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Abstract 

Understanding how incompletely cleared primary tumors transition from minimal 

residual disease (MRD) into treatment resistant, immune-invisible recurrences has major clinical 

significance. We show here that this transition is mediated through the subversion of two key 

elements of innate immune surveillance.  In the first, the role of TNF changes from an 

antitumor effector against primary tumors into a growth promoter for MRD.  Second, whereas 

primary tumors induced a natural killer (NK)-mediated cytokine response characterized by low 

IL6 and elevated IFN, PD-L1
hi

 MRD cells promoted the secretion of IL6 but minimal IFN, 

inhibiting both NK cell and T-cell surveillance. Tumor recurrence was promoted by trauma- or 

infection-like stimuli inducing VEGF and TNFwhich stimulated the growth of MRD tumors. 

Finally, therapies which blocked PD1, TNF or NK cells delayed or prevented recurrence.  

These data show how innate immune surveillance mechanisms, which control infection and 

growth of primary tumors, are exploited by recurrent, competent tumors and identifies 

therapeutic targets in patients with MRD known to be at high risk of relapse.  
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Introduction 

Tumor dormancy followed by potentially fatal, aggressive recurrence represents a major 

clinical challenge for successful treatment of malignant disease since recurrence occurs at times 

that cannot be predicted (1)(2-6). Tumor dormancy is the time following frontline treatment in 

which a patient is apparently free of detectable tumor, but after which, local or metastatic 

recurrence becomes clinically apparent (2-8). Dormancy results from the balance of tumor-cell 

proliferation and death through apoptosis, lack of vascularization, immune surveillance (2-5, 9-

13), and cancer-cell dormancy and growth arrest (2-4).  Dormancy is characterized by presence 

of residual tumor cells (minimal residual disease [MRD]) (14) and can last for decades (2, 5, 15-

17).   

Recurrences are often phenotypically very different from primary tumors, representing 

the end product of in vivo selection against continued sensitivity to frontline treatment (18-28). 

Escape from frontline therapy is common, in part, because of the heterogeneity of tumor 

populations (29, 30), which include treatment-resistant subpopulations (31). Understanding the 

ways in which recurrent tumors differ from primary tumors would allow early initiation of 

rational, targeted second-line therapy.  Identifying triggers which convert MRD into actively 

proliferating recurrence would allow more timely screening and early intervention to treat 

secondary disease (32).   

To address these issues, we developed several different preclinical models in which 

suboptimal frontline treatment induced complete macroscopic regression, a period of dormancy 

or MRD, followed by local recurrence.  Thus, treatment of either subcutaneous B16 melanoma 

or TC2 prostate tumors with adoptive T-cell transfer (21, 33-35), systemic virotherapy (36, 37), 

VSV-cDNA immunotherapy (38, 39), or ganciclovir (GCV) chemotherapy (40-42)  led to 
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apparent tumor clearance (no palpable tumor) for >40-150 days.  However, with prolonged 

follow-up, a proportion of these animals developed late, aggressive local recurrences, mimicking 

the clinical situation in multiple tumor types (43-45).  Recurrence was associated with elevated 

expression of several recurrence-specific antigens that were shared across tumor types, such as 

YB-1 and Topoisomerase-Iiα (TOPO-IIα(44), as well as tumor type–specific recurrence 

antigens (45).  

Here, we show that the transition from MRD into actively proliferating recurrent tumors 

is mediated through the subversion of two key elements of innate immune surveillance of tumors 

– recognition by natural killer (NK) cells and response to TNFα.  These data show how the 

transition from MRD to active recurrence is triggered in vivo and how recurrences use innate 

antitumor immune effector mechanisms to drive their own expansion and escape from immune 

surveillance. Understanding these mechanisms can potentially lead to better treatments that delay 

or prevent tumor recurrence.    

 

Materials and Methods 

Mice, cell lines, and viruses 

6-8 week old female C57BL/6 mice were purchased from Jackson Laboratories (Bar 

Harbor, Maine). The OT-I mouse strain (on a C57BL/6 [H2-K
b
] background) was bred at the 

Mayo Clinic  and expresses the transgenic T-cell receptor Vα2/Vβ5 specific for the SIINFEKL 

peptide of ovalbumin in the context of MHC class I, H-2K
b
 as previously described (46). Pmel-1 

transgenic mice (on a C57BL/6 background) express the Vα1/Vβ13 T-cell receptor that 

recognizes amino acids 25-33 of gp100 of pmel-17 presented by H2-D
b
 MHC class I molecules 

(47). Pmel-1 breeding colonies were purchased from The Jackson Laboratory at 6-8 weeks of 
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age and were subsequently bred at Mayo Clinic under normal housing (not pathogen-free) 

conditions.    

The B16ova cell line was derived from a B16.F1 clone transfected with a pcDNA3.1ova 

plasmid (33). B16ova cells were grown in DMEM (HyClone, Logan, UT, USA) containing 10% 

FBS (Life Technologies) and G418 (5 mg/mL; Mediatech, Manassas, VA, USA) until challenge.  

B16tk cells were derived from a B16.F1 clone transfected with a plasmid expressing the herpes 

simplex virus thymidine kinase (HSVtk) gene. Following stable selection in puromycin (1.25 

μg/mL), these cells were shown to be sensitive to ganciclovir (GCV; cymevene) at 5 µg/ml (40, 

41). For experiments where cells were harvested from mice, tumor lines were grown in DMEM 

containing 10% FBS and 1% Pen/Strep (Mediatech).   Where appropriate, adherent cells were 

confirmed to be B16tk cells by the expression of melanin and by qrtPCR for the HSVtk gene. 

Cells were mycoplasma-free and authenticated by morphology, growth characteristics, and PCR 

for melanoma-specific gene expression (gp100, TYRP-1, and TYRP2) and biologic behavior 

before freezing. Cells were cultured less than three months after resuscitation. 

Wildtype reovirus type 3 (Dearing strain) stock titers were measured by plaque assays on 

L929 cells (a kind gift from Dr. Kevin Harrington, Institute of Cancer Research, Fulham Road, 

London).   Briefly, 6-well plates were seeded with 7.5 x 10
5
 L929 cells/well in DEMEM plus 

10% FBS and incubated overnight.  Cells were washed once with PBS.  1 ml of serial dilutions 

of the test reovirus stocks were loaded into the 6-well plate in duplicate.  Cells were incubated 

with virus for 3 hours.  Media and virus were aspirated off the cells, and 2 ml of 1% Noble agar 

(diluted from a 2% stock with 2x DMEM plus 10% FBS) at 42
o
C was added to each well.  Plates 

were incubated for 4-5 days until plaques were visible, and wells were then stained with 500 µl 

of 0.02% neutral red for 2 hours and plaques were counted. For in vivo studies, reovirus was 
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administered intravenously (i.v.) at 2 x 10
7
 TCID50 (50% tissue culture infective dose) per 

injection.  

