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Abstract 

Cancer genomics studies using next-generation sequencing technologies have provided a 

snapshot of the genetic landscape of most cancer types. The same approaches are 

increasingly driving insights into cancer evolutionary patterns in time and space. To a large 

extent, cancer conforms to evolutionary rules defined by the rates at which clones mutate, 

adapt and grow. Compared to species evolution, however, cancer is a particular case owing 

to the vast size of tumour cell populations, chromosomal instability and its potential for 

phenotypic plasticity. Nevertheless, an evolutionary framework is a powerful aid to 

understand cancer progression and therapy failure. Indeed, such a framework could be 

applied to predict individual tumour behaviour and support treatment strategies. 

 

Introduction 

Tumours are composed of subpopulations of cells (subclones) that can be distinguished on 

the basis of a variety of features that affect their phenotype, including genetic alterations 

such as single nucleotide variants (SNVs), small insertions and deletions (indels), somatic 

copy number alterations (SCNAs) and structural variants (SVs). Genetic intratumour 

heterogeneity has been documented across most cancers (reviewed in1) and acts as a 

substrate for clonal evolution [G]. The fundamental biological mechanisms underlying clonal 

evolution in cancer are similar to those that underpin the evolution of asexually reproducing 

species: replication, heritable variation, genetic drift [G], selection [G] and environmental 

changes. Central to the neo-Darwinian synthesis of evolutionary biology is the paradigm of 

molecular evolution, that is, evolutionary change at the level of DNA sequence, which links 

Mendelian genetics to Darwinian adaptation. Molecular evolution is relevant to cancer 

because the use of genomic sequencing is a key technology to understand temporal and 
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spatial patterns of somatic evolution, the accumulation of genomic alterations in somatic 

cells. At the core of molecular evolution, in turn, is theoretical population genetics, which 

has been the fundamental mathematical formalism to describe evolution for the past 90 

years2,3 The same theoretical framework has been used to understand clonal evolution in 

cancer4 5 6 7 8 9 10 11. The study of the evolutionary dynamics of cancer clones is 

fundamentally concerned with the relative frequencies of cancer subpopulations over space 

and time.  Although some peculiarities of cancer evolution distinguish it from classic species 

evolution (Box 1), classical evolutionary theory can nevertheless be readily applied to 

understand cancer development. 

Over the past 5 years, a number of next-generation sequencing studies have 

captured cancer evolution in space and time, illuminating the variety of evolutionary 

patterns that shape cancer and showing their clinical relevance. Here, we provide an 

overview of the theoretical models of tumour evolution and the caveats around correctly 

interpreting genomic data and inferring evolutionary dynamics. We discuss the relevance of 

chromosome instability [G] (CIN) as a driver of cancer evolution and, in particular, 

metastases; the clinical value of evolutionary classification of cancer; and finally, the role of 

clonal evolution in treatment failure.  

 

[H1] Current models of tumour evolution 

Cancer as a system is characterized by an astonishing complexity and emergent behaviour. 

Nevertheless, this complexity arises from the fairly simple, underlying evolutionary rules of 

mutation, genetic drift and selection, involving a large number of interacting agents (for 

example, the millions of cancer cells within a single lesion and the surrounding tumour 

microenvironment). The emergent behaviour gives rise to different observed ‘modes’ of 

evolution (Figure 1), which result from different combinations of the aforementioned 

fundamental rules in distinct contexts. In other words, since selective pressures change over 

time, so can the ‘modes’ of evolution. Here, we discuss the principles of selection and 

different modes of evolution.  

 

[H2] Selection 

Selection, whereby one lineage is ‘favoured’ over another and produces more surviving 

offspring, is a key force in evolution, as it leads to adaptation. In general, positive selection, 

the evolutionary force that causes cells to have more surviving offspring and so increase in 

frequency in a population, drives tumour progression12. Negative selection, also known as 

purifying selection, the evolutionary force by which cells with decreased fitness are 

eliminated from a population also influences tumour evolution, for example, by removing 

potent neo-antigens13,14. However, selection is not operative at all times. Whereas mutation 

and drift occur continuously, and their rates depend on cell division and population 

dynamics, selection is dependent on the environmental context. For example, if there is no 

differential survival within a population, the lack of positive selection would mean that the 

population evolves neutrally (only mutation and drift are at play). Consequently, branching 



 

 

of a tumour phylogenetic tree [G] does not always imply clonal selection, as branching is the 

natural product of mutational processes15 16. Selection has the effect of ‘pruning’ the 

tumour tree, for example, favouring the expansion of some lineages (that is, branches) over 

others. The mutation rate itself could also be subject to selection. A higher mutation rate 

allows for diversification but also carries the ‘risk’ of increasing the rate at which deleterious 

mutations, which perturb cancer growth, are acquired17,18. For example, excessive 

chromosomal instability (CIN) can result in cell-autonomous lethality; however, a ‘just-right’ 

threshold of CIN may be evolutionary advantageous. Mutations in the subunits of the 

anaphase-promoting complex (also known as the cyclosome or APC/C) may be selected 

during the evolution of chromosomally unstable tumour cell populations, resulting in 

lengthening of mitosis, suppression of chromosome missegregation and attenuation of 

excessive CIN19. 

