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Immune selection determines tumor 
antigenicity and influences response to 
checkpoint inhibitors

Luis Zapata    1  , Giulio Caravagna    1,2, Marc J. Williams    3, Eszter Lakatos    4, 
Khalid AbdulJabbar1, Benjamin Werner    4, Diego Chowell5,6, Chela James1,7, 
Lucie Gourmet8, Salvatore Milite7, Ahmet Acar9, Nadeem Riaz    10, 
Timothy A. Chan    11, Trevor A. Graham    1,4   & Andrea Sottoriva    1,7 

In cancer, evolutionary forces select for clones that evade the 
immune system. Here we analyzed >10,000 primary tumors and 356 
immune-checkpoint-treated metastases using immune dN/dS, the ratio of 
nonsynonymous to synonymous mutations in the immunopeptidome, to 
measure immune selection in cohorts and individuals. We classified tumors 
as immune edited when antigenic mutations were removed by negative 
selection and immune escaped when antigenicity was covered up by 
aberrant immune modulation. Only in immune-edited tumors was immune 
predation linked to CD8 T cell infiltration. Immune-escaped metastases 
experienced the best response to immunotherapy, whereas immune-edited 
patients did not benefit, suggesting a preexisting resistance mechanism. 
Similarly, in a longitudinal cohort, nivolumab treatment removes 
neoantigens exclusively in the immunopeptidome of nonimmune-edited 
patients, the group with the best overall survival response. Our work uses 
dN/dS to differentiate between immune-edited and immune-escaped 
tumors, measuring potential antigenicity and ultimately helping predict 
response to treatment.

The immune system shapes tumor genomes by selecting for 
neoantigen-depleted clones (immune edited) or clones with an immune 
evasion strategy that allows neoantigen accumulation (‘immune 
escaped’)1–3. Immune checkpoint inhibitors (ICIs) work by reactivating 
immune predation against malignant cells by removing the ‘invisibility 

cloak’ provided by overexpression of immune checkpoint pathways, 
such as PD1 and CTLA-4. ICIs have been widely applied to treat cancer, 
especially in melanoma, where studies show an extraordinary 30% 
objective response rate4. However, low response rates for some tumor 
types and the highly toxic side effects of costly ICI treatments have 
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OFF-dN/dS (ON/OFF) to conservatively demonstrate immune-specific 
selection and defined it as immune dN/dS. Bladder cancer (BLCA; 95% 
confidence interval (CI), 0.71–0.98), lung adenocarcinoma (LUAD; 
95% CI, 0.61–0.84), lung squamous cell carcinoma (LUSC; 95% CI, 
0.70–0.98), melanoma (SKCM; 95% CI, 0.75–0.92) and uterine corpus 
and endometrial carcinoma (UCEC; 95% CI, 0.85–0.98) displayed sig-
nificant nonsynonymous depletion inside the HLA-A0201 immunopep-
tidome (Fig. 2a), and head and neck squamous cell carcinoma (HNSC; 
95% CI, 0.85–0.95), cervical squamous cell carcinoma (CESC; 95% CI, 
0.88–0.99), LUAD (95% CI, 0.84–0.93) and LUSC (95% CI, 0.86–0.95) 
inside the proto-HLA (Fig. 2b). Edited neoantigens varied from 0 to 
151 (Supplementary Table 1) when calculated cohort-wise inside the 
HLA-A0201 immunopeptidome and from 0 to 2113 when calculated per 
patient, suggesting that cohort estimates may mask immune selection 
at the individual level. UCEC (four) and colorectal cancer (CRC) (two) 
were the tumor types with the highest number of edited neoantigens 
per patient. We confirmed the robustness of our findings by resampling 
mutations and individuals (Supplementary Fig. 1d,e) and by estimating 
immune dN/dS with mutations from different somatic callers (Sup-
plementary Fig. 1f). Overall, results were consistent between different 
callers and, thus, we further used only MuTect2 calls. Cholangiocar-
cinoma, mesothelioma and esophagus carcinoma had also traces 
of immune selection but with large CIs due to low mutation burden 
(Supplementary Fig. 1c).

Next, we compared cohort immune selection between SOPRANO 
immune dN/dS and a published HLA-binding mutation ratio (HBMR)28. 
There was a significant correlation between immune dN/dS and HBMR 
for the proto-HLA (Pearson r or r = 0.77, P = 0.00054; Fig. 2c), but not 
when comparing HLA-A0201 to the proto-HLA immunopeptidome 
(r = 0.37, P = 0.15; Supplementary Fig. 1g). The latter correlation was 
expectedly lower given that proto-HLA includes a larger genomic 
region where immune selection might not be acting for patients with-
out those HLA alleles. Both metrics used similar burden of nonsynony-
mous mutations inside (Supplementary Fig. 1h, r = 0.93) and outside the 
immunopeptidome (Supplementary Fig. 1i, r = 0.98). When exploring 
alternative immunopeptidomes based on HLA-A0201 patients, immune 
selection was weaker (immune dN/dS ~ 1) when including unexpressed 
regions or weak binders, whereas in both cases, OFF-dN/dS remained 
the same. Further immunopeptidome benchmarking revealed  
the strongest immune selection when using patient-specific data  
(Supplementary Fig 2). Overall, these results suggest that immune 
selection discrepancies can arise due to different immunopeptidomes, 
especially if including unexpressed or false MHC-binding peptides.

Immune escape abrogates CD8 T cell-mediated immune 
selection
We hypothesized that weak immune selection is due to immune-escaped 
tumors masking the signal. We compared the association between 
immune selection, measured by immune dN/dS and HBMR, and immune 
infiltrates when including or excluding three tumor types with a high 
frequency of microsatellite-unstable (MSI) cases, and therefore a 
high frequency of evasion mechanisms: CRC, stomach adenocarci-
noma (STAD) and UCEC32. To minimize possible biases from bulk cell 
deconvolution methods, we obtained immune infiltration estimates 
from three different TCGA studies26,33,34. When comparing all tumor 
types with HBMR available, median CD8 T cell abundance score was 
negatively correlated with immune dN/dS in the HLA-A0201 immu-
nopeptidome (r = −0.7, P = 0.0035; Fig. 2d), but not to HBMR in the 
proto-HLA (r = −0.38, P = 0.16; Fig. 2e). When excluding CRC, STAD 
and UCEC, immune dN/dS and CD8 T cells correlation increased sig-
nificance for both immunopeptidomes, supporting our hypothesis 
of immune escape masking immune selection (HLA-A0201: r = −0.78, 
P = 0.0017, Fig. 2f; proto-HLA: r = −0.61, P = 0.028, Fig. 2g). Moreover, 
similar results were observed when using alternative immune estimates 
such as cytolytic activity (Supplementary Fig. 3a), CD8 T cell infiltration 

fueled the search for better predictive biomarkers. To date, the US Food 
and Drug Administration-approved biomarkers are tumor mutation 
burden (TMB), microsatellite instability (MSI) and PDL1 expression. 
However, TMB has technical limitations, including low predictive 
power for some tumors, the absence of a universal threshold to pre-
dict response and a strong dependency on the sequencing technology 
and depth5–8. MSI-associated response and PDL-1 expression have also 
been challenged, as microsatellite stable (MSS) and PDL-1-negative 
patients may also display clinical benefit upon ICI treatment9,10. As 
these metrics neglect the underlying tumor evolutionary dynamics, 
we hypothesize that stratifying patients based on immune selection 
will improve patient management.