In vivo experiments 

C57BL/6J and B6.129S2
-Il6tm1Kopf

/J IL6 knockout mice were purchased from the Jackson 

Laboratory. All in vivo studies were approved by the Mayo IACUC. Mice were challenged 

subcutaneously (s.c) with 5 x 10
5
 B16ova, B16tk, or B16 melanoma cells in 100 μL PBS 

(HyClone). Tumors were measured 3 times per week using Bel-Art SP Scienceware Dial-type 

calipers, and mice were euthanized with CO2 when tumors reached 1.0 cm diameter. 

For suboptimal adoptive T-cell therapy (in which more than 50% of treated mice would 

undergo complete macroscopic regression followed by local recurrence), mice were treated i.v. 

with PBS or 10
6
 4-day activated OT-I T cells on days 6 and 7 post B16ova injection as 

previously described (21, 43).      

For GCV chemotherapy experiments, C57BL/6 mice were treated with GCV 

intraperitoneally (i.p). at 50 mg/ml on days 6-10 and days 13-17 post s.c. B16tk injection.  

For suboptimal, systemic virotherapy experiments, C57BL/6 mice with 5-day established 

B16 tumors were treated i.p. with PBS or paclitaxel (PAC; Mayo Clinic Pharmacy, Rochester, 

MN) at 10 mg/kg body weight for 3 days followed by i.v. reovirus (2 x 10
7
 TCID50) or PBS for 2 

days. This cycle was repeated once and was modified from a more effective therapy previously 

described (36). 

To prevent or delay tumor recurrences, mice were treated i.v. with anti-PD1 (0.25 mg; 

catalog no. BE0146; BioXcell, West Lebanon, NH), anti-TNF (1 µg; catalog no. AF-410-NA; 

R&D Systems), anti-asialo GM1 (0.1 mg; catalog no. CL8955; Cedarlane, Ontario, Canada), or 
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isotype control rat IgG (catalog no. 012-000-003; Jackson Immuno Research) antibody at times 

described in each experiment. 

Establishment of MRD tumor-cell cultures from skin explants   

Mice treated with GCV, OT-I T cells, or reovirus that had no palpable tumors following 

regression and macroscopic disappearance for >40 days had skin from the sites of B16tk, 

B16ova, or B16 injection explanted. Briefly, skin was mechanically and enzymatically 

dissociated and ~10
3
-10

4
 cells were plated in 24-well plates in DMEM containing 10% FBS and 

1% Pen/Strep.  24 hours later wells were washed three times with PBS, and 7 days later 

inspected microscopically for actively growing tumor-cell cultures.   

Quantitative RT-PCR (qrtPCR) 

B16 cells or MRD B16 cells expanded from a site of tumor injection for 72 hours in 

TNF in vitro were cultured for 48 hours in serum-free medium. Cells were then harvested, and 

RNA was prepared with the QIAGEN RNeasy Mini Kit. 1 µg total RNA was reverse-transcribed 

in a 20 µl volume using oligo-(dT) primers and the Transcriptor First Strand cDNA synthesis kit 

(catalog no. 04379012001; Roche).  A LightCycler 480 SYBR Green I Master kit was used to 

prepare samples according to the manufacturer’s instructions. Briefly, 1 ng of cDNA was diluted 

(neat [undiluted], 1:10, 1:100, 1:1000) and amplified with gene-specific primers using GAPDH 

as a normalization control.  Expression of the murine TOPO-IIα gene was detected using the 

forward 5′-GAGCCAAAAATGTCTTGTATTAG-3′ and reverse 5′-

GAGATGTCTGCCCTTAGAAG-3′ primers.  Expression of the murine GAPDH gene was 

detected using the forward 5’-TCATGACCACAGTCCATGCC-3’, and reverse 5’-

TCAGCTCTGGGATGACCTTG-3’ primers.  Primers were designed using the NCBI Primer 

Blast primer designing tool. 
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Samples were loaded into a 96-well PCR plate in duplicate and ran on a LightCycler480 

instrument (Roche). The threshold cycle (Ct) at which amplification of the target sequence was 

detected was used to compare the relative expression of mRNAs in the samples using the 2
-ΔΔCt

 

method. 

Immune-cell activation 

Spleens and lymph nodes (LNs) were immediately excised from euthanized C57BL/6 or 

OT-I mice and dissociated in vitro to achieve single-cell suspensions. Red blood cells were lysed 

with ACK lysis buffer (Sigma-Aldrich, St. Louis, MO) for 2 minutes. Cells were resuspended at 

1 x 10
6
 cells/mL in Iscove’s Modified Dulbecco’s Medium (IMDM; Gibco, Grand Island, NY) 

supplemented with 5% FBS, 1% Pen-Strep, 40 μM 2-BME. Cells were cocultured with target 

B16 or B16MRD cells as described in the text. Cell-free supernatants were then collected 72 

hours later and tested for IFNγ (Mouse IFNγ ELISA Kit; OptEIA, BD Biosciences, San Diego, 

CA) and TNFα (BD Biosciences, San Jose, CA) production by ELISA as directed in the 

manufacturer’s instructions.  

NK cells were prepared from spleens of naïve C57BL/6 mice using the NK Cell Isolation 

Kit II (Miltenyi, Auburn, CA) as described in the “NK cell isolation” section and cocultured with 

B16 or B16MRD target tumor cells at E:T ratios of 20:1. 72 hours later, supernatants were 

assayed for IFN or IL6 by ELISA. 

Cytokines and antibodies 

Cytokines and cytokine neutralizing antibodies were added to cultures upon plating of the 

cells and used at the following concentrations in vitro:  VEGF165 (12 ng/mL; catalog no. CYF-

336; Prospec-Bio), TNF (100 ng/mL; catalog no. 31501A; Peprotech), IL6 (100 pg/mL; catalog 

no. 216-16; PeproTech), anti-TNF (0.4µg/ml; catalog no. AF410NA; R&D Systems), universal 
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IFN (100U; catalog no. 11200-2; R&D Systems), anti-IL6 (1 µg/ml; catalog no. MP5-20F3; 

BioLegend, San Diego), LPS (25 ng/ml; catalog no. L4524; Sigma), CpG (25 ng/ml; Mayo 

Clinic Oligonucleotide Core facility). 