Mathematical models suggest that, in a growing population, mutator phenotypes [G] are 

selected, because the cells that stochastically acquire positively selected mutations in effect 

doubly benefit from their own increased fitness and the negative fitness effect of 

deleterious mutations on the rest of the population20. Relatedly, modelling also suggests 

that a mutator phenotype increases the ‘efficiency’ of carcinogenesis by making it more 

likely that a necessary set of mutations is acquired for transformation and cancer 

progression18.  

 

[H2] Branching evolution  

Evolution is always branched, because cell division and mutation continuously produce 

divergence at the level of genotypes. This fact is particularly true for cancer genomes, as 

cancers often have a mutator phenotype21. Hence, in principle, at any given time point a 

tumour cell population consists of different cell lineages. Random fluctuations in the birth 

and death rates of these distinct lineages can lead to genetic drift, whereby one lineage 

produces more surviving offspring than another lineage and expands by chance. Genetic 

drift is referred to as a form of neutral evolution [G], as all lineages are neutral with respect 

to their chance of producing surviving offspring 22,23. Similar patterns of branching are also 

apparent in healthy tissue24,25, emphasizing that branching is a necessary by-product of 

proliferating tissues. However, assuming no other limitations to growth, when multiple 

cancer subclones have increased fitness they will expand simultaneously due to selection, as 

evidenced by the finding of subclonal cancer driver mutations [G] and their impact on 

cancer progression26,27. Selection is also evident in the finding of parallel evolution within 

the same tumour where distinct lineages acquire mutations in the same cancer driver gene, 

leading to parallel subclonal expansions (examples 26,28-30). 

 

[H2] Linear evolution  

The linear evolution model posits that only one lineage survives over time. However, as with 

the fossil record, it does not imply that there was only ever a single lineage that evolved in a 

step-wise fashion. If only a single ‘clone’ survives to the point of sampling, and then is 



 

 

detected, evolution will of course appear linear. However, conclusions regarding linear 

evolution from cancer genomic data are likely confounded by the limited sampling applied 

to the cancer in question and limits of resolution by next-generation sequencing 

technologies.  

 

[H2] Neutral evolution  

Neutral evolution occurs in the absence of differential selection within a population and can 

be regarded as the evolution that occurs in-between selection events31. Prior to adaptive 

mutation occurring the population evolves neutrally, and when the mutation arises it 

initiates a clonal sweep [G] which can be complete or incomplete. If the sweep is complete 

and all the cells in the population carry the adaptive mutation, then the dynamics revert to 

neutral again. 

 

[H2] Punctuated evolution 

Punctuated evolution posits rapid bursts of adaptive evolution rather than continual gradual 

steps. If the adaptive mutation is a large-scale alteration of the genome (for example, loss or 

gain, translocation or fusion of a chromosome) the adaptive clone has been referred to as a 

“hopeful monster”32,33. Compared to a small-scale mutation, its genome is significantly 

altered, with the ‘hopeful’ referring to the likelihood that the mutation is adaptive. 

Punctuated equilibrium [G] is a model first proposed by Eldridge and Gould in the early 

1970s for species evolution34 whereby adaptation occurs in a small spatially-isolated niche, 

until the newly-adapted individuals rapidly expand out of the niche and through the wider 

population. Because the niche is small, the gradually-adapting population is unlikely to be 

sampled before it expands, and so the evolutionary dynamics of the population at large are 

‘punctuated’ by the expansion of the adapted clone. Equilibrium refers to long periods of 

apparent clonal stasis during which the adapted clone persists at low, likely undetectable, 

frequency in the population.  

  
[H1] Inferring evolutionary mode with genomics  

Although adaptation occurs at the phenotypic level, measuring the tumour cell phenotype 

within its original environment is challenging. Surrogate measurements such as gene 

expression are informative, but given the complexity and plasticity of the cancer 

transcriptome, and the contribution to gene expression signals from cells within the tumour 

microenvironment, these are often difficult to interpret in light of evolution. This is why, to 

date, genome profiling has been the preferred tool to study cancer evolution. However, 

there are several major caveats when we try to understand the phenotypes from studying 

the genotypes, a problem that has been tackled over decades in the field of molecular 

evolution. The key issue is that the cancer genotype–phenotype map [G], bar some notable 

exceptions, such as treatment resistance mutations, is largely unknown. Therefore, mapping 

the tumour phylogenetic tree and the underlying adaptive traits remains difficult. 