An evolutionary metric11,12 commonly used to detect selection 
in cancer studies is the nonsynonymous to synonymous muta-
tions ratio, dN/dS13–17. dN/dS has been used to detect driver genes18, 
measure selective coefficients at different clone sizes19 and show 
positive selection during subclonal expansions20,21. As nonsynon-
ymous mutations can also generate neoantigens by transforming 
self-peptides, which do not elicit an immune response due to central 
tolerance22, to non-self-peptides, which can potentially initiate an 
immune reaction, we hypothesized that immune selection can be 
measured by calculating dN/dS on the self-immunopeptidome13. The 
self-immunopeptidome can be defined as all genomic regions that 
generate peptides natively exposed to the immune system through the 
individual major histocompatibility complex (MHC). Despite wealthy 
literature on immune selection against neoantigens23–27, few studies 
have challenged the application of MHC-based predictions to detect 
immune selection28, raising the important question whether negative  
selection is truly absent29, inefficient during somatic evolution30  
or computational predictions of MHC-biding peptides are poor31. 
Beyond these possibilities, the impact of immune evasion on  
immune selection signals remains unexplored.

Here, we calculate dN/dS inside the immunopeptidome, immune 
dN/dS, to validate the association between immune selection and T cell 
infiltration in primary immune-edited tumors. We demonstrate that 
immune escape enables neutral neoantigen accumulation, ultimately 
masking selection on cohort estimates. We hypothesize and demon-
strate that immune-edited tumors do not respond to immunothera-
pies by analyzing 356 immunotherapy-treated metastatic cancers. 
Finally, in a longitudinal set of ICI-treated metastatic tumors, we show  
that immune dN/dS in combination with escape status predicts  
ICI response better than clonal TMB. Our study highlights the  
importance of considering tumor evolutionary dynamics for the 
future of personalized medicine.

Results
Signals of immune selection in mixed primary tumor cohorts
To measure selection using genomic data, we developed SOPRANO 
(selection on protein annotated regions), an algorithm that calculates 
trinucleotide context corrected dN/dS inside (ON target or ON-dN/dS)  
and outside (OFF target or OFF-dN/dS) any target genomic region. 
SOPRANO allows for cohort- and patient-specific dN/dS enabling com-
parisons between multiple or single individuals (Fig. 1a). Our method 
uses point mutations (missense and/or truncating single-nucleotide 
variants) in target immunopeptidomes made of (1) a single HLA allele 
(that is, HLA-A0201), (2) a proto-HLA allele consisting of 6 HLA haplo-
types or (3) a patient’s specific six HLA class I alleles (Fig. 1b). We applied 
SOPRANO in different settings to quantify immune selection (Fig. 1c 
and Table 1) and determine the impact of immune evasion (Fig. 1d).

First, we applied SOPRANO to 33 cancer types from The Cancer 
Genome Atlas (TCGA) (Supplementary Tables 1 and 2 and Supple-
mentary Fig. 1a–c) using two immunopeptidomes: HLA-A0201, the 
most common allele, and a proto-HLA28 composed of the six most fre-
quent HLA alleles (HLA-A01:01, HLA-A02:01 HLA-B07:02, HLA-B08:01, 
HLA-C07:01 and HLA-C07:02). We used the ratio between ON-dN/dS and 
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from a different study33 (Supplementary Fig. 3b) and lymphocyte infil-
tration score34 (Supplementary Fig. 3c), but not when comparing to 
TMB (Supplementary Fig. 3d). When including all 33 tumor types, we 
also confirmed that immune infiltration correlated with ON-dN/dS and 
immune dN/dS, but not with OFF-dN/dS (Supplementary Fig. 4a–c).

We then run SOPRANO on a subset of 6,858 primary untreated 
tumors from TCGA with at least a single mutation in the immun-
opeptidome using each patient’s six HLA alleles, and we classified 
each individual into escaped (escaped+) or non-escaped (escaped−) 
based on a missense or a truncating mutation in a preselected ‘escape’  
gene associated to the antigen presenting machinery (Supplementary 
Tables 3–5). Among 88 preselected escape genes, we found signifi-
cant positive selection on missense mutations in 40 genes, including  
HLA-B, B2M, IFNG and KIR-like genes, and on truncating mutations in 
eight genes, including B2M, HLA-A, B and C (Fig. 2h and Supplementary 
Table 6). Next, we compared immune dN/dS and mutation burden 
between escape strata for different immune categories34. Although 
patient-specific immune dN/dS and CD8 T cell infiltration were not 
correlated, we found significantly higher TMB in escaped+ tumors 
in all categories (Supplementary Fig. 4d), while immune dN/dS was 
significantly higher for escaped+ tumors in C1 and C2 categories, 
characterized by high proliferation and high intratumor heterogene-
ity, and was not different in C3, characterized by low proliferation, and 
C4, characterized by lymphocyte absence (Supplementary Fig. 4e). 

Additionally, escaped+ harbored more splice, stop-loss and nonsense 
mutations (Supplementary Fig. 5a) and more amplifications and dele-
tions (data obtained from a previous study35; Supplementary Fig. 5b) 
than escaped− tumors. There was a significant correlation between 
immune dN/dS distance to neutrality and TMB in escaped+ (P = 2.4e-12) 
but not in escaped− tumors (Supplementary Fig. 5c), supporting the 
hypothesis that neoantigenic mutations accrue neutrally in escaped+ 
tumors. Intriguingly, such effect was not observed when deletions 
or amplifications in escape genes were considered (Supplementary  
Fig. 5d). Importantly, mutation burden increase was specifically  
due to missense or truncating mutations and not to synonymous  
events on the same escape genes (Supplementary Fig. 6).

To determine which immune subpopulations were associated 
to immune selection, we applied a linear mixed model to deter-
mine their contribution to immune-, ON- and OFF-dN/dS, including  
(Supplementary Fig. 7a) or excluding CRC, STAD and UCEC (Fig. 2i). The 
best-performing model for predicting immune dN/dS (R2adj = 0.89, 
Akaike information criterion (AIC) = −83, P = 0.01) had CD8 T cells as the 
most significant explanatory variable. Importantly, no variable could 
explain OFF-dN/dS, and seven out of ten immune variables tested were 
significantly associated to ON-dN/dS. Moreover, when expanding to 
more tumor types with available immune cell scores, we found a sig-
nificant association between immune dN/dS and leukocyte infiltration 
in escaped− tumors (Supplementary Fig. 7b, no truncating mutations: 
P = 0.007; Supplementary Fig. 7c, no missense/truncating: P = 0.011), 
but not in escaped+ tumors (Supplementary Fig. 7d, missense/truncat-
ing: P = 0.58; Supplementary Fig. 7e, truncating: P = 0.25). These results 
were confirmed in a multivariate model when controlling for stromal 
fraction (Supplementary Fig. 7f) or including multiple other cellular 
states (Supplementary Fig. 7g). Interestingly, PD1 and PDL1 expression 
were associated to immune selection in a univariate analysis (Supple-
mentary Fig. 7h,i PD1 P = 0.021, PDL1 P = 0.057), but not in a linear mixed 
model that included CD8 T cells (Supplementary Fig. 7j,k), highlighting 
CD8 T cell lymphocytes as the main driver of immune selection.

MSS escaped tumors show neutral immune dN/dS
To further characterize genetic differences between escaped and edited 
tumors, we focused on 879 previously curated primary untreated CRC, 
STAD and UCEC32. These tumors had multiple annotated escape mecha-
nisms, including immune checkpoint inhibition derived from RNA 
sequencing, loss of heterozygosity of HLA genes and copy number 
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Fig. 1 | Overview of immune selection calculation using SOPRANO.  
a, Estimates can be performed at the cohort or at the single individual level.  
b, In each case, it is possible to estimate immune selection on a single HLA allele 
(that is, HLA-A0201), a generic combination of HLA alleles (proto-HLA) or the 
germline-specific HLA-immunopeptidome. c, Immune selection determines 
the evolutionary trajectories of clonal growth; fully immune-edited tumors 
with strong immune selection signals can transit towards fully immune-escaped 

tumors where signals are absent. d, Toy model of mixing immune-edited and 
immune-escaped tumors. It is possible to estimate immune dN/dS by aggregating 
all mutations and generate a single cohort estimate or to estimate a distribution 
of values per patient. In both cases, we hypothesize that mixing escaped with 
edited tumors leads to loss of immune selection signals reflected by immune dN/
dS values closer to one (depicted as red dashed lines in the figure).