Immune-cell depletion 

 Splenocyte and LN cultures were depleted of different immune cell types (asialo GM-1
+
 

[NKs], CD4
+
, CD8

+
, CD11c

+
, or CD11b

+
 cells) by magnetic bead depletion (catalog no. 130-

052-501 (NK); 130-104-454 (CD4); 130-104-075 (CD8); 130-108-338 (CD11c) and 130-049-

601 (CD11b); Miltenyi Biotech, CA, USA) according to the manufacturer’s instructions.  

Cultures were depleted using the RB6-8C5 (8 µg/mL; R&D Systems, catalog no. MAB1037) and 

1A8 (1 µg/mL; BioLegend, catalog no. 127601) antibodies.  1A8 recognizes only Ly-6G, 

whereas clone RB6-8C5 recognizes both Ly-6G and Ly-6C.  Ly6G is differentially expressed in 

the myeloid lineage on monocytes, macrophages, granulocytes, and peripheral neutrophils. RB6-

8C5 is typically used for phenotypic analysis of monocytes, macrophages and granulocytes, 

whereas 1A8 is typically used to characterize neutrophils.  

NK cell isolation and flow cytometry 

Mouse NK cells were isolated from single cell suspensions of the dissociated spleens of 

6-8 week old C57BL/6 mice using the NK Cell Isolation Kit II according to the manufacturer’s 

instructions (Miltenyi Biotec, Auburn, CA). In this protocol, T cells, dendritic cells, B cells, 

granulocytes, macrophages, and erythroid cells are indirectly magnetically labeled with a 

cocktail of biotin-conjugated antibodies and anti-biotin microbeads for 15 minutes. After 

depleting magnetically labeled cells, isolation and enrichment of unlabeled NK cells was 

confirmed by flow cytometry. Isolated NK cells were stained with CD3-FITC (catalog no. 

100306; Biolegend, San Diego, CA), NK1.1-PE (catalog no. 108708; Biolegend), PD1-Pe/Cy7 
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(catalog no. 109109; Biolegend), PD-L1-APC (catalog no. 124311; Biolegend) to distinguish 

enriched NK cells from CD3
+
 cells.  Blood was taken either serially in a ~200 μL submandibular 

vein bleed or from cardiac puncture at the time of sacrifice. Blood was collected in heparinized 

tubes, washed twice with ACK lysis buffer, and resuspended in PBS for staining.  

Flow cytometry analysis was carried out by the Mayo Microscopy and Cell Analysis 

core, and data were analyzed using FlowJo software (TreeStar, USA). Enriched NK cells were 

identified by gating on NK1.1
hi CD49b

hi
 CD3

lo
 cells.    

In vitro cytokine secretion and flow cytometry 

B16 or B16MRD tumor cells cocultured with isolated NK cells were seeded in DMEM 

containing 10% FBS and 1% Pen/Strep containing anti-PD1 (catalog no. BE0146; Bio-X-cell, 

West Lebanon, NH), anti-PD-L1 (catalog no. BE0101; Bio-X-cell), anti-CTLA4 (100 ng/mL; 

catalog no. BE0164; Bio X Cell), or isotype control (Chrome Pure anti-rabbit IgG; catalog no. 

011-000-003; Jackson Laboratories, Farmington, CT). 72 hours post-incubation, supernatants 

were harvested and analyzed for cytokine secretion using ELISAs for IFNγ and TFNα.  Tumor 

cells were stained for CD45-PerCP (BD Bioscience San Diego,CA) and PD-L1-APC (Biolegend, 

San Diego, CA). Flow cytometry analysis was performed as discussed. 

Phase contrast microscopy 

Pictures of B16 or B16MRD cell cultures, under the conditions described in the text, 

were acquired using an Olympus-IX70 microscope (UplanF1 4x/0.13PhL), a SPOT Insight-1810 

digital camera and SPOT Software v4.6. 

Histopathology 

Skin at the site of initial tumor cell injection or tumors was harvested, fixed in 10% 

formalin, paraffin-embedded, and sectioned. Two independent pathologists, blinded to the 
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experimental design, examined H&E sections for the presence of B16 melanoma cells and 

immune infiltrates. 

Statistics 

In vivo experimental data were analyzed using GraphPad Prism 4 software (GraphPad 

Software, La Jolla, CA, USA). Survival data from the animal studies were analyzed using the 

log-rank test and the Mann-Whitney U test, and data were assessed using Kaplan-Meier plots. 

One-way ANOVA and two-way ANOVAs were applied for in vitro assays as appropriate. 

Statistical significance was determined at the level of p < 0.05. 

 

Results  

Model of minimal residual disease (MRD)  

We have previously shown that established subcutaneous B16 tumors can be treated with 

either prodrug chemotherapy, oncolytic viro-immunotherapy, or adoptive T-cell therapy (21, 34, 

36, 43-45). Irrespective of the frontline treatment, histology at the site of initial tumor injection 

after tumor regression often showed residual melanoma cells in mice scored as tumor-free (Fig. 

1A).  In one experiment, 6/10 mice cleared of B16tk tumors by treatment with GCV (using a 

regimen in which 100% of tumors regressed macroscopically followed by ~50-80% of the mice 

undergoing later local recurrence) (43) had histological evidence of MRD 80 days post tumor 

seeding.  Although parental B16tk cells grow rapidly in tissue culture, no viable B16tk cells were 

recovered from separate skin explants 75 days following tumor seeding from 15 mice which had 

undergone complete macroscopic regressions following GCV (Fig. 1B and H). The very low 

frequency of regrowth of B16 cultures from skin explants was reproducible from mice in which 

primary B16tk or B16ova tumors were rendered nonpalpable by oncolytic virotherapy with 
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either reovirus (36),  adoptive T-cell therapy with Pmel (34), or OT-I T cells (21) (see Table 1 

for cumulative summary). 

When C57BL/6 splenocytes from tumor-naive mice were cocultured with skin explants 

containing MRD B16 cells, no tumor cells were recovered after in vitro culture (Fig. 1C and H).  

However, when splenocyte and LN cells from mice which had previously cleared B16 tumors 

were cocultured with skin explants, actively proliferating B16 cultures could be recovered in 

vitro (Fig. 1D and H).  These data suggest that splenocyte and LN cells from mice previously 

vaccinated against primary tumor cells, secret a factor which promotes growth of MRD B16 

cells.  In this respect, systemic VEGF can prematurely induce early recurrence of B16 MRD 

following frontline therapy that cleared the tumors(43).  Although in vitro treatment of MRD 

B16 explants with VEGF did not support outgrowth of B16 cells (Fig. 1E and H), coculture of 

splenocytes and LNs from control nontumor-bearing mice with VEGF supported outgrowth at 

low frequencies (Fig. 1F and H).  However, coculture of splenocytes and LNs from mice that 

cleared B16 primary tumors with VEGF consistently supported outgrowth of MRD B16 cells 

with high efficiency (Fig. 1G). 