 



 

 

[H2] Bulk sequencing  

The commonly used bulk sequencing, that is, profiling of a sample comprised of many cells, 

imposes a major limitation on inferences about tumour evolution dynamics. Because the 

standard depth of sequencing is many orders of magnitude smaller (100–1,000X) than the 

number of cells in the sample (10 million – 1 billion), bulk sequencing only recovers 

mutations that are either present in all, or the majority of, cancer cells in a given sample. 

Each doubling of the cancer cell population halves the frequency of new mutations arising in 

the population, and hence after just 7 doublings new mutations are undetectable with 100X 

sequencing, and after 10 doublings new mutations are undetectable at 1,000X sequencing 

depth. Thus, detecting selection that resulted in a limited clonal expansion (100s-1000s 

cells) is problematic. Contamination by stromal cells imposes an additional challenge as it 

dilutes out the frequency of cancer alleles. Thus, bulk sequencing mostly informs on the 

most recent common ancestor (MRCA) of the cells in the sample, a ‘node’ in the 

phylogenetic tree that is extinct in the current malignancy. The more cells in the bulk 

sample, the older the MRCA and shorter the apparent branches in the tree. Mathematically, 

this phenomenon emerges from coalescent theory16Consequently, different-sized samples 

can generate very different portraits of the clonal structure of a tumour. 

 

[H2] Choice of sequencing assay  

The relative abundance of passenger mutations [G], which are evolutionary neutral and 

non-adaptive, over driver mutations, which are under positive selection, makes the 

passengers that hitchhike on a driver event very informative vis a vis clonal dynamics. 

Passenger mutations provide a genetic mark to distinguish different functional clones and, 

more specifically, the number of passenger mutations unique to a lineage is a measure of 

the molecular age of that clone. The variant allele frequency [G] (VAF) determines clone 

abundance, and the proportion of passenger mutations shared between clones reveals their 

ancestry8,35. The choice of sequencing assay (high-depth targeted panel, moderate-depth 

exome or lower-depth whole-genome sequencing) represents a trade-off between the need 

for high-depth sequencing to accurately recover clone frequency (or even detect the clone 

at all) versus genome-wide detection of passenger mutations that uniquely identify distinct 

clones. Moreover, since deeper sequencing provides a broader temporal window on cancer 

evolution, the choice of sequencing assay is a compromise between genome sequencing, 

providing detail on the clonal architecture in only a short and early time window, versus 

deep targeted sequencing, which provides limited clonal information but greater temporal 

range. Here, deeper and broader (for example, more of the genome covered) sequencing is 

always preferred.  

 

[H2] Allelic copy-number correction  

The study of evolutionary dynamics of cancer clones is fundamentally concerned with the 

relative frequencies of cancer clones over space and time. Many bioinformatics tools have 

been created to infer clonal frequencies from bulk sequencing data, such as PyClone36, 



 

 

SciClone37 and PhyloWGS38. Broadly, these tools attempt to identify sets of mutations that 

are all at the same frequency and assign them to clones. These tools have been 

instrumental to study cancer evolution from cancer bulk data. However, this task requires 

many prior inference steps, each of which risks the introduction of errors that are then 

propagated through the analysis. Structural alterations (loss, gain and rearrangements of 

genetic material) are common in cancer genomes and confound the interpretation of 

mutation frequency. Because structural alterations typically alter the copy number of a 

locus, they also have an impact on the relative frequency of any single nucleotide variant 

(SNV) mutation at that locus. Thus, to assign SNVs to clones, it is necessary to correct for the 

impact of copy number alteration (CNA), to turn the allelic frequency of an SNV into a clone 

frequency. In theory this is straightforward: the cellular abundance of any individual 

mutation is simply a product of its frequency and copy number. However, if the allelic copy 

number is incorrectly inferred, then the SNVs in that CNA will be scaled to the wrong 

frequency and so potentially erroneously appear as a new clone. In a tumour composed of 

50% cancer cells, the difference in frequency of an SNV present on 1 of 3 copies versus 1 of 

4 copies is only about 3%, which is a level of accuracy that is rarely achievable with 

moderate-depth sequencing (~100x). Moreover, errors can stem from the initial inference 

of the copy number of the locus. Consequently, errors in the allelic copy number inference 

propagate to produce an erroneous clone phylogenetic tree and give a misleading picture of 

the clonal structure of a tumour. Considering only SNVs located in diploid regions and 

exploiting the hitchhiking principle39 helps, but in a highly aneuploid [G] genome risks 

discarding the majority of SNVs for downstream evolutionary analysis, thus loosing signal 

for the subclonal reconstruction. It is important to note that clone identification is by the 

(abundant) hitchhiking mutations that define the clone, not from the drivers themselves. 