Table 1 | Analysis of tumor datasets with SOPRANO

Dataset Tumor type No. of 
individuals

Immunopeptidome

TCGA 33 tumor types 10,172 HLA-A0201, proto-HLA, 
patient specific

Lakatos CRC, STAD, UCEC 879 Patient specific

Hartwig Multiple 308 HLA-A0201, patient specific

Riaz Melanoma 68 Patient specific

Four datasets were analyzed in this study, including a large cohort of 33 primary untreated 
tumor types obtained from TCGA; a cohort of primary untreated CRC, STAD and UCEC from 
TCGA with curated escaped mechanisms (Lakatos); an immunotherapy-treated metastatic 
tumor cohort from the Hartwig Medical Foundation (Hartwig); and a metastatic melanoma 
tumor cohort with genomic data pre and during immunotherapy (Riaz). The analysis was 
performed using different immunopeptidomes as described in the paper.
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(CN) status for escape genes (Supplementary Fig. 8). In all three tumor 
types, TMB (Supplementary Fig. 9a) and immune dN/dS (Supplemen-
tary Fig. 9b) were significantly higher in MSI and PolE mutated (POLE) 

subtypes compared to MSS tumors. When stratifying by escape status, 
escaped+ tumors had significantly higher TMB than escaped− tumors 
(MSS: P = 0.0018 and MSI: P = 0.00027, Fig. 3a), and an immune dN/dS 
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Fig. 2 | Immune dN/dS landscape across multiple tumor types. a,b, Immune 
dN/dS (ON-dN/dS/OFF-dN/dS ratio) in multiple tumor types using either a 
curated HLA-A0201 based immunopeptidome (a) or a proto-HLA consisting of 
the most common HLA haplotypes in the population (b). Error bars indicate 95% 
confidence interval to the point estimate obtained with SOPRANO and number of 
samples for each tumor type is described in Supplementary Table 1. c, Proto-HLA 
immune dN/dS from SOPRANO versus proto-HLA normalized HBMR reported 
previously28. d,e, Immune dN/dS on HLA-A0201 (d) and HBMR on the proto-HLA 
versus median CD8 T cell infiltration, including microsatellite-unstable (MSI)-
rich tumors (e). f,g, Immune dN/dS on HLA-A0201 (f) and HBMR on the proto-HLA 
versus median CD8 T cell infiltration, excluding MSI-rich tumors (g). We assumed 
that MSI-rich tumors are also escape-rich tumors. P values and correlation 
coefficients were calculated using Pearson’s correlation (two-sided t-test). Gray 

shaded areas represent error bands indicating the 95% confidence interval. Red 
dashed lines indicate neutral dN/dS at one. h, log2 dN/dS versus -log10(P value) of 
selected escape genes (Supplementary Table 3) using missense and truncating 
mutations. i, Linear mixed model using dN/dS as the dependent variables and all 
immune metrics as independent variables. x axis shows the B coefficients. Model 
selection using the AIC revealed that immune dN/dS is strongly associated to the 
median abundance of CD8 T cells. No immune subpopulation was significantly 
associated to OFF-dN/dS. For ON-dN/dS, adjusted R2 = 0.927, F-statistic = 18.8  
on 10 and 4 degrees of freedom, P = 0.00617. For OFF-dN/dS, adjusted  
R2 = 0.898, F-statistic = 13.3 on 10 and 4 degrees of freedom, P = 0.0117 
(significance codes are described as ‘***’ for P < 0.001, ‘**’ P < 0.01, ‘*’ P < 0.05, and 
NS, for not significant P > 0.05). APC, antigen presenting cell; FDR, false discovery 
rate; pDC, plasma dendritic cell. R indicates Pearson r correlation coefficient.
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closer to one (Fig. 3b), suggesting that most mutations post-escape 
accumulate neutrally.

To test whether antigenic mutations accumulate ‘immune’ neu-
trally after escape (absence of immune selection), we compared muta-
tion burden and immune dN/dS. Indeed, only in MSS escaped+ tumors, 
TMB and immune dN/dS were significantly correlated (P = 0.0001;  
Fig. 3c), suggesting that immune selection was still active in MSS 
escaped− patients. To rule out that this association was driven by 
high-TMB escaped+ tumors, we exclude individuals with a mutation 
burden above the maximum TMB observed in MSS escaped− and con-
firmed the correlation considering all mutations (P = 0.0092; Sup-
plementary Fig. 9c) and clonal mutations (P = 0.032; Supplementary 
Fig. 9d). Immune selection was not associated with TMB in escaped+ 
or escaped− MSI/POLE tumors (Supplementary Fig. 9e). This finding 
suggests that evasion mechanisms in these tumor subtypes develop 
early in carcinogenesis, leading tumors to be immune neutral, highly 
antigenic and thus potentially more responsive to immunotherapies. 

Indeed, it is known that patients with MSI or POLE subtypes have the 
best clinical response rates to checkpoint inhibitors36. We corrobo-
rated these results using at least three synonymous mutations in the 
immunopeptidome to minimize the risk that patients were incorrectly 
classified as edited (P = 2.8 × 10−5; Supplementary Fig. 9f).

We next asked whether in MSS tumors clonal mutations hold 
immune selection signals whereas subclonal mutations do not, as 
they can accumulate freely when escape mechanisms are present. 
Clonal immune dN/dS was similarly lower than one for MSS escaped+ 
and escaped− tumors (Fig. 3d; 0.67 versus 0.68 immune dN/dS). When 
including subclonal mutations (that is all mutations), only escaped+ 
tumors had an immune dN/dS closer to one, whereas escaped− tumors 
retained immune selection signals (0.89 versus 0.69, P = 0.0035;  
Fig. 3d). To demonstrate that this effect was not due to high-TMB 
individuals from escaped+ tumors but rather driven by subclonal 
variants, we compared clonal versus all immune dN/dS within each 
patient. Escaped− tumors had similar immune dN/dS using all or clonal 
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Fig. 3 | Immune dN/dS analysis of a curated set of individuals from three 
tumor types. Analysis of a curated set of individuals from three MSI-rich tumor 
types. Patient-specific analysis of primary untreated colorectal (CRC), stomach 
(STAD) and uterine/endometrial cancer (UCEC) (n = 879) with annotated escape 
mechanisms obtained from Lakatos et al.32. a,b, TMB (a) and immune dN/dS (b) 
for different subtypes of cancers, including MSS escaped− (MSS−, n = 130) and 
escaped+ (MSS+, n = 144), microsatellite-unstable escaped− (MSI−, n = 53) and 
escaped+ (MSI+, n = 125) and POLE mutants (n = 38). c, Immune dN/dS versus 
TMB for immune-escaped and immune-edited MSS groups using all mutations 
(MSS− n = 107, MSS + n = 133). d, Immune dN/dS comparison between escaped− 
and escaped+ tumors using clonal (MSS−, n = 93, MSS+, n = 94) or all mutations 

(MSS−, n = 130, MSS+, n = 144). e, Immune dN/dS comparison between clonal 
versus all mutations in escaped− and escaped+ MSS tumors. Reported P values 
from paired two-samples two-sided Wilcoxon signed rank test after multiple 
test correction using Holm method. f, Relationship between immune dN/dS and 
the reported CD8 T cell infiltration for escaped− and escaped+ in MSS and MSI 
tumors. Boxplots represent the median, 25th percentile and 75th percentile, 
and whiskers correspond to 1.5 times the interquartile range. CRC, circle; STAD, 
triangle; UCEC, square. For two-sample comparisons, P values were calculated 
using a nonparametric two-sided Mann–Whitney U test. For linear correlations, 
P values and coefficients were calculated using Pearson’s correlation (two-sided 
t-test). Red dashed lines indicate immune neutral dN/dS = 1.
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mutations (all mutations: 0.61 versus clonal: 0.59 immune dN/dS,  
Fig. 3e), whereas escaped+ tumors had a significantly higher immune 
dN/dS when including subclonal mutations (0.70 versus 0.55 immune 
dN/dS, P = 1.2 × 10−4; Fig. 3e), demonstrating the temporal acquisi-
tion of immune-neutral mutations in escaped+ tumors, and provid-
ing evidence for sustained immune selection in escaped− tumors 
(immune-edited tumors).

