. Lu, R.S. Fulton, L.L. Fulton, Y. Tabib, D.J. Dooling, K. Ochoa, 

534 M. Minden, I.D. Lewis, L.B. To, P. Marlton, A.W. Roberts, G. Raca, W. Stock, G. 

535 Neale, H.G. Drexler, R.A. Dickins, D.W. Ellison, S.A. Shurtleff, C.H. Pui, R.C. 



BBA Reviews on Cancer - Mini-Review

24

536 Ribeiro, M. Devidas, A.J. Carroll, N.A. Heerema, B. Wood, M.J. Borowitz, J.M. 

537 Gastier-Foster, S.C. Raimondi, E.R. Mardis, R.K. Wilson, J.R. Downing, S.P. Hunger, 

538 M.L. Loh, C.G. Mullighan, The genomic landscape of hypodiploid acute lymphoblastic 

539 leukemia, Nat Genet 45 (2013) 242-252.

540 [34] C.J. Harrison, Blood Spotlight on iAMP21 acute lymphoblastic leukemia (ALL), a 

541 high-risk pediatric disease, Blood 125 (2015) 1383-1386.

542 [35] S.L. Ryan, E. Matheson, V. Grossmann, P. Sinclair, M. Bashton, C. Schwab, W. 

543 Towers, M. Partington, A. Elliott, L. Minto, S. Richardson, T. Rahman, B. Keavney, R. 

544 Skinner, N. Bown, T. Haferlach, P. Vandenberghe, C. Haferlach, M. Santibanez-Koref, 

545 A.V. Moorman, A. Kohlmann, J.A. Irving, C.J. Harrison, The role of the RAS pathway 

546 in iAMP21-ALL, Leukemia 30 (2016) 1824-1831.

547 [36] K. Durinck, S. Goossens, S. Peirs, A. Wallaert, W. Van Loocke, F. Matthijssens, T. 

548 Pieters, G. Milani, T. Lammens, P. Rondou, N. Van Roy, B. De Moerloose, Y. Benoit, 

549 J. Haigh, F. Speleman, B. Poppe, P. Van Vlierberghe, Novel biological insights in T-

550 cell acute lymphoblastic leukemia, Exp Hematol 43 (2015) 625-639.

551 [37] K. Karrman, B. Johansson, Pediatric T-cell acute lymphoblastic leukemia, Genes 

552 Chromosomes Cancer 56 (2017) 89-116.

553 [38] T. Girardi, C. Vicente, J. Cools, K. De Keersmaecker, The genetics and molecular 

554 biology of T-ALL, Blood 129 (2017) 1113-1123.

555 [39] M.B. Mansur, R. Hassan, T.C. Barbosa, A. Splendore, P.Y. Jotta, J.A. Yunes, J.L. 

556 Wiemels, M.S. Pombo-de-Oliveira, Impact of complex NOTCH1 mutations on survival 

557 in paediatric T-cell leukaemia, BMC Cancer 12 (2012) 9.

558 [40] J. Zhang, L. Ding, L. Holmfeldt, G. Wu, S.L. Heatley, D. Payne-Turner, J. Easton, 

559 X. Chen, J. Wang, M. Rusch, C. Lu, S.C. Chen, L. Wei, J.R. Collins-Underwood, J. Ma, 

560 K.G. Roberts, S.B. Pounds, A. Ulyanov, J. Becksfort, P. Gupta, R. Huether, R.W. 



BBA Reviews on Cancer - Mini-Review

25

561 Kriwacki, M. Parker, D.J. McGoldrick, D. Zhao, D. Alford, S. Espy, K.C. Bobba, G. 

562 Song, D. Pei, C. Cheng, S. Roberts, M.I. Barbato, D. Campana, E. Coustan-Smith, S.A. 

563 Shurtleff, S.C. Raimondi, M. Kleppe, J. Cools, K.A. Shimano, M.L. Hermiston, S. 

564 Doulatov, K. Eppert, E. Laurenti, F. Notta, J.E. Dick, G. Basso, S.P. Hunger, M.L. Loh, 

565 M. Devidas, B. Wood, S. Winter, K.P. Dunsmore, R.S. Fulton, L.L. Fulton, X. Hong, 

566 C.C. Harris, D.J. Dooling, K. Ochoa, K.J. Johnson, J.C. Obenauer, W.E. Evans, C.H. 

567 Pui, C.W. Naeve, T.J. Ley, E.R. Mardis, R.K. Wilson, J.R. Downing, C.G. Mullighan, 

568 The genetic basis of early T-cell precursor acute lymphoblastic leukaemia, Nature 481 

569 (2012) 157-163.