There remains a need for higher resolution data (>100x depth at whole-genome resolution) 

and improved clonal decomposition methods that effectively handle error propagation and 

quantify uncertainty. Emerging long-read and linked-read sequencing technology also offers 

the hope of circumventing this issue, as long reads intrinsically ‘phase’ mutations and so 

directly reveal their allelic identity 40[ref] 

 

[H2] Single-cell sequencing  

Single-cell sequencing is an exciting emerging alternative to bulk sequencing to explore 

tumour evolution 41-45 42,44,46-48. In theory, sequencing individual cells removes the time bias 

inherent to bulk sequencing, as all genetic mutations within the sequenced cell should be 

detectable, irrespective of when the mutations arose. Clonal identity also becomes evident, 

removing the need for allelic copy-number correction. However, calling SNVs in single-cell 

sequencing remains challenging due to the level of noise and missing data. Combining 

information from multiple cells addresses this issue49, although at the cost of losing single-

cell resolution. By contrast, CNAs can be reliably identified in single cells50; however, 

because the background CNA rate is still not well understood51, drawing inferences about 

temporal evolutionary dynamics from these data is not straightforward. Nevertheless, 



 

 

single-cell sequencing offers a powerful route to learning how CNAs accrue, since 

sequencing individual cells means that some newly born cells can be analysed prior to the 

effects of selection, informing the ‘background’ CNA mutation rate51. Single-cell sequencing 

of cells from a large cancer risks sequencing many cells that are ‘evolutionary dead ends’ 

and would not contribute to future disease progression. Simply sequencing large numbers 

of cells would abrogate this issue and, moreover, gives a direct means to detect and 

characterize negative selection52, which cannot be identified by bulk sequencing. We expect 

single-cell sequencing to become the tool of choice in the future as sequencing costs 

continue to fall. 

 

[H1] Detecting selection 

Clonal selection drives cancer evolution, so naturally there is much interest in identifying the 

cause of a clone’s selective advantage. However, detecting selection comes with several 

challenges (Figure 2). There are two broad approaches for detecting selection: (1) clone 

frequency-based methods and (2) mutational pattern-based methods. The two approaches 

are complementary and should be used in conjunction. 

 

[H2] Using clone frequency to detect selection  

Broadly, frequency-based methods detect selection by looking for lineages that are more 

abundant than is expected under neutral evolution. This is done exploiting the Variant Allele 

Frequency (VAF) distribution, often also referred to as the site frequency spectrum (SFS), as 

a surrogate for lineage frequency in a sample. The appeal of this approach is that the shape 

of the VAF distribution under neutral evolution in a well-mixed population is well known: 

specifically, under neutral evolution the number of mutations, m(f), as a function of allelic 

frequency f follows a 1/f2 distribution53 54 6 55 7. Multi-region sampling can also be used to 

measure clone frequency: selection for an ancestral clone causes it to have a 

disproportionate number of offspring in the phylogenetic tree constructed from these 

data56. Hybrid methods that simultaneously consider the VAF distributions from multi-

region sampling also exist 57.  

Longitudinal sampling of clone abundance provides a particularly powerful method to 

detect selection: clones that grow disproportionately faster than others are likely under 

selection 58. However, longitudinal tissue collection and temporal analyses of solid tumours 

is rendered challenging owing to the accessibility of tumour tissue. In due course, as 

sequencing technologies improve and costs decline, we anticipate that analyses of 

circulating free tumour DNA will help to circumvent some of these challenges59,60. 

Frequency-based methods are limited by the power to detect small deviations from the null 

neutral model (e.g. deviations from the 1/f2 distribution)8. Weak selection (for example, a 

relative selective advantage ~1%) causes only slow and slight shifts in clone frequency that 

may go undetected in moderate-depth sequencing 8 Such weakly selected clones may never 

become detectable, especially if they arise too late [REF Sottoriva et al. 2015, Williams et al. 

2018], 8,61and may take longer than a human lifetime to become dominant. The spatial 



 

 

architecture of a tumour presents a complication too — selection is invisible if all samples 

are taken within the selected clone (Figure 2). Moreover, frequency-based methods can 

detect only ongoing differential selection within a population. Once a selected clone has 

taken over, reaching fixation [G], the new (fitter) population of tumour cells is homogenous 

with respect to the selective alteration, and so the within-tumour evolution reverts to 

neutral. In this case, dense longitudinal sampling is necessary to accurately detect selection. 

There are therefore multiple caveats to inferring selection from single low-sequencing 

depth samples. 