To further validate that immune selection strength depends on 
immune surveillance, we compared the patient-specific immune dN/dS 
to CD8 T cell infiltration in escaped−, immune-edited tumors. Immune 
dN/dS and CD8 T cells were correlated in primary MSS immune-edited 
tumors but not in MSS immune-escaped tumors (P = 0.018; Fig. 3f and 
Supplementary Fig. 10a, or other CD8 metrics from Danaher et al.33 
(P = 0.011, Bonferroni α = 0.025), Supplementary Fig. 10b), validat-
ing that the immunopeptidome holds CD8 T cell-mediated selec-
tive strength. Escape status in MSI and POLE tumors did not make a  
difference in immune infiltration, suggesting that besides a possi-
ble unknown escape mechanism, high mutation rate may mask weak  
negative selection, as recently proposed30.

Immune-edited tumors’ resistance to immunotherapy
To address the clinical importance of immune evasion and immune 
dN/dS as a tumor antigenicity surrogate, we analyzed 308 metastatic 
cases subjected to immunotherapy with ICIs from the Hartwig Medical 
Foundation cohort37 (Fig. 4a). Patients were sequenced before treat-
ment and classified into complete response and partial response and 
into progressive disease or stable disease following RECIST1.1 guide-
lines. There were 79 responders recorded (partial response and com-
plete response) and 229 nonresponders (progressive disease/stable 
disease). We estimated cohort- and patient-specific immune dN/dS 
using the HLA-A0201 immunopeptidome (Fig. 4b) or each individual’s 
six HLA alleles (Fig. 4c), respectively. Nonresponders were strongly 
immune-edited (immune dN/dS < 1) compared to responders for both 
immunopeptidomes (P = 0.034). A total of 17 of 154 nonresponders 
had high-immune dN/dS (dN/dS > 2), putatively indicating positive 
selection in the immunopeptidome (Fig. 4c). However, our simula-
tions suggest that high-immune dN/dS patients may artificially arise 
by carrying fewer synonymous mutations in the immunopeptidome 
than the rest of the cohort (Supplementary Fig. 11a) while having the 
same overall TMB (Supplementary Fig. 11b). Notably, immune dN/dS for 
nonresponders remained significantly lower than one when removing 
individuals with less than two, three or four synonymous mutations in 
the immunopeptidome respectively (Supplementary Fig. 11c).

Following our escape classification based on a list of escape genes 
(Supplementary Fig. 12), we found that responders were more fre-
quently escaped than nonresponders (chi-squared P = 8 × 10−5; Fig. 4d). 
Responders had also a significantly higher TMB than nonresponders 
before treatment (Supplementary Fig. 13a; P = 1.4 × 10−4). Escaped+ 
tumors also had a significantly higher TMB compared to escaped− 
patients (Supplementary Fig. 13b; P = 2.5 × 10−18). However, within 
the escaped+ and escaped− group, TMB was not different between 
responders and nonresponders, suggesting that TMB is insufficient to 
predict clinical response when the escape status is considered (Fig. 4e). 
We hypothesized that immune dN/dS < 1 and absence of escape indi-
cates strongly immune-edited tumors resistant to immunotherapies. 
Patient-specific immune dN/dS for responders and nonresponders 
separated by escape status were significantly different (P = 0.008), 
and escaped− nonresponders had immune dN/dS significantly lower 
than one when filtering out patients with zero (Fig. 4f; P = 0.001), 
one, two or three synonymous mutations in the immunopeptidome  
(Supplementary Fig. 13c).

To determine whether other dN/dS metrics were affected by our 
stratification, we restricted our cohort estimates to only driver genes 
(driver dN/dS), non-driver genes (global dN/dS), escape genes (escape 
dN/dS) and the immunopeptidome (immune dN/dS) in four patient 

groups (Fig. 4g). Driver dN/dS was positive for escaped- and neutral for 
escaped+ tumors. Escape dN/dS was higher than one for escaped+, and 
expectedly zero for escaped− patients, given the absence of mutations 
in these genes. Global dN/dS was expectedly close to one for all groups 
as most somatic mutations in the genome are neutral14. Immune dN/dS 
was lower than 1 only for nonresponders/escaped− tumors, corroborat-
ing our hypothesis of primary resistance in immune-edited patients.

To evaluate the clinical importance of TMB, escape status and 
immune dN/dS, we investigated their impact on overall survival in 
ICI-treated patients. Initially, only escape status was significantly 
associated to clinical outcome (univariate Cox, TMB log-likelihood 
ratio test (LRT), P = 0.51, escape LRT P = 0.006, immune dN/dS LRT 
P = 1). Escaped+ patients displayed a significantly longer overall sur-
vival compared to escaped− patients (P = 0.0023; Supplementary 
Fig. 14a), especially in the nonresponder arm (P = 1 × 10−6; Fig. 4h). As 
we previously observed a nonresponder subgroup with high-immune 
dN/dS, we did not expect a linear association with clinical outcome. 
To account for this, we classified patients into immune low, neutral 
and high based on predefined immune dN/dS cutoffs (Methods) and 
removed high-immune dN/dS tumors unlikely to be genetically escaped 
(Supplementary Fig. 14b). Unedited escaped+ individuals had a signifi-
cantly better overall survival compared to edited escaped− patients 
(P = 0.0025; Fig. 4i), validating these categories as predictive markers  
of ICI response. Alternatively, to avoid exclusion of patients and 
using predefined cut points, we estimated the absolute distance to  
neutrality (delta immune (d-immune) dN/dS). We showed that 
high-immune dN/dS individuals can be edited but have high dN/dS 
due to low mutation burden. In a multivariate cox regression analysis, 
escape status, age and d-immune dN/dS were significantly associated 
with overall survival, whereas TMB was not prognostic (Supplementary 
Fig. 14c). Importantly, escaped− high d-immune dN/dS individuals had 
the worst prognosis, whereas the escaped+ low d-immune dN/dS had 
the best prognosis (Supplementary Fig. 14d), further validating that 
unedited (immune-neutral) escaped+ tumors are the best candidates 
for ICI treatment. Remarkably, across different multivariate models 
including recently published metrics38 (clonal and subclonal TMB, indel 
count, CXCL9 and CD274 expression), escape status and d-immune 
dN/dS remained as significant factors (AIC 448, log rank P = 1 × 10−6; 
Supplementary Fig. 14e).

Immune dN/dS and escape predicts ICI response in melanoma
To further validate immune dN/dS as a predictive biomarker for  
immunotherapy, we analyzed a clinically annotated longitudinal cohort 
(Riaz cohort) of 68 metastatic melanoma patients39, sequenced before 
(Pre) and during (ON) ICI therapy (Fig. 5a). We applied SOPRANO using 
each patient-specific HLA-I genotype to obtain immune dN/dS for 48 
patients who had at least one synonymous mutation in the immun-
opeptidome (Supplementary Fig. 15a). We compared the selective 
pressure acting on the immunopeptidome Pre- and On-therapy for 
responders (R, complete responders or partial responders) and non-
responders (NR, stable disease or progressive disease). Treatment 
reduced mutation burden (Supplementary Fig. 15b) and immune dN/dS  
(Supplementary Fig. 15c) only in responders and only inside the  
immunopeptidome (ON P = 0.024, OFF P = 0.95), supporting a reduc-
tion in tumor volume directly linked to immune selection (Fig. 5b).