570 [41] M. Dail, Q. Li, A. McDaniel, J. Wong, K. Akagi, B. Huang, H.C. Kang, S.C. 

571 Kogan, K. Shokat, L. Wolff, B.S. Braun, K. Shannon, Mutant Ikzf1, KrasG12D, and 

572 Notch1 cooperate in T lineage leukemogenesis and modulate responses to targeted 

573 agents, Proc Natl Acad Sci U S A 107 (2010) 5106-5111.

574 [42] P. Richter-Pechanska, J.B. Kunz, J. Hof, M. Zimmermann, T. Rausch, O.R. 

575 Bandapalli, E. Orlova, G. Scapinello, J.C. Sagi, M. Stanulla, M. Schrappe, G. Cario, R. 

576 Kirschner-Schwabe, C. Eckert, V. Benes, J.O. Korbel, M.U. Muckenthaler, A.E. 

577 Kulozik, Identification of a genetically defined ultra-high-risk group in relapsed 

578 pediatric T-lymphoblastic leukemia, Blood Cancer J 7 (2017) e523.

579 [43] D. Tomizawa, Recent progress in the treatment of infant acute lymphoblastic 

580 leukemia, Pediatr Int 57 (2015) 811-819.

581 [44] T. Knight, J.A. Irving, Ras/Raf/MEK/ERK Pathway Activation in Childhood Acute 

582 Lymphoblastic Leukemia and Its Therapeutic Targeting, Front Oncol 4 (2014) 160.

583 [45] J.D. Nowacka, C. Baumgartner, C. Pelorosso, M. Roth, J. Zuber, M. Baccarini, 

584 MEK1 is required for the development of NRAS-driven leukemia, Oncotarget 7 (2016) 

585 80113-80130.



BBA Reviews on Cancer - Mini-Review

26

586 [46] M. Kerstjens, E.M. Driessen, M. Willekes, S.S. Pinhancos, P. Schneider, R. 

587 Pieters, R.W. Stam, MEK inhibition is a promising therapeutic strategy for MLL-

588 rearranged infant acute lymphoblastic leukemia patients carrying RAS mutations, 

589 Oncotarget 8 (2017) 14835-14846.

590 [47] I.M. Aries, R.E. van den Dungen, M.J. Koudijs, E. Cuppen, E. Voest, J.J. 

591 Molenaar, H.N. Caron, R. Pieters, M.L. den Boer, Towards personalized therapy in 

592 pediatric acute lymphoblastic leukemia: RAS mutations and prednisolone resistance, 

593 Haematologica 100 (2015) e132-136.

594 [48] C.L. Jones, C.M. Gearheart, S. Fosmire, C. Delgado-Martin, N.A. Evensen, K. 

595 Bride, A.J. Waanders, F. Pais, J. Wang, T. Bhatla, D.S. Bitterman, S.R. de Rijk, W. 

596 Bourgeois, S. Dandekar, E. Park, T.M. Burleson, P.P. Madhusoodhan, D.T. Teachey, 

597 E.A. Raetz, M.L. Hermiston, M. Muschen, M.L. Loh, S.P. Hunger, J. Zhang, M.J. 

598 Garabedian, C.C. Porter, W.L. Carroll, MAPK signaling cascades mediate distinct 

599 glucocorticoid resistance mechanisms in pediatric leukemia, Blood 126 (2015) 2202-

600 2212.

601 [49] A.A. Rambal, Z.L. Panaguiton, L. Kramer, S. Grant, H. Harada, MEK inhibitors 

602 potentiate dexamethasone lethality in acute lymphoblastic leukemia cells through the 

603 pro-apoptotic molecule BIM, Leukemia 23 (2009) 1744-1754.