 

[H2] Using mutational patterns to detect selection 

Alternative methods use the burden and type of mutations across the genome to detect 

selection; collectively we refer to these as ‘mutational pattern’ methods. These methods 

exploit the fact that selection causes an over-representation of the mutations that increase 

fitness with respect to neutral mutations that measure lineage divergence 8,62 Indeed, 

statistical tools to identify cancer driver mutations across tumours work by considering the 

frequency at which a gene is found to be mutated across cancers compared to background 

expectation63. The dN/dS ratio — the ratio of non-synonymous mutations (N mutations) to 

synonymous mutations (S mutations) normalized by their respective likelihood of 

occurrence — is a popular sequence-based method for detecting selection. The logic of the 

method is that non-synonymous mutations will tend to experience selection, whereas 

synonymous mutations will be evolutionary neutral, and so positive selection will cause an 

over-representation of NS mutations (dN/dS>1) whereas negative selection will cause an 

under-representation of NS mutations (dN/dS<1) 64. Driver genes should have positive 

dN/dS values 24, and newly refined powerful methods for dN/dS calculation have been 

developed specifically for cancer data12,14. 

For the dN/dS method to work, a sufficient number of mutations has to be under selection 

in the gene or locus to cause a statistically significant deviation of the ratio away from 1. 

Hence, a minimum mutation burden is required to calculate the ratio, and the method is 

challenging to apply to individual genes that have too few mutations in a cohort. 

Importantly, dN/dS methods provide ‘average’ estimates of selection (both positive 12 and 

negative 14 across a cohort of patients, and are hard to apply to individual tumour 

evolutionary dynamics. Few patients with extensive positive selection could drive the dN/dS 

value of a whole cohort [REF Heide 2018 – NatGen]. Population demographics also influence 

the dN/dS ratio in a complex manner and potentially confound its interpretation 65,66. 

Nevertheless, combining frequency-based with mutational pattern-based methods can 

partially overcome the limitations of each approach, providing more robust estimates of 

clonal selection. 

 

[H2] Stochasticity versus determinism  

In small populations, both in cancer and species, stochasticity can dominate the evolution of 

even strongly selected mutations3, but a large clone in a large population can behave more 



 

 

deterministically67. The threshold between stochastic and becoming deterministic is 

inversely proportional to the selective advantage of the mutant 58,68 23. This ‘evolutionary 

rule’ about the transition from stochasticity to determinism has implications for the 

predictability of cancer evolution: small, stochastically evolving clones have unpredictable 

evolution, whereas large clones evolve more predictably. In other words, we are likely to be 

able to accurately predict the evolution of clones that have already grown large enough to 

be detected, but an accurate prediction about the emergence of specific minor clones will 

be more challenging 69. 

 

[H1] Chromosome instability in cancer evolution 

 

[H2] CIN and clonal fitness 

Alterations in copy number affect a greater proportion of the cancer genome than any other 

mutation70 and can act as “hopeful monsters”71, offering potentially high adaptive 

advantage to evolving cancers. They result from CIN, a consequence of ongoing errors in 

chromosome segregation during mitosis and errors of DNA replication and repair72,73. The 

end result is aneuploidy (an unbalanced chromosome complement) involving entire 

chromosomes (whole-chromosome aneuploidy) or parts of chromosomes (partial or 

segmental aneuploidy). Aneuploidy can also occur independently of CIN if a single event of 

chromosome missegregation leads to expansion of the aneuploid clone. Such tumours are 

homogeneously or clonally aneuploid, whereas tumours with ongoing CIN are 

heterogeneously or subclonally aneuploid74,75. In addition, aneuploidy can result from single 

catastrophic events, termed chromoplexy [G] (if affecting multiple chromosomes) or 

chromothripsis [G] (affecting 1–2 chromosomes), the relevance of which has become 

increasingly evident across different cancer types76. Irrespective of the mechanism, 

aneuploidy can alter the somatic copy number, and therefore expression, of many genes at 

the same time. Although the background alteration rate varies substantially across 

chromosomes51 it does not account for evidence of recurrent chromosomal-level or arm-

level aberrations in tumours77, which is likely explained by selection (both positive for CNA 

drivers or negative for lethal chromosomal states). The locations of tumour suppressor 

genes and oncogenes re-capitulates the patterns of aneuploidy observed across different 

cancers 78,79 and also shows the adaptive potential provided by CIN. In a mouse model of 

acute lymphoblastic leukaemia and hepatocellular carcinoma, induction of CIN in T cells and 

hepatocytes resulted in tumour-specific patterns of chromosome copy alterations80, 

suggesting that selective pressure is tissue context-dependent. CIN can also provide means 

of disease escape following curative treatment with surgery or disease control with targeted 

therapy. Induction of CIN in the KRAS model of lung cancer resulted in rapid relapse, with 

recurrent tumours showing high levels of aneuploidy, with emergent independence from 

the original oncogenic stimulus81. In chronic myeloid leukaemia, patients who developed 

resistance to BCR-ABL targeting imatinib developed additional chromosomal alterations82. 