Next, we assessed whether immune dN/dS reflects tumor anti-
genicity in the context of response and escape in this longitudinal 
cohort. We classified patients based on the escape gene list plus loss of 
HLA heterozygosity and HLA germline status. A total of 42 out of the 88 
escape genes were found mutated in 30 individuals, with most muta-
tions being missense; 5 additional patients had loss of heterozygosity/
homozygosity in the HLA region, resulting in 35 escaped+ patients 
versus 13 escaped− patients (Fig. 5c). Cohort immune dN/dS revealed 
that in Pre-treatment samples, escaped+ patients showed an average 
immune dN/dS of ~1 regardless of response, whereas escaped− patients 

http://www.nature.com/naturegenetics


Nature Genetics | Volume 55 | March 2023 | 451–460 457

Article https://doi.org/10.1038/s41588-023-01313-1

who did not respond were immune edited (immune dN/dS = 0.6, 95 CI, 
0.44, 0.82) (Fig. 5d). Importantly, only responder escaped+ patients 
showed immune dN/dS decrease during therapy, whereas the nonres
ponder escaped− patients sustained immune selection signals after 

treatment (Supplementary Fig. 15b). To control if the observed immune 
selection was due to a bias on the mutation burden, we randomized the 
same number of genes found mutated in the cohort and recalculated 
immune dN/dS for escaped+ and escaped− 10,000 times. The observed 
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nivolumab (Nivo), pembrolizumab (Pembro) or a combination of ipilimumab 
plus nivolumab (IPI/nivo). b, Cohort immune dN/dS for responders (n = 79) and 
non-responders (n = 229) using a common HLA-A0201 immunopeptidome reveal 
immune dN/dS lower than 1 for nonresponders consistent with a low overall 
tumor antigenicity. c, Comparison of individual immune dN/dS for responders 
(median = 1.05, n = 67) and nonresponders (median = 0.77, n = 154) using  
patient-specific HLA immunopeptidomes (P = 0.034). d, Proportion of escaped+ 
(NR n = 81, R n = 48) and escaped− (NR n = 148, R n = 31) tumors classified by 
clinical response. Responders were enriched in genetic escape mechanisms  
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median = 0.69, P = 0.0012). One-sample one-sided Wilcoxon signed rank test  
with mu = 1 (NR− n = 85, NR+ n = 69, R− n = 24, R+ n = 43). Boxplots represent  
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1.5 times the interquartile range. g, Cohort dN/dS for driver genes (196 genes 
from Martincorena et al.14), escape genes (Supplementary Table 3), all the  
exome (global dN/dS) and the immunopeptidome (immune dN/dS). All error 
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SOPRANO package. h, Kaplan–Meier curves of overall survival for responders 
and nonresponders grouped by escape status (log rank P = 1.4 × 10−6). i, Kaplan–
Meier curves of overall survival for individuals classified based on immune  
dN/dS and escape status (−, escaped−; +, escaped+) (log rank P = 0.0025).  
Red dashed lines indicate immune-neutral dN/dS = 1.
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immune dN/dS for escaped− patients was significantly lower than the 
randomized distribution (Fig. 5e; exact P = 0.019).

Finally, to test immune dN/dS predictive power independent of 
escape status, we compared overall survival using TMB and immune 
dN/dS before therapy as independent variables. As previously demon-
strated in this cohort39, high TMB showed significantly better response 
than low TMB patients (log rank P = 0.031; Fig. 5). We classified patients 
into immune dN/dS low (immune dN/dS < 0.82) and neutral (Fig. 5f). 
We also excluded immune-high tumors due to high confidence inter-
vals (Supplementary Fig. 15e) and few synonymous mutations in the 
immunopeptidome (Supplementary Fig. 15f). Overall, we identified a 

significant predictive difference between groups when including the 
immune-high group (log rank P = 0.026; Supplementary Fig. 16a) or 
when excluding it (log rank P = 0.015; Fig. 5g). Immune-neutral tumors 
showed the best response and low-immune dN/dS tumors had worst 
overall survival compared to neutral tumors. Additionally, d-immune 
dN/dS was also prognostic (Supplementary Fig. 16b). Immune-neutral 
tumors (low d-immune dN/dS) showed the best overall survival. A 
multivariate cox-hazard model with TMB, escape status and d-immune 
dN/dS demonstrated that immune-neutral patients had the lowest 
hazard ratio (HR = 0.25 (0.077–0.82), P = 0.023), whereas TMB was not 
prognostic (Supplementary Fig. 16c; HR = 0.84 (0.35–2.02), P = 0.7). 
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melanoma cohort. a, A clinically annotated cohort of 48 patients with 
sequencing data before (Pre) and after (On) receiving ICIs was obtained from 
Riaz et al.39. b, dN/dS distributions for nonresponders (n = 36) and responders 
(n = 12) before and after therapy. We estimated OFF-dN/dS (left), ON-dN/dS 
(middle) and immune dN/dS (right) using each patient’s six HLA alleles. P values 
were calculated using two-sided Wilcoxon rank sum test and corrected using 
Benjamini-Hochberg. c, Mutations and their prevalence in genes classified 
as escaped in the Riaz cohort. Individuals were also classified according to: 
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HLA heterozygocity (N, no; Y, yes) and their immune dN/dS category (N, neutral; 
L, low; H, high). d, Pre-therapy immune dN/dS for escaped− and escaped+ 
cohorts classified as responders (R) and nonresponders (NR). Escaped− 

nonresponders were the only group with cohort immune dN/dS less than 1. 
All escaped+ tumors before therapy displayed immune dN/dS equals to one. 
e, Immune dN/dS distribution for randomized escaped− tumors. The point 
estimate for nonresponders escaped− patients was significantly lower than the 
mean of randomized immune dN/dS values (exact P = 0.019). f, Kaplan–Meier 
curves of overall survival between high-TMB and low-TMB patients. High-TMB 
patients had significantly longer overall survival (log-rank P = 0.031) than low-
TMB individuals. g, Kaplan–Meier curves of overall survival between immune 
neutral (escape+ and neutral immune dN/dS) and immune edited (escape− and 
low-immune dN/dS). The association between overall survival and immune  
dN/dS was more significant than with TMB (log-rank P = 0.015). Red dashed lines 
indicate immune-neutral dN/dS = 1.
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When combining the HMF and the Riaz cohort, we corroborated that 
immune-edited patients, those with low-immune dN/dS and without 
escape mechanisms, have the worst prognosis after receiving immu-
notherapy, when filtering for one, two, or at least three synonymous 
mutations in the immunopeptidome (Supplementary Fig. 16d).

Discussion
Although immunoediting is widely recognized as an evolutionary  
process directed by our immune system that selects for lowly antigenic 
or escaped clones, its dynamics during carcinogenesis and response to 
treatment are poorly understood. Over the last decade, TMB has been 
regarded as an immunogenicity metric widely used to enroll patients for 
ICI treatment. However, TMB does not capture tumor-immune evolu-
tionary dynamics and a large proportion of patients do not respond to 
immunotherapies despite their TMB status. In addition, a recent study 
has shown that low TMB colorectal cancers can also achieve clinical 
response to ICIs9. The increasing evidence supporting the adaptive 
immunity’s role on sculpting the cancer genome40, and the limitations 
of predictive biomarkers for ICI treatment, highlight the need for accu-
rate metrics reflecting the underlying tumor evolutionary history.

Here, we propose that the nonsynonymous to synonymous muta-
tions ratio, or dN/dS, estimated on the self-immunopeptidome can be 
used to differentiate between immune-edited versus immune-escaped 
tumors enabling treatment response prediction. We hypothesized that 
metastatic tumors with an evolved escape mechanism accumulate 
neoantigens and that their accumulated antigenicity is unmasked by 
immunotherapy. In contrast, immune-edited tumors have an overall 
low tumor antigenicity and will be less likely to respond to ICIs. This 
hypothesis was corroborated by our analysis of ICI response in more 
than 300 metastatic tumors. Our findings demonstrate the importance 
of evolutionary aware metrics over the standard TMB as predictive 
biomarkers for ICI treatment.