TNFsupports outgrowth of MRD   

VEGF-treated splenocyte and LN cells from mice that cleared B16 tumors showed rapid 

upregulation of TNF, derived principally from CD11b
+
 cells (Fig. 2A).  Depletion of CD4

+
 T 

cells enhanced TNF production from VEGF-treated splenocyte and LN cells (Fig. 2A).  

Outgrowth of MRD B16 cells from skin explants following different frontline therapies was 

actively promoted by TNF(Fig. 2B and F) but not by IL6 (Fig. 2C and F) or other cytokines 

such as IFN (Fig. 2B-F).  Antibody-mediated blockade of TNF significantly inhibited the 

ability of splenocyte and LN cells from mice that cleared B16 tumors to support outgrowth of 
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MRD B16 cells (Fig. 2D-F).  In contrast to the growth-promoting effects of TNF on MRD B16 

cells, culture of parental B16 cells with TNF significantly inhibited growth (Fig. 2G).  

Consistent with Fig. 2A, monocytes and macrophages were the principal source of the growth-

promoting TNF in VEGF-treated splenocyte and LN cells from mice that cleared B16 tumors 

(Fig. 2G).  Similarly, outgrowth of MRD TC2 murine prostate cells following frontline viro-

immunotherapy was also actively promoted by TNF, whereas TNF was highly cytotoxic to 

the parental tumor cells (Fig. 2I).  Therefore, in two different cell types, TNF changes from an 

antitumor effector against primary tumors into a growth promoter for MRD.  B16 MRD cultures 

maintained in TNF for up to six weeks retained their dependence upon the cytokine for 

continued in vitro proliferation.  Withdrawal of TNF did not induce cell death but prevented 

continued proliferation.  Finally, we did not observe reversion to a phenotype in which TNF 

was growth inhibitory within a six-week period.   

We did not observe any reduction in the ability of cultures to support outgrowth of MRD 

cells when depleted of neutrophils, CD4 cells, or NK cells, whereas depletion of Ly6G
+
 cells 

(completely) and CD8
+
 T cells (partially) inhibited outgrowth (Fig. 2H).   Therefore, taken 

together with the dependence of TNF αproduction on CD11b
+
 cells, our data suggest that 

CD11b
+
 monocytes and macrophages are the principal cell type responsible for the 

TNFmediated outgrowth of B16 MRD recurrences, although CD8
+
 T cells also play a role.  

TNFexpanded MRD acquires a recurrence competent phenotype   

The recurrence competent phenotype (RCP) of B16 cells emerging from a state of MRD 

is associated with transient high expression of Topoisomerase II (TOPO-IIα) and YB-1 (44) 

and acquired insensitivity to innate immune surveillance (43). Therefore, we investigated 

whether the B16 MRD cultures, which we could induce with TNF resembled this same 
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phenotype to validate their identity as recurrent tumors.  MRD B16 cells expanded in vitro with 

TNF overexpressed both Topo-II and YB-1 compared to parental B16, consistent with their 

acquisition of the RCP (Fig. 3A).  Coculture of skin explants with TNF or splenocyte and LN 

cultures induced outgrowth of MRD B16 cells (Fig. 3B and D), which were sensitive to the 

Topo-II-targeting drug doxorubicin (Fig. 3C and E).  MRD B16 cells expanded in TNF were 

also insensitive to the antiviral protective effects of IFN upon infection with reovirus and 

supported more vigorous replication of reovirus than parental B16 cells (Fig. 3F), consistent with 

acquisition of the RCP (43).  In contrast, IFN protected parental B16 cells from virus 

replication. 

MRD cells lose sensitivity to NK immune surveillance  

The recurrence competent phenotype is also associated with an acquisition of an 

insensitivity to innate immune effectors (44).  Therefore, we next investigated whether NK cells, 

a major effector of innate immune surveillance of tumors, differentially recognized primary B16 

compared to their B16 MRD derivatives.  For the following experiments, a homogenous 

population of untouched splenic NK1.1
hi

 CD49b
hi

 CD3
lo

 NK cells were isolated from spleens of 

C57BL/6 mice. Although purified NK cells secreted significant amounts of IFN upon coculture 

with parental B16 cells, TNF-expanded MRD B16 cultures did not stimulate IFN from NK 

cells (Fig. 4A).  Consistent with reports of a spike in serum IL6 just prior to the emergence of 

tumor recurrences (43), cocultures of purified NK cells from wildtype mice, but not from IL6 

knockout mice, produced IL6 in response to MRD B16 but not parental B16 cells (Fig. 4B). 

Intracellular staining confirmed that an NK1.1
+
 cell population within wildtype splenocytes 

differentially recognized parental B16 and B16 MRD cells through IL6 expression (Fig. 4C).  

IL6 was detected in excised small recurrent tumors but not in small primary tumors, whereas 
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TNF could not be detected in recurrent tumors but was present at very low amounts in some 

primary tumors (Fig. 4D).  Although subcutaneous injection of 10
3
 MRD B16 cells generated 

tumors in 100% of mice, a similar dose of parental B16 cells did not generate tumors in any of 

the 5 animals (Figs. 4E and F).  However, when mice were depleted of NK cells prior to tumor 

challenge, 10
3
 parental B16 cells became tumorigenic in 100% of the animals (Fig. 4E).  NK cell 

depletion had no effect on the already high tumorigenicity of the same dose of MRD B16 cells 

(Fig. 4F). Therefore, MRD B16 cells expanded in TNF were significantly more tumorigenic 

than parental B16 cells, in part, because they were insensitive to NK cell recognition. 

Differential recognition of primary and MRD cells by NK cells  

Both MRD B16 cells expanded in TNF and a freshly resected tumor upregulated the T-

cell checkpoint inhibitory molecule PD-L1 (48, 49),  whereas PD-L1 expression was low on 

parental B16 cells and lower on a freshly resected primary tumor, whether or not it was treated 

with TNF (Fig. 5A). Although purified NK cells did not secrete IFN in response to TNF-

expanded MRD B16 cells or to early recurrent B16 tumor explants (Fig. 4A), they did produce 

IFNγ in the presence of parental B16 cells and primary B16 tumors (Fig. 5B).  Blockade of PD-

L1 on MRD B16 cells increased NK cell-mediated IFN secretion and also significantly 

enhanced NK cell response to parental B16 cells (Fig. 5B).  Conversely, NK cell-mediated IL6 

secretion in response to MRD B16 cells was significantly decreased by blockade of PD-L1 (Fig. 