 

 

Some effects of CIN are independent of gene-specific alterations, including reduced 

proliferation, proteotoxic stress, metabolic changes, upregulation of the stress response and 

further genome instability. Additional genome instability in particular has a profound impact 

as aneuploid cells continue to create more genetic diversity 83,84. The fact that aneuploidy 

(or CIN) can be both detrimental and advantageous highlights the importance of 

determining the selective landscape. This is well illustrated in yeast where aneuploidy 

provides a fitness advantage under severe environmental conditions, acting as “first 

evolutionary line of defense”85, but does not persist upon reversion to normal conditions. In 

a systematic study of the oncogenic potential of aneuploidy in mouse embryonic fibroblasts, 

trisomy failed to induce transformation under any conditions and the cells grew poorly 

compared to matched euploid cells, consistent with a fitness penalty86. However, during 

long-term growth, triploid cells acquired other aneuploidies that conferred improved 

fitness. The authors suggest that low levels of aneuploidy may be tumour-protective, but 

that the genome-destabilizing effects of aneuploidy are tumour-promoting under certain 

growth conditions. Thus, the rare growth-promoting aneuploidies expand and rise to clonal 

levels, whilst growth-inhibitory aneuploidies are selected against. Consistent with this 

notion, aneuploid cells grew better than euploid cells under conditions of environmental 

stress such as hypoxia and chemotherapy87. Addition of a single chromosome increased the 

tolerance to environmental stresses and was not chromosome-specific, suggesting that 

overexpression of particular genes is not the only contributor to adaptive potential.  

 

[H2] CIN and metastases 

Complex processes of metastatic spread, which require a multitude of cellular phenotypes, 

could be well served by the karyotypic and phenotypic heterogeneity generated by CIN. 

Comparative studies of matched primary tumour–metastasis pairs have reported 

enrichment for aneuploidy in metastatic lesions from prostate, pancreatic, breast and colon 

cancers (reviewed in 88). Through a detailed clonal resolution of matched clear cell renal cell 

cancer (ccRCC) primary and metastatic tumours, we recently reported that a critical 

difference between tumour clones that are metastasis-competent compared to those that 

fail to metastasize is the degree of aneuploidy and chromosome complexity (measured by 

fluorescence-activated cell sorting (FACS) and weighted genome instability index 89 90). 

Furthermore, we observed that specific somatic CNAs, loss of 9p and loss of 14q, were 

highly enriched within the metastasizing clones, reflecting active selection. We found no 

evidence of selection for the smaller scale mutations such as SNVs90. Beyond altering the 

expression of many genes simultaneously, potential mechanisms by which chromosomal 

alterations contribute to metastasis include the induction of mesenchymal transition 

through changes in expression of intercellular junction proteins91, activation of the cGAS–

stimulator of interferon genes (STING) pathway by cytosolic DNA from chromosome 

missegregation92 93,94, and immune evasion95.  

 

 



 

 

[H2] CIN and clinical outcomes 

The role of CIN in cancer evolution and progression is evidenced by its association with poor 

clinical outcomes in a number of retrospective studies96,97. More recently, analyses in a 

prospective cohort of early stage non-small cell lung cancer (NSCLC) evolution (TRACERx-

Lung study) showed that CIN confers an increased risk of recurrence and death 

independently of known predictive markers27. In TRACERx-Renal, a similarly prospective 

study of ccRCC, an increase in aneuploidy was associated with shorter progression-free and 

overall survival26. Intriguingly, the level of CIN has a bearing on its overall impact on 

prognosis. In a pan-cancer analysis of >2,000 samples, only moderate levels of CIN (>25% 

and <75%) were associated with decreased survival, concordant with previous studies 

showing that excessive levels of CIN confer an improved prognosis 98,99 100. These 

observations are consistent with a fitness cost of CIN, with the selective advantage of 

karyoptypic heterogeneity negated by excessive levels of aneuploidy. 

CIN is also linked to resistance to anti-cancer treatment, including chemotherapy 101,102, and 

CTLA4 and PD1 immune checkpoint inhibitors (CPIs)95 103. In NSCLC, CIN can lead to 

subclonal loss of heterozygosity (LOH) in the genes encoding the human leukocyte antigen 

(HLA)104, with pervasive evidence of positive selection for this event in tumours. In this 

context, HLA LOH facilitates accumulation of subclonal neoantigens, and further clonal 

evolution104. In ccRCC, we observed increased rates of HLA LOH in primary tumour 

subclones that were selected in metastatic sites90, highlighting again the role of immune 

evasion in metastasis. 

 

[H1] Evolutionary patterns and patient outcomes  

Whether understanding a tumour’s evolutionary trajectory and evolutionary potential can 

help to predict patient outcomes remains a critical question in the context of precision 

medicine. 