Importantly, during immunoediting, growing cells are under 
immune selection. However, negative selection in cancer has been a 
controversial topic28,29,41. Although some studies have shown an asso-
ciation between immune activity and selective pressures2,13,24,42,43, 
others have claimed that there is limited evidence to prove this relation-
ship28,44. As several studies have applied dN/dS as selection metric in 
cancer and normal tissue13,14,45–48, we aimed to understand immune dN/
dS dynamics to explain the lack of selection signals in cancer. Beyond 
proposed explanations, we demonstrate that by failing to classify  
individuals into edited and escaped, immune selection signals are lost. 
The low number of tumor types with strong immune selection suggests 
that a majority have some undetected immune escape mechanism, 
which will ultimately be possible to detect using immune dN/dS.

Precisely which genes and genetic alterations lead to immune 
evasion, or immune recognition, remain unknown. Escape or antigenic 
variation may arise in certain contexts due to other genetic events such 
as CN alterations27, gene fusions49 or frameshift events50. Discovery and 
profiling of non-canonical transcripts derived from viruses or aberrant  
splicing isoforms has only been possible recently thanks to new 
technologies (that is, long-read sequencing). In addition, absence of 
immune selection in tumors with no genetic escape suggests that other 
mechanisms mimicking evasion may also exist; that is, tumor clones in 
immune-privileged tissues growing under immune-neutral dynamics. 
Another limitation to detect immune selection stems from the chosen 
personal immunopeptidome; germline variants, expression status, 
wrong MHC-binding predictions or mutations that reduce native affin-
ity can impact the precision of immune selection, that is, predicted 
immunopeptidomes with an excess of peptides not truly bound to 
MHC will mask selection signals. All these limitations render immune 
selection metrics highly conservative and highlight the urgent need for 
a better understanding of natural immunity during tumor progression.

Further refinement of the immunopeptidome and escape genes, 
by improving MHC-binding prediction methods and assessing the 

functional impact of escape events, and discovery of non-human/
alternative derived antigens must be a priority to reveal all possible 
and functional tumor–immune interactions during cancer evolution.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41588-023-01313-1.
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Methods
Analysis of primary untreated tumors from TCGA
TCGA data. Somatic mutation calls of 10,202 samples across 33 tumor 
types from TCGA consortium were obtained via GDC portal (https://
portal.gdc.cancer.gov/) for four callers: MuTect2, VarScan2, MuSE and 
SomaticSniper. We compared our results between callers and used 
MuTect2 for all remaining analysis. GDC has a unified pipeline with 
multiple quality control including a panel of normal to filter false posi-
tive somatic calls51 (that is, germline contamination). MAF files were 
converted to VCFs and reannotated using ensemblVEP (v89) using flag 
–pick option (best ensembl transcript). Only point mutations classified 
as synonymous, missense, start loss, stop gain, stop loss or frameshift 
mutations were considered.

Normalized immune scores for multiple cell subpopulations were 
obtained from three different studies (Rooney et al.26, Danaher et al.33 
and Thorsson et al.34). For cohort analysis, median immune scores per 
tumor type were calculated based on the available data (z-normalized 
scores, cell-type scores based on expression of specific genes or  
Thorsson immune expression cluster scores).

Immune selection metrics defined as HBMRs and simulated 
HBMRs were obtained from a previous study28, available for 19 tumor 
types. The CRC acronym comprises colon adenocarcinoma and rectum 
adenocarcinoma samples.

Six-digit HLA allele information for 9,736 samples was obtained 
from the controlled access files from Thorsson et al.34 all deposited in 
https://gdc.cancer.gov/about-data/publications/panimmune.

Expression and CN data per gene were downloaded from the  
GDCquery API available in the R package TCGAbiolinks. We normalized 
expression values by dividing the upper-quantile fragments per kilo-
base of exon per million mapped fragments (FPKM) per gene per sample  
by the maximum value observed in each sample and then applying a 
log transformation. To determine whether an individual was escaped 
based on CN status, we estimated the median number of deletions 
(CN = 1 or CN = 0) and the median number of gains (CN > 2) for a subset 
of 1,097 patients with CN status and immune dN/dS available (minimum 
synonymous 1). Individuals with above the median number of deleted 
escape genes were classified as ‘escaped Del’. A similar approach was 
used for escaped gains.

To determine the impact of missense/truncating events on CN 
burden, we obtained the aneuploidy score for deletions and amplifica-
tions from the Supplementary Table 2 in a previously published paper35.

SOPRANO. SOPRANO (http://github.com/luisgls/SOPRANO) was built 
based on our original method published in Zapata et al.13 to calculate 
selection in variant effect predictor annotated files. It calculates the 
ratio of nonsynonymous to synonymous mutation rate (dN/dS) inside 
(ON-target dN/dS) and outside (OFF-target dN/dS) a target region using 
a 192-trinucleotide context correction (SSB192). SOPRANO takes two 
input files: (1) a variant effect predictor annotated file with somatic 
point mutations and (2) a target protein coordinates bed file. Missense 
and synonymous mutations must be included. Other point mutations 
such as truncating (stop-loss/stop gain) or splicing variants can be 
included as nonsynonymous events. The remaining mutation types 
will be discarded, except for intronic mutations. SOPRANO can use 
intronic mutations to improve the background mutation rate estimated 
from OFF-dN/dS regions by dividing the observed number of intronic 
mutations by the length of the intronic regions of the gene (estimated 
from hg19 genome). The resulting mutation rate is then averaged with 
OFF-dN/dS.

SOPRANO can calculate dN/dS using somatic mutation data from 
a single patient or a cohort on any region of interest. SOPRANO allows 
for excluding driver genes and/or randomizing the target region. 
SOPRANO uses a set of Ensembl transcript identifiers and their respec-
tive FASTA file, enabling estimation of dN/dS in any genome, irrespec-
tive of the version. A major limitation of SOPRANO is the inability to 

estimate immune selection when no mutations are present inside the 
immunopeptidome. In these cases, it is not possible to differentiate 
between immune-editing or escape.

In this work, immune selection was estimated at multiple levels 
(described in Table 1). For cohort analysis, we used HLA-A0201 or 
proto-HLA based predictions. For patient-specific analysis, we built a 
self-immunopeptidome based on all peptides predicted to bind at least 
one of the six-HLA germline alleles as the target region. We defined 
immune dN/dS as the ratio between dN/dS inside (ON-target dN/dS) and 
outside the immunopeptidome (OFF-target dN/dS) to correct for tech-
nical artifacts (germline contamination, overfiltering or false-positive 
somatic calls) that can bias the neutral dN/dS (~1). Immune dN/dS is a 
normalized metric of immune selection assuming that most coding 
somatic mutations outside the immunopeptidome are nonantigenic. 
This assumption is supported by the fact that only 10% of missense 
mutations lead to neoantigens with high recognition probability; thus, 
the majority of mutations outside the immunopeptidome (excluding 
driver genes) should be under neutral dynamics (dN/dS ~ 1). We tested 
different immunopeptidomes and demonstrated that in multiple 
conditions OFF-dN/dS approximate to one (Supplementary Fig. 2).

Estimation of edited neoantigens from immune dN/dS. As an  
example, an immune dN/dS of 0.6 indicates that 40% of nonsynony
mous mutations (na) were removed with respect to the observed 
number of synonymous events (ns) multiplied by the ratio of non
synonymous (μa) and synonymous mutation rates (μs) (Equation 1).

dN
dS

= 0.6 => na = 0.6 ∗ ns ∗
μa
μs

(1)

This formula also allows us to calculate the number of neoantigens 
removed by selection inside the immunopeptidome of each individual 
using:

naedited = (naobs − nsobs ∗
μa
μs
) (2)

where naedited is the number of nonsynonymous mutations removed from 
the tumor based on the observed number of nonsynonymous muta-
tions (naobs) and the neutral expectation (

μa

μs
) This number represent a 

lower boundary for the number of immune-edited mutations given 
that mutations outside the immunopeptidome might have also been 
edited by immune selection (nonsynonymous in non-self regions 
transforming a non-binding peptide to a binding peptide).