5C). However, PD-L1 blockade did not alter the inability of parental B16 cells to stimulate IL6 

secretion from purified NK cells (Fig. 5C). 

NK cell-mediated IL6 inhibits T-cell recognition of MRD  

MRD B16ova cells recovered from skin explants of B16ova primary tumors rendered to a 

state of MRD by adoptive OT-I T-cell therapy (21) still retained high expression of the target 
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OVA antigen, suggesting that antigen loss is a later event in the progression to recurrent tumor 

growth (Fig. 5D). As expected, OT-I T cells secreted IFN upon coculture with B16ova cells in 

vitro, which was augmented by coculture with NK cells from either wildtype or IL6 KO mice 

(Fig. 5E). Anti-IL6 had no effect on OT-I recognition of parental B16ova cells irrespective of the 

source of the NK cells (Fig. 5E). Although TNF-expanded MRD B16ova cells still expressed 

OVA (Fig. 5D), they elicited significantly lower IFN from OT-I and NK cells alone (Fig. 5F). 

Coculture of OT-I T cells with wildtype, but not with IL6 KO, NK cells abolished IFN 

production in response to MRD B16ova cells (Fig. 5F and G) and was reversed by IL6 blockade 

(Fig. 5F).  After 7 days of coculture with OT-I and NK cells, surviving parental B16ova cells had 

lost OVA expression, irrespective of the IL6 presence (Fig. 5H).  However, only in the presence 

of IL6 blockade did MRD B16ova cells rapidly lose OVA expression (Fig.5G).  These data 

suggest that NK-mediated IL6 expression in response to TNF-expanded MRD cells can inhibit 

T-cell recognition of its cognate antigen expressed by tumor targets and, thereby, slow the 

evolution of antigen loss variants. 

Phenotypic analysis of the lymphoid cells from tumor naive mice compared with those 

from mice cleared of tumor showed minimal differences in subsets of CD4
+
 T cells (Fig. 6A-D). 

In addition to a non-significant trend towards an increase in circulating CD8
+
 effector cells 

(CD44
hi

 CD62L
lo

) in mice cleared of tumor (Fig.  6E), effector cells expressing both inhibitory 

receptors PD1 and TIM-3 were also consistently higher compared to tumor naïve mice (Fig. 6F).  

These data suggest that mice with tumors that have been treated successfully through 

immunotherapeutic frontline treatments contain populations of antitumor effector cells that may 

be functionally impaired to some degree due to elevated expression of checkpoint inhibitor 

molecules. 
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Inhibition of tumor recurrence   

Based on these data, several molecules and cells – VEGF, CD11b
+
 cells, TNF, PD-L1, 

NK cells – would be predicted to play an important role in mediating the successful transition 

from MRD to actively expanding recurrence. After primary B16tk tumors had regressed 

following chemotherapy with GCV (43), about half of the mice routinely developed recurrences 

between 40-80 days following complete macroscopic regression of the primary tumor (Fig. 7A). 

However, long-term treatment with antibody-mediated blockade of either PD1 or TNF 

effectively slowed or prevented recurrence (Fig. 7A).  The depletion of NK cells also prevented 

recurrence of B16tk tumors (Fig. 7A), consistent with their secretion of T-cell inhibitory IL6. 

Our data would also predict that systemic triggers that induce VEGF (43) and/or TNF 

from host CD11b
+
 cells would accelerate tumor recurrence. In vitro, LPS stimulation of 

splenocyte and LN cultures induced high TNF (Fig. 7B) and also supported the outgrowth of 

5/8 MRD B16 skin explants, an effect which was eradicated by blockade of TNF (Fig. 7C).  

Therefore, we tested systemic treatment with TNF-inducing LPS as a mimic of a trauma or 

infection that may induce recurrence.  Primary tumors that macroscopically regressed into a state 

of MRD were prematurely induced to recur in 100% of mice following treatment with LPS, 

consistent with an LPS/TNF induced mechanism of induction of recurrence from a state of 

MRD (Fig. 7D).  Under these conditions, depletion of NK cells significantly delayed recurrence 

but did not prevent it (Fig. 7D), unlike in the model of spontaneous recurrence (Fig. 7A).   

Prolonged treatment with antibody-mediated blockade of either PD1 or TNF successfully 

prevented long-term recurrence, even when mice were treated with LPS (in 100% of mice in the 

experiment of Fig. 7D, and in 7/8 mice in a second experiment). 
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Discussion  

We have developed models in which several different frontline therapies reduced 

established primary tumors to a state of MRD with no remaining palpable tumor (43-45).  

However, in a proportion of mice in this study, frontline therapy was insufficient to eradicate all 

tumor cells, leaving histologically detectable disease. Explants of skin at the site of tumor cell 

injection following regression rarely yielded actively proliferating B16 cells, even though >50% 

of samples contained residual tumor cells.  The frequency with which cultures of MRD cells 

were recovered following explant was significantly increased by coculture with splenocytes and 

LN cells from mice previously treated for tumors, and this effect was enhanced by VEGF, which 

induced TNF from CD11b
+
 cells.  Taken together, we believe that CD11b

+
 monocytes and 

macrophages are the principal cell type responsible for the VEGF-mediated induction of TNF 

and for the TNF-mediated outgrowth of B16 MRD recurrences. Although we showed TNF 

was highly cytotoxic to parental B16 cells and primary tumor explants, TNF supported 

expansion of MRD cells from skin explants at high frequency, irrespective of the primary 

treatment.  As shown previously, splenocytes from mice with cleared B16 tumors after GCV 

treatment killed significantly higher numbers of target B16 cells in vitro than did splenocytes 

from control, tumor naïve mice, confirming the generation of an effective antitumor T-cell 

response (42).  In contrast, here we show no significant difference between killing of B16MRD 

cells expanded for 120 hours in TNF in vitro by splenocytes from mice that cleared a B16 

tumor compared to splenocytes from control, tumor naive mice. We are currently investigating 

the molecular mechanisms by which B16MRD cells effectively evade the antitumor T-cell 

responses induced by frontline treatment (such as GCV, T-cell therapy, or oncolytic 

virotherapy). 
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TNF-mediated expansion of MRD B16 cells induced the recurrence competent 

phenotype (RCP) (43, 44), shown by de novo expression of recurrence-associated genes (YB-1 

and Topoisomerase II) (44).  Re-activation of metastatic cells lying latent in the lungs has been 

associated with expression of the Zeb1 transcription factor, which mediates the epithelial-to-

mesenchymal transition (EMT) (50). NK cells are major innate effectors of immune surveillance 

of tumors and responded differently to recurrent competent MRD B16 cells compared to primary 