H1A Clonal diversity and clinical outcomes 

The presence of clonal diversity (both neutral and non-neutral) is expected to provide a rich 

repertoire of alterations that could be adaptive under selective pressure of therapy, 

alterations in tumour environment or metastatic colonisation of distant sites. In a 

prospective study of Barrett’s oesophagus, a premalignant condition, progression to 

adenocarcinoma correlated with clonal diversity independently of other genetic risk factors 
105. Multiple studies have demonstrated the link between subclonal diversification and 

adverse clinical outcomes in chronic lymphocytic leukaemia 106 107, head and neck 

cancer108, ovarian cancer109 and across other cancer types110. Subclonal diversification of 

SCNAs and mutational drivers was associated with adverse prognostic features in ccRCC, 

and independently associated with reduced progression-free and overall survival 26. In 

NSCLC, diversity of somatic CNAs but not SNVs correlated with the risk of relapse and 

death27. In patients with breast cancer, intratumour heterogeneity of HER2copy number, 

detected at single-cell resolution, was associated with shorter survival 111. In multiple 

myeloma, detection of neutral evolution dynamics correlated with progression-free and 



 

 

overall survival112 and was associated with the presence of a strong clonal (truncal) 

oncogenic driver, which might explain the lack of ongoing selection.  

 

H1B Punctuated versus gradual evolution and clinical phenotypes 

It is increasingly apparent that some tumours acquire multiple and/or strong drivers in a 

short period of time (punctuated evolution), whereas others show a more steady rate of 

driver acquisition (gradual evolution) 10,113-115. The result of punctuated evolution is a 

rapid clonal sweep and a functionally homogenous tumour mass. In ccRCC, these 

tumours are characterized by low driver intratumour heterogeneity and high levels of 

clonal aneuploidy that became fixed early on in tumour evolution26. These tumours 

proliferated faster, disseminated rapidly to many different sites (Figure 3a), and had 

worse outcome, compared to those characterized by clonal diversity and subclonal 

aneuploidy. Metastases from rapidly evolving tumours were seeded by the same 

dominant clone found at the primary site, resulting in limited inter-metastatic 

heterogeneity in untreated patients (Figure 3a). By contrast, tumours with subclonal 

aneuploidy, evolving in a Darwinian fashion and gradually accumulating driver 

alterations, grew more slowly and over longer periods of time26. In some cases 

metastases were seeded by multiple clones resulting in inter-metastatic heterogeneity (in 

untreated patients). In line with this finding, a mathematical model of metastases 

formation suggests that the probability of observing inter-metastatic heterogeneity 

(which results from distinct clones in the primary tumour seeding different metastatic 

sites) increases when the primary tumour grows slowly116. Intriguingly, gradually evolving 

tumours were also associated with a specific pattern of metastatic progression, termed 

“oligometastases”90 (Figure 3b). Oligometastases, defined as a small number of lesions 

confined to a single site, are conceptualized as an intermediate state of metastatic 

capacity 117,118 with an important clinical implication for directed, potentially curative 

treatment for such lesions. Reduced metastatic efficiency of clonally diverse tumours 

could be a result of clonal interference (inter-clonal competition at the primary tumour 

site) or a reflection of weak clonal drivers, with subclonal driver events providing 

additional fitness required for metastases.  

Pancreatic cancer has traditionally been viewed as following gradual evolution, with 

sequential acquisition of driver events. However, some pancreatic cancers show 

punctuated equilibrium as the principle evolutionary trajectory, whereby multiple driver 

events are acquired sometimes through a single ‘catastrophic’ event, resulting in complex 

genomic rearrangements119. Consistent with our observations in renal cancer, such 

evolutionary trajectories result in limited inter-metastatic heterogeneity, as all 

metastases are seeded by the dominant primary tumour clone120. Another example is 

uveal melanoma, which is characterized by aggressive albeit latent liver metastases in a 

proportion of patients, especially those whose primary tumour harbours BAP1 mutations 

BAP1 mutations and chromosomal complexity were shown to arise in a short burst early 

on in tumorigenesis113, implying that metastatic potential can be acquired at the earliest 



 

 

stages of cancer evolution. Similar observations have been made in triple-negative breast 

cancer 115, while chromoplexy and chromotripsis were shown to fuel rapid evolution in 

prostate cancer and colorectal cancer 114,121, respectively.  

Finally, the temporal order in which mutations are acquired during tumour evolution 

affects clinical phenotype and outcome in myeloproliferative neoplasms122, ccRCC26, 

NSCLC and breast cancer123. These observations are consistent with determinism and 

suggest that evolutionary trajectories could potentially be predicted for patient benefit.  