Patient-specific immunopeptidomes. To construct a human immuno
peptidome, we downloaded coding transcripts with HGNC symbol and 
Ensembl transcript ID from Ensembl Biomart (genes v90). We obtained 
all transcript lengths and ran bedtools (V2.26) makewindows to get  
all possible overlapping 9-mers. We then obtained the FASTA  
sequence for each of these 11,060,000 9-mer and ran netMHCpan4.0 
(and netMHCpan4.1) using a list of HLA alleles (4-digit resolution for 
HLA-A, -B and -C). This list was restricted to the top 70 HLA alleles 
that have more than 1% population frequency in a list of 1,277 samples 
from the 1000 Genomes Project cohort52. We selected all possible 
peptides with a %rank < 0.5 (strong binders or SB) as our unfiltered 
immunopeptidome.

To increase the specificity of our estimates, we filtered the dataset 
by intersecting strong binder peptides with a list of T cell-positive assay 
peptides from the Immune Epitope Database, IEDB (http://iedb.org 
accessed on 05/02/2018). The peptide was kept if the 9-mer sequence 
had an exact match within any IEDB-positive peptide of length 9 or 
more. We kept transcripts with mean and/or median expression of 
more than 1 FPKM (globally expressed genes) calculated across 33 
TCGA tumor types obtained from the Human Protein Atlas. The strong 
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binder list intersected with IEDB-positive assays can be obtained from 
the GitHub repository (github.com/luisgls/SOPRANO) as a bed file:  
allhlaBinders_exprmean1.IEDBpeps.bed. To obtain an HLA-A0201 
immunopeptidome, we filter this list for regions associated to 
HLA-A0201. To obtain a proto-HLA, we performed the same filtering 
but filtering for A0201, A0101, B0702, B0801, C0701 and C0702.

To generate a patient-specific immunopeptidome, we search 
in the precomputed immunopeptidome database (i.e allhlaBind-
ers_exprmean1.IEDBpeps.bed) for the six matching HLA alleles using 
a script provided in the repository. We created a bed file containing 
an Ensembl transcript ID and the start and end of the merged set of 
predicted HLA-binding peptides.

Alternative immunopeptidomes. To benchmark SOPRANO, we calcu-
lated ON, OFF and immune dN/dS using multiple immunopeptidomes 
(Supplementary Fig. 2) from a random set of 1,000 HLA-A0201 indi-
viduals. We compared strong binders predicted using netMHCpan4.0 
or netMHCpan4.1 (available in the github repository). We compared 
(a) strong binders (%rank <0.5 defined) and (b) weak binders (%rank 
<2 defined as SB + WB, Supplementary Fig. 2, immunopeptidome C 
and E). To determine the impact of patient-specific expression, all 
non-expressed transcripts (FPKM = 0) from each TCGA individual were 
removed (group C, E and G in Supplementary Fig. 2).

TCGA data versus immune dN/dS. We obtained cohort (Supple-
mentary Table 2) and per-patient (Supplementary Table 4) immune 
dN/dS on 33 tumor types using SOPRANO. We excluded cohorts with 
less than 10 mutations in the immunopeptidome, used ExonicIntronic 
mode and SSB192 correction method. For single individual analysis, 
we used ExonicOnly mode, and kept individuals with at least a single 
synonymous mutation in the immunopeptidome. Ggpubr and ggstat-
splot packages from R available from repository CRAN (2020-02-29) 
were used for correlation analysis. We ran SOPRANO for non-escaped 
patients by excluding tumors with a missense or a truncating mutations 
in one of the genes labeled as escape genes (labeled as escaped + ).

To determine the best linear regression model, we checked  
collinearity and compared cohort and per-patient SOPRANO ON, OFF 
and immune dN/dS (ON/OFF) from tumors with available immune 
infiltrate data. As dN/dS is a continuous outcome variable, and our aim 
was to identify which immune metrics, with unknown random effects, 
explain dN/dS, we used generalized linear mixed models. We selected 
the best performing model by using the function stepAIC and checked 
for normality and heteroscedasticity using the gvlma package. TMB 
was defined as the logarithm base 10 of the point mutation number. 
When TMB was added to the model, it violated the assumptions for 
linear regression. We compared the expression levels of PD1 and PDL1 
in a univariate and multivariate model with CD8 T cells.

Escape status of the TCGA cohort. We obtained a list of genes from 
the Antigen Processing and Presentation Machinery (hsa04612) down-
loaded from KEGG. We included escape genes used in Rosenthal et al.2 
that were not present in this list such as ERAP1, ERAP2, IRF1 and PDIA3. 
We also added FAS and MEX3B, both genes associated to immune 
response53,54. The final list consisted of 88 genes (Supplementary 
Table 4). We then classified each individual as escaped+ if there was 
a missense or a truncating mutation in one of these escape genes. To 
determine whether these genes were under positive selection in the 
TCGA cohort, we ran dndscv14 with default parameters using only 
escape genes (Supplementary Table 6).

Immune dN/dS and escape status for MSI-rich cohorts from TCGA 
data (Lakatos cohort). We obtained a high quality subset of MSI-rich 
tumors, CRC, UCEC and STAD. In this dataset, curated data for other 
escape mechanisms and MSI status was available (Lakatos et al.32). 
We excluded those patients that did not have an assigned escape 

phenotype or did not have a molecular subtype assigned (MSS, MSI or 
POLE). We also explored CN alterations in escape genes and determined 
patient escape status based on the median number of CNAs present in 
each tumor type. Clonal and subclonal mutations for these patients 
were obtained from our previous study.

Analysis of the metastatic cohort before immunotherapy
HMF cohort. Hartwig somatic calls and metadata were obtained from 
the Hartwig Medical Foundation under license agreement DR-078. We 
selected 308 metastatic patients who underwent immunotherapy after 
biopsy and had a recorded clinical response in the ‘first response’ col-
umn from the metadata. Only mutation types classified as synonymous, 
missense, start loss, stop gain, stop loss or frameshift were included. 
We only used somatic calls with the flag PASS, removed indels and 
reannotated SNVs using ensemblVEP (v90, reference Grch37) with 
the option –pick (best transcript per gene). We used VATools V1.0.0 to 
parse the input for SOPRANO.

Raw clinical data were supplied by HMF and final consistency 
checks are still to be performed. The response evaluations were not 
performed as part of a clinical trial and the timing of the evaluations 
was variable. Patients were classified as responders and nonrespond-
ers based on the first response recorded after treatment was initiated 
using RECIST1.1 response criteria. Responders were all those labeled 
complete response (1 case), or partial response (78 cases). Patients with 
stable disease (98 cases) or progressive disease (131 cases) were classi-
fied as nonresponders. There were 79 patients with no data, 2 classified 
as clinical progression, 4 classified as non-determined and 3 cases clas-
sified as non-complete response/non-progressive disease who were not 
included in the analysis. The timing from biopsy to response was not 
included. No further classifications were performed. We used the same 
set of 88 ‘escape’ genes to classify patients into escaped+ and escaped−.

Due to the availability of whole-genome sequences in the HMF, 
we used MOBSTER20 to perform clonal/subclonal deconvolution and 
determine clonal versus subclonal status of somatic mutations. We 
included mutations with VAF > 8% and assumed clonal CN states 1:0, 
1:1, 2:0, 2:1 and 2:2. The rest of parameters were default.

HLA genotype and immunopeptidome for 308 HMF individuals. 
We obtained 308 germline whole genome sequencing data either in 
FASTQ or CRAM file format from the Google Cloud bucket. CRAM files 
were pre-processed using samtools (v1.11) to convert them to fastq files. 
Fastq files were aligned to the genome using Yara Mapper55 against a 
default HLA reference, which generated the input for OptiType56 to 
obtain 4-digit HLA type for each patient. The references are based on 
the IMGT/HLA Release 3.14.0, July 2013, and have been processed as 
described in the publication of OptiType.