B16 cells.  We show NK cells were activated by parental B16 cells to secrete IFN and were 

major effectors of in vivo tumor clearance.  In contrast, TNF-expanded MRD B16 cells induced 

NK cells to secrete IL6 instead of IFN, which was not seen for parental B16 cells, effects 

mediated, in part, through PD-L1. IL6 produced by NK cells in response to TNF-expanded 

MRD B16ova cells also inhibited OT-I T-cell recognition of OVA
+
 tumor targets.  TNF-

expanded MRD cells still retained OVA expression, despite using frontline OVA-targeted T-cell 

therapy. Only upon prolonged coculture of OVA
+
  MRD cells with OT-I

+
 NK cells with IL6 

blockade was significant antigen loss observed, consistent with the long-term, but not early, loss 

of OVA antigen expression from B16ova recurrences following OT-I adoptive T-cell therapy 

(43) (21). Therefore, antigen loss in MRD cells is not an essential prerequisite for the emergence 

of tumor recurrences (21) and may occur through powerful selective pressure on very early 

antigen positive recurrent tumors as they expand in vivo in the presence of ongoing antigen 

targeted T-cell pressure. 

Our data here are consistent with a model in which the transition from quiescent MRD to 

actively expanding recurrence is promoted by the acquisition of a phenotype in which TNF 

changes from being a cytotoxic growth inhibitor (against primary tumors), to promoting the 

survival and growth of one, or a few, MRD cells.  It is not clear whether these TNF responsive 
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clones exist within the primary tumor population, perhaps as recurrence competent stem cells 

(31), or whether this RCP is acquired by ongoing mutation during the response to frontline 

therapy (9, 14, 29, 30).  Since established primary B16 and B16 MRD tumors both have low 

intratumoral NK infiltration, we hypothesize that the differential recognition of B16 or B16 

MRD cells by NK cells occurs at very early stages of tumor development. Therefore, it may be 

that different subsets of NK cells mediate the differential recognition of primary B16 (rejection) 

or B16 MRD (growth stimulation).  However, in our experiments here, a homogenous population 

of untouched splenic NK1.1
hi CD49b

hi
 CD3

lo
 NK cells differentially recognized parental B16 

and B16 MRD cells, suggesting that the basis for these different NK responses are, in large part, 

due to tumor-cell intrinsic properties.  These recurrence competent MRD cells are insensitive to 

both innate and adaptive immune surveillance mechanisms, in part, through expression of PD-

L1. With respect to escape from adaptive immune surveillance, we show both that the MRD cells 

express high PD-L1 and that the fraction of effector cells expressing both inhibitory receptors 

PD1 and TIM-3 was consistently higher in tumor experienced mice than tumor naïve mice.  

Integral to both innate and adaptive immune evasion, TNF-expanded MRD tumor cells induced 

an anti-inflammatory profile of IL6
hi

 and IFN
lo 

expression from NK cells, the opposite of the 

profile of NK recognition (IL6
lo

 IFN
hi

) induced by parental primary tumor cells.  This altered 

role of NK cells as pro-recurrence effectors, as opposed to antitumor immune effectors, was due 

to impaired killing of MRD cells and recurrent tumor cells plus the secretion of IL6.  This NK-

derived IL6, in turn, inhibited T-cell responses against recurrent tumors, even when they 

continued to express T cell–specific antigens. 

This model showed several molecules and cells – VEGF, CD11b
+
 cells, TNF, PD1/PD-

L1, NK cells –can be targeted for therapeutic intervention to delay recurrence.  In our model of 
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spontaneous recurrence, depletion of NK cells or antibody-mediated blockade of either TNF or 

PD1, significantly inhibited tumor recurrence following frontline GCV.  Our data suggests that a 

systemic trigger – such as VEGF-induced by trauma or infection – promotes TNF release from 

host CD11b
+
 cells leading to growth stimulation of MRD cells.  Consistent with this, LPS both 

induced TNF from splenocytes and LN cells and mimicked TNF in the generation of 

expanding MRD cultures from skin explants. Recurrence could be induced prematurely by LPS, 

as a mimic of a systemic infection/trauma, consistent with a report in which LPS treatment re-

activated intravenously injected disseminated tumor cells pre-selected for properties of latency 

(50).  These results suggest that patients in a state of MRD may be at significantly increased risk 

of recurrence following infections and/or trauma, which induce the release of systemic VEGF 

and/or TNF.  However, blockade of PD1 or TNF following this trauma-like event prevented 

tumor recurrence.  We are currently investigating when, and for how long, these potentially 

expensive recurrence blocking therapies will be required to be administered in patients.  This is 

especially relevant for those patients in whom MRD may be present over several years before 

recurrence is triggered.  Transcriptome analysis of MRD and early recurrences, compared to 

parental tumor cells, is underway in both mouse models (B16 and TC2) as well as in patient 

samples where matched pairs of primary and treatment failed recurrence tumors are available.  

These studies will identify the signaling pathways which differ between the cell types to account 

for their differential responses to TNF signaling and IFN and IL6 production by NK cells.  

Future studies will focus on identifying which cells become recurrent tumors, the mutational and 

selective processes involved in the transition, identification of the biological triggers for 

recurrence (1, 32) and the time over which recurrence inhibiting therapies must be administered.   
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In summary, we show here that the transition from MRD to recurrence involves the 

subversion of normal innate immune surveillance mechanisms.  In particular, TNF produced in 

response to pathological stimuli becomes a pro-recurrence, as opposed to antitumor, growth 

factor.  Simultaneously, NK cells, which normally restrict primary tumor growth, fail to kill 

expanding recurrent tumor cells and produce IL6 that helps to suppress adaptive T-cell 

responses, even with continued expression of T cell–targetable antigens.  Finally, our data show 

that therapies aimed at blocking certain key molecules (PD1, TNF) and cell types (NK cells) 

may be valuable in preventing this transition from occurring in patients.  
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Figure Legends 

Figure 1.  Model of minimal residual disease. A-G, Histological sections; A, Skin at the site of 

B16 cell injection from a C57BL/6 mouse treated with Pmel adoptive T-cell therapy with VSV-

gp100 viro-immunotherapy (34). B-D, Skin explants from the site of B16tk cell injection from 

mice treated with GCV (no palpable tumor after regression) were B, left untreated; C, cocultured 

with 10
5
 splenocytes and LN cells from normal C57BL/6 mice; or D, cocultured with 10

5
 

splenocytes and LN cells from C57BL/6 mice cleared of B16tk tumors after GCV treatment.  7 

days later, wells were inspected for actively growing tumor cells. Images are representative of 

nine independent experiments with explants from different primary treatments. E-H, Skin from 

the sites of cleared B16tk tumors were explanted and treated as in B and were cocultured with E, 

VEGF (12ng/ml); F, VEGF and 10
5
 splenocytes and LN cells from normal C57BL/6 mice; or G, 

VEGF and 10
5
 splenocytes and LN cells from C57BL/6 mice cleared of B16tk tumors after GCV 

treatment. 3 separate explants per treatment were counted. H, Quantitation of B-G.   