Survival analysis of the HMF cohort. To perform survival analysis  
in the HMF cohort, we used the difference between the biopsy date 
respect to the date of death to obtain the time variable for those 
patients that were deceased. For patients classified as alive, we sub-
tracted the last date recorded in the cohort as the maximum date from 
the biopsy date. Patients were classified as alive if they did not have a 
date of death recorded on the clinical metadata. Neutral individuals 
were those with immune dN/dS between 1.22 and its reciprocal, 0.82, 
based on the upper quartile of immune dN/dS value. These values are in 
concordance with the analysis performed in the longitudinal metastatic 
cohort. We also explored the association between d-immune dN/dS, 
defined as the absolute distance to one, with overall survival.

Driver, escape and global dN/dS. To determine driver, escape and 
global dN/dS, we ran SSB192 (http://github.com/luisgls/SSB-dNdS) 
with default parameters on each subgroup of the HMF cohort. We 
calculated driver dN/dS using the list of 196 genes provided in Martin-
corena et al.14. We calculated escape dN/dS using the list of 88 genes 
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used in this study. Global dN/dS is the dN/dS values across the whole 
exome considering all point mutations. Immunopeptidome dN/dS is 
the value obtained from SOPRANO.

Statistical analysis of the HMF cohort. Statistical tests were per-
formed using Wilcoxon rank-sum test for two distributions or Kruskal–
Wallis test when more than two distributions were present using the 
R package ggstatsplot, unless explicitly stated in the paper. Multiple 
test correction for coxph univariate analysis was performed using 
Bonferroni. For survival analysis, we used the package ggsurv and 
applied multiple test correction for pairwise comparisons using  
Benjamini–Hochberg, unless stated otherwise.

Analysis of melanoma cohort before and after 
immunotherapy
Riaz cohort. We obtained the somatic mutation data from Riaz et al.39, 
a melanoma cohort that was sequenced before and during immuno-
therapy. RECIST1.1 classification and clinical outcomes was provided 
by the authors. We obtained SOPRANO (github.com/luisgls/SOPRANO) 
ON, OFF and immune dN/dS using a patient-specific immunopepti-
dome consisting of peptides predicted to bind the native MHC (six HLA 
alleles). We classified individuals based on their immune dN/dS as low 
(<0.82), neutral (0.82–1.21) or high (>1.21).

Escape status in the Riaz cohort. We used the same set of 88 escape 
genes from the previous analysis to classify patients into escaped+ and 
escaped− based on the presence of stop loss, frameshift, stop gain, 
start loss and missense mutations. In addition, we classified patients as 
escaped+ if they had loss of heterozygosity or were fully homozygous 
in the HLA region. For the final cohort analysis, we selected 48 patients 
that had more than 10 mutations globally, at least one synonymous 
mutation in the immunopeptidome and had clinical response data.

Statistical analysis of the Riaz cohort. We performed the statistical 
comparison between dN/dS distributions of pre- (Pre) and post- (On) 
treatment samples using Wilcoxon Mann–Whitney test. For the cohort 
analysis, we mixed all samples for each strata and recalculated the 
immune dN/dS based on the observed counts of nonsynonymous and 
synonymous mutations and sites. To validate that the immune dN/dS of 
the nonresponder escaped− group was not an artifact from the selec-
tion of escape genes, we sampled 10,000 times 42 genes (equivalent 
to the number of genes mutated in our list of 88 genes) from all genes 
and recalculated dN/dS for each of the four groups (NR−, NR+, R−, R+). 
We compared the mean estimate obtained from the observed cohort 
(NR−) against the randomized distribution of dN/dS for NR−.

Survival analysis of the Riaz cohort. For the survival analysis, we 
first performed cox regression on TMB and immune dN/dS. To select 
an optimal cutpoint, we used the function surv_cutpoint from the 
R package survminer. This function allowed us to divide numerical 
variables into categorical variables for TMB and immune dN/dS. In our 
first classification of immune categories, we used 0.82 as the maximum 
cut-off for immune-edited patients and the reciprocal, 1.21, as the 
minimum value for immune-high patients. We compared the size of the 
confidence intervals for each patient to the immune dN/dS. To compare 
only immune-neutral and immune-edited patients, samples with high 
confidence intervals (CI > 5) and immune dN/dS higher than 1.21 were 
filtered for the analysis of survival. P values were obtained using the 
ggsurvplot function from the R package ggsurv.

Simulations. We used our freely available package (https://github.
com/luisgls/dNdSSimulator) to simulate immune dN/dS under two 
extreme conditions: fully active immune system and no capacity for 
immune response (parameter ‘pattack’ set to 1 versus 0). Detailed 
description of how to run the simulator is on the website. In each 

condition, we simulated 1,000 tumors starting from an initial pool 
of five cells, a probability of immune recognition of 10% (1 out of 10 
neoantigens will be recognized at each cell division with a probability 
set to pattack). Simulations were run until the 100th generation unless 
they reached carrying capacity before (number of cells > 2,000). In 
each simulation, at the final time point, population size and number 
of nonsynonymous/synonymous mutations in the immunopeptidome 
was recorded, and mutations present in less than 1% of cells were 
discarded. Only simulations with more than 1,000 cells were used  
to estimate immune dN/dS, and results were uploaded to GitHub 
repository (dNdSSimulator).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
TCGA data were obtained from GDC portal (https://portal.gdc.cancer.
gov/) and processed as described previously21. HBMR values of selec-
tion in the immunopeptidome were obtained from the supplementary 
material in Van Den Eynden et al.28. Normalized scores for immune cell 
infiltration were obtained from Rooney et al.26, Danaher et al.33 and 
Thorsson et al.34. Genes involved in the antigen presenting machinery 
were obtained from KEGG pathway hsa04612 (https://www.genome.
jp/pathway/hsa04612). An assembled list of escape mechanisms for 
colon adenocarcinoma, rectum adenocarcinoma and STAD and UCEC 
was obtained from Lakatos et al.32. Somatic variant calls from 308 
Hartwig Medical Foundation samples were downloaded from the 
Hartwig Data Portal under license agreement DR-075 (https://data-
base.hartwigmedicalfoundation.nl/). Hartwig Medical Foundation 
Patient-level genome-wide germline and somatic data (raw BAM files 
and annotated variant call data) are considered privacy sensitive and 
available through an access-controlled mechanism. Somatic calls, 
clinical and HLA allele information from 68 patients with metastatic 
disease sequenced before and during immunotherapeutic treatment 
was obtained from the authors of Riaz et al.39 and deposited in Zenodo 
(https://doi.org/10.5281/zenodo.7546705). SOPRANO results for each 
tumor type and patient are available as supplementary tables. Analyzed 
data, code and R markdown files to reproduce raw figures have been 
made available in Zenodo (https://doi.org/10.5281/zenodo.7416627).

Code availability
SOPRANO is freely available at github.com/luisgls/SOPRANO. Simula-
tor of stochastic branching process for immunoediting is available at 
http://github.com/luisgls/dNdSSimulator. Code for estimating positive 
selection in escape genes can be accessed from https://github.com/
im3sanger/dndscv. Code for estimating driver, global and driver dN/
dS can be obtained from http://github.com/luisgls/SSB_selection. 
We used the R programming language (environment 3.63, 2020-02-
29) and standard R packages available at repositories such as CRAN 
(2020-02-29) and Bioconductor 3.12. Code and R packages needed for 
raw figures are available as R markdown files (https://doi.org/10.5281/
zenodo.7416627). Bedtools 2.26 and R are needed for SOPRANO to run. 
To generate input files for SOPRANO, ensemblVEP v89 has been used. 
The software produced/used for this publication is fully described in 
Methods section. Tutorial to run SOPRANO is made available on http://
github.com/luisgls/SOPRANO. samtools (v1.11) was used to convert 
fastq files. Yara Mapper (https://www.seqan.de/apps/yara.html) was 
used for read mapping. OptiType v1.3.3 was used to get HLA alleles. 
The references are based on the IMGT/HLA Release 3.14.0, July 2013. 
netMHCpan4.0 and 4.1 was used to predict MHC binding.
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