Figure 2.  MRD cells use TNF as a growth factor. A, 10
5 

splenocytes and LN cells from 

C57BL/6 mice cleared of B16tk tumors (after GCV) were depleted of asialo GM-1
+
 (NKs), 

CD4
+
, CD8

+
, CD11c

+
, or CD11b

+
 cells by magnetic bead depletion and plated in the presence or 

absence of VEGF165 (12ng/ml) in triplicate.  Cell supernatants were assayed for TNF by ELISA 

after 48 hours.  Mean and standard deviation of triplicate wells are shown.  Representative of two 

separate experiments.  *** p<0.0001 (T-test). B and C, Skin from the B16tk cell injection site 

from mice treated with GCV (no palpable tumor after regression) was treated with B, TNF 

(100ng/ml); or C, IL6 (100pg/ml). 7 days later, wells were inspected for actively growing tumor 

cell cultures.  Images are representative of 15 skin explants over five different experiments. D 

and E, Skin explants from the site of B16tk cell injection of mice treated with GCV (no palpable 
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tumor) cocultured with 10
5
 splenocytes and LN cells from C57BL/6 mice cleared of B16tk 

tumors after GCV treatment (D) alone; or (E) in the presence of anti-TNF (0.4µg/ml). 7 days 

later, wells were inspected for actively growing tumor cells.  Images are representative of 5 

separate explants. (F) Quantitation of B-E.  3 separate explants per treatment were counted. G, 

10
4
 parental B16 cells, explanted B16 cells from a PBS-treated mouse, or cells from two MRD 

B16 cultures (expanded in vitro in TNF for 72 hours) were plated in triplicate and grown in the 

presence or absence of TNF for 4 days.  Surviving cells were counted.  Mean and standard 

deviation of triplicates are shown.  Representative of three experiments. *p<0.01; ** p<0.001 

(ANOVA). H, Splenocytes and LN cells from C57BL/6 mice cleared of B16tk tumors after GCV 

treatment were treated with no antibody or with depleting antibodies specific for CD8, CD4, 

asialo GM-1 (NK cells), monocytes and macrophages, or neutrophils. Skin samples from 

regressed tumor sites were cocultured with 10
5
 depleted or non-depleted splenocytes and LN 

cultures in the presence of VEGF165 (12ng/ml).  7 days later, wells were inspected for actively 

growing tumor cell cultures.  The percentage of cultures positive for active MRD growth (wells 

contained >10
4
 adherent B16 cells) is shown. I, 10

4
 explanted TC2 tumor cells from a PBS-

treated mouse or cells from two MRD TC2 cultures (expanded in vitro in TNF for 72 hours) 

were plated in triplicate and grown in the presence or absence of TNF for 4 days.  Surviving 

cells were counted.  Mean and standard deviation of triplicates are shown. *p<0.01; ** p<0.001 

(ANOVA). 

 

Figure 3.  TNF-expanded MRD cells acquire the recurrence competent phenotype.  A, 5 x 

10
4
 B16 cells or MRD B16 cells (expanded from a site of tumor injection for 72 hours in TNF) 

were plated in triplicate.  24 hours later, cDNA was analyzed by qrtPCR for expression of YB-1 
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or TOPO-II.  Relative quantities of mRNA were determined.  *p<0.05; Mean of the triplicate is 

shown.  Representative of two separate experiments with two different B16 MRD recurrences. 

B-E, Skin explant from theB16tk cell injection site from mice treated with GCV was plated with 

B, TNF (100ng/ml); C, TNF plus doxorubicin (0.1mg/ml); or cocultured with VEGF and 10
5
 

splenocytes and LN cells from C57BL/6 mice cleared of B16tk tumors after GCV treatment D, 

without; or E, with doxorubicin. 7 days later, wells were inspected for actively growing tumor 

cells.  Representative of three B16 MRD explants. F, 10
3
 B16 cells or MRD B16 cells (expanded 

from a site of tumor injection for 72 hours in TNF) were plated in triplicate.  Cells were 

infected with reovirus (MOI 1.0) in the presence or absence of IFN (100U) for 48 hours and 

titers of reovirus determined.  Mean and standard deviation of triplicates are shown, ** p<0.001 

(ANOVA). 

 

Figure 4.  Parental and MRD cells are differentially recognized by NK cells.  B16 or MRD 

B16 cells (10
5
 per well) were cocultured in triplicate with purified NK cells from either wildtype 

C57BL/6 (IL6
+
) or IL6 KO mice at an effector:target ratio of 20:1.  72 hours later, supernatants 

were assayed for A, IFN or B, IL6 by ELISA.  Mean and standard deviation of triplicates are 

shown, *p<0.05 ** p<0.001 (ANOVA).  Representative of three separate experiments.  C,  

Splenocytes and LN cells from wildtype C57BL/6 mice were plated with B16 or B16 MRD #2 

cells and grown for 72 hours in TNF at an effector:target ratio of 50:1.  72 hours later, cells 

were harvested and analyzed for expression of NK1.1 and IL6. D,  Three small primary B16ova 

tumors (<0.3cm diameter, Pri#1-3) from PBS-treated C57BL/6 mice or three small recurrent 

B16ova tumors from mice were excised, dissociated, and plated in 24-well plates overnight then 

supernatants were assayed for IL6 and TNF by ELISA.  Mean and standard deviation of 
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triplicates are shown; *** p<0.0001, for IL6 between primary and recurrent tumors (T-test).  E 

and F, C57BL/6 mice (n= 5 mice/group) were challenged subcutaneously with E, parental 

B16ova cells; or F, B16ova MRD cells (expanded from a regressed B16ova tumor site for 72 

hours in TNF at doses of 10
3
 or 10

4
 cells per injection.   Included in E and F is a group of mice 

depleted of NK cells using anti-asialo GM-1 and challenged with 10
3
 B16 or B16 MRD cells.  

Representative of two separate experiments.  Survival analysis was conducted using log-rank 

tests.  The threshold for significance was determine by using the Bonferroni correction for 

multiple comparisons. 

Figure 5. PD-L1 expression on MRD inhibits immune surveillance through IL6.  A, 

Expression of PD-L1 was analyzed by flow cytometry on parental B16 cells in culture.  Cells 

from a small (~0.3cm diameter) B16tk tumor explanted from a PBS-treated mouse were cultured 

for 72 hours in vitro alone (B16-PBS#1; dark blue) or with TNF(B16-PBS#1+TNF; green). 

B16 MRD cells recovered from the site of B16tk cell injection after regression were treated with 

TNF for 72 hours (B16 MRD + TNF 72 hours; purple). Cells from a small recurrent B16tk 

tumor (~0.3cm diameter) explanted following regression after GCV treatment was cultured for 

72 hours without TNF (B16 REC#1; light blue).  Representative of three separate experiments.  

B and C, MRD B16 cells expanded for 72 hours in TNF, parental B16 cells, explanted B16tk 

recurrent tumor cells, or explanted primary B16 tumors were plated (10
4
 cells per well).  24 

hours later, 10
5 

purified NK cells from C57BL/6 mice were added to the wells with control IgG 

or anti-PD-L1.  48 hours later supernatants were assayed for B, IFN or C, IL6 by ELISA.  Mean 

of triplicates per treatment are shown.  Representative of three separate experiments (ANOVA).  

D, cDNA from three explants of PBS-treated B16ova primary tumors (~0.3cm diameter) and 

three MRD B16ova cultures (derived from skin explants after regression with OT-I T-cell 
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therapy and growth for 72 hours in TNF) were screened by qrtPCR for expression the ova gene.  

Relative quantities of ova mRNA were determined (ANOVA). Statistical significance was set at 

p<0.05 for all experiments.  E, 10
4
 parental B16ova cells; or F, MRD B16ova cells (derived as 

previously stated) were cocultured with purified CD8
+
 OT-I T cells and/or purified NK cells 

from either wildtype C57BL/6 or from IL6 KO mice (OT-I:NK:Tumor 10:1:1) in triplicate in the 

presence or absence of anti-IL6.  72 hours later, supernatants were assayed for IFN by ELISA.  

Mean and standard deviation of the triplicates are shown.  Representative of three separate 

experiments.  ** p<0.01 (ANOVA).   G, 10
4
 B16ova MRD cells (derived as already described) 

were cultured in triplicates, as in F.  72 hours later, cells were harvested and analyzed for 

intracellular IFNγ. H, After 7 days of coculture, cDNA was screened by qrtPCR for expression 

of the ova gene. **p<0.01; *** p<0.001 (ANOVA); Mean of each treatment is shown. 

Figure 6. Phenotyping of T cells.  Circulating lymphocytes from a tumor naïve C57BL/6 mice 

(left column) were compared to those from C57BL/6 mice treated and cleared of B16 primary 

tumors (right column) (n=2 mice per group, representative of four independent experiments). 

Multiparametric flow cytometry for live A, CD4
+

 or CD8
+
 T cells; B and E, the fraction of CD4

+
 

or CD8
+
 cells that are CD62L

hi
 or effector (CD62L

lo
 CD44

hi
) phenotype; C and F, the fraction 

of CD62L
hi

 CD4
+
 or CD8

+
 cells expressing the inhibitory receptors (IR) PD1 and TIM-3; D and 

G, the fraction of CD62L
lo

 CD44
hi

 effector cells expressing the IRs PD1 and TIM-3. To analyze 

quantitative flow cytometry data, one-way ANOVA testing was conducted with a Tukey post-

test, p values reported from these analyses were corrected to account for multiple comparisons. 

Figure 7.  Inhibition of tumor recurrence in vivo.  A, 5-day established subcutaneous B16tk 

tumors were treated with GCV i.p. on days 6-10 and 13-17.  On day 27, mice with no palpable 

tumors were treated with control IgG, anti-asialo GM-1 (NK depleting), anti-TNF, or anti-PD1 
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every other day for three weeks and survival was assessed.  Survival analysis was conducted 

using log-rank tests.  The threshold for significance was determined by using the Bonferroni 

correction for multiple comparisons.  Mice which developed a recurrent tumor were euthanized 

when the tumor reached a diameter of 1.0 cm.  Eight mice per group, except for the GCV/anti-

asialo GM-1 group n=9.  *p<0.01 Representative of two separate experiments.   B, Triplicate 

cultures of 10
6
 splenocytes and LN cells from C57BL/6 mice were incubated with PBS, LPS (25 

ng/ml), or CpG for 48 hours, and supernatants were assayed for TNF by ELISA.  Mean and 

standard deviation of triplicates are shown; ***p<0.0001 PBS vs LPS (t test).  C, Cumulative 

results from skin explants at the sites of tumor from tumor-regressed mice treated with GCV 

(B16tk tumors), reovirus therapy (B16tk cells), or OT-I adoptive T-cell therapy (B16ova cells).  

Explants were cocultured with 10
6
 splenocytes and LN cells from C57BL/6 mice in the presence 

of PBS, LPS, CpG, or LPS plus anti-TNF (0.4µg/ml).  7 days later, adherent B16 tumor cells 

were counted and wells containing >10
4
 cells were scored for active growth of MRD cells.   

P<0.001 LPS vs all other groups (ANOVA).  D, 5-day established subcutaneous B16tk were 

treated with GCV i.p. on days 6-10 and 13-17 On days 27 and 29, mice with no palpable tumors 

were treated with LPS (25µg/injection). Mice were treated in-parallel with control IgG, anti-

asialo GM-1, anti-TNF, or anti-PD1 every other day for three weeks.  Mice with recurrent 

tumors were euthanized when the tumors reached a diameter of 1.0 cm.  Survival of mice with 

time is shown.  **p<0.01; *** p<0.001.  Survival analysis was conducted using log-rank tests.  

The threshold for significance was determined by using the Bonferroni correction for multiple 

comparisons.  Representative of two experiments.           
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Culture Conditions    Rate of Outgrowth 
     >104 cells on d7 
  
Explant alone 2/19 
  
Explant + Control Spl/LN 0/7 
  
Explant + Tumor Rejected Spl/LN 4/6 
  
Explant + VEGF 0/4 
  
Explant + Control Spl/LN + VEGF 2/5 
  
Explant + Tumor Rejected Spl/LN + VEGF 4/4 
  
*  MRD explants from any of 4 different primary treatments. 

Table 1 
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Table 2 

Frontline Therapy 
Inducing MRD 

Viable Cultures of B16 MRD 
 

 
-TNF-α +TNF-α 

B16tk/GCV 0/7 5/5 

B16tk/i.t. Reovirus 1/9 4/4 

B16ova/OT-I 0/7 5/7 

B16tk/Pmel/VSV-hgp100 1/4 3/3 

   
TOTAL 
 

2/27 
(7%) 

17/19 
(89%) 
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