 

The observation of the wide spectrum of evolutionary patterns in cancer begins to 

reconcile the diverse clinical phenotypes and varied outcomes seen in the clinic. In 

particular, the occurrence of punctuated genomic evolution highlights the challenge of 

managing cancers that acquire metastatic competency early, cancers that are ‘born to be 

bad’. Supporting this notion are pre-clinical models that show metastatic dissemination 

before frank malignancy is detected histologically124. These observations are especially 

relevant for cancer screening approaches. As the latency between the emergence of the 

invasive clone and metastatic spread can be short, the window for early detection could 

be very limited125. Many questions about evolutionary trajectories remain, including the 

environmental conditions which favour gradual evolution (gradual accumulation of driver 

mutations), or punctuated evolution (large-scale rearrangements of the genome leading 

to many drivers acquired at once) and how these may be altered for therapeutic benefit .  

 

[H1] Origin of the treatment-resistant clone  

Despite continuing advances in the treatment of cancer, metastatic tumours remain largely 

incurable. Understanding how treatment resistance evolves under the selective pressure of 

therapy can inform novel strategies to delay or prevent its onset.   

 

[H2] Resistance to targeted therapies 

Targeting oncogenic drivers in both blood and solid malignancies has brought about a 

remarkable change in the cancer treatment landscape. Notable examples include BCR–ABL 

translocation in chronic myeloid leukaemia, where the use of imatinib has resulted in 10-

year survival rates of ~85%126; KIT mutations in gastrointestinal stromal tumours (GISTs), 

HER2 amplification in breast cancer, EGFR mutations in NSCLC, and BRAF mutations in 

melanoma. However, with the exception of chronic myeloid leukaemia, disease control 

afforded by targeted agents is fairly short-lived, and treatment rarely results in long-term 

survival for the patient. Mutational complexity of solid cancers may be a contributing factor 

to the inevitability of resistance, as every additional mutation could provide a pathway to 

treatment resistance. Accordingly, higher tumour mutational burden (TMB) correlates with 

shortened benefit from EGFR-tyrosine kinase inhibitor (TKI) treatment in metastatic EGFR-

mutant NSCLC127. Although resistance mutations can arise de novo128, they frequently pre-

exist as minor subclones (Figure 4a)129,130, although the ability to detect them in pre-

treatment samples is limited by the breadth of sampling and depth of sequencing. 



 

 

Modelling of tumour growth suggests that detectable metastatic lesions can harbour ten or 

more resistant subclones 131. Although there are limitations to these models (reviewed in 
132), the predictions are consistent with the observations in clinical and genomic data. In a 

recent study of patients with chronic lymphoid leukaemia treated with ibrutinib, 

resistance was attributable to the emergence of mutations in BTK and/or PLCG2, which 

were detected with a high-sensitivity method up to 15 months prior to clinical 

progression, with some patients evolving multiple resistance mutations133. Polyclonal 

treatment resistance has been described in other tumour types, with evidence of parallel 

expansion of clones harbouring distinct mechanisms of resistance under selective pressure 

of therapy134-136. Upfront evaluation of the resistant clones can also be used to forecast the 

duration of therapeutic benefit, as recently demonstrated in metastatic colorectal cancer 

using frequent time-course liquid biopsies and mathematical modelling137.  

Thus, a comprehensive catalogue of resistant mutations could inform appropriate 

combinatorial strategies, while dynamic monitoring of emerging and resolving alterations 

can facilitate adaptive treatment strategies. This approach was well illustrated by the 

example of EGFR inhibition in colorectal cancer and the waxing and waning of the resistant 

RAS mutant alleles in the blood in response to treatment initiation and withdrawal138. These 

observations also highlight the issue of fitness penalty associated with resistant mutations: 

KRAS mutations were detected in cell-free DNA from patients who developed resistance to 

EGFR inhibition; however, when therapy was withdrawn they remained undetectable, 

suggesting that they require ongoing therapy for their maintenance and that resistance 

comes at a cost. The higher the fitness cost, the harder it is for the resistant clone to emerge 

as modelled in patient-derived xenografts (PDXs) [G] from individuals with BRAF-V600E 

mutant melanoma or NSCLC, who developed resistance to BRAF inhibition. PDXs were 

exposed to ERK inhibition (downstream of BRAF), which resulted in multiple BRAF-amplified 

clones being selected and propagated. When BRAF, MEK and ERK inhibition were combined 

in an intermittent schedule, the fitness disadvantage prevented the emergence of the BRAF-

amplified subclones139. Finally, clonal complexity may affect the drug target itself. Although 

frequently clonal by virtue of being founder alterations, drug targets can also be found in 

tumour subclones. In a recent clinical trial, FGFR inhibitor responders harboured a clonal 

FGFR amplification, whereas non-responders harboured subclonal amplifications140. 

 

[H2] Resistance to immune checkpoint inhibition 

Another important development in cancer therapeutics has been the advent of immune 

checkpoint blockade [G]. The efficacy of CPIs is contingent on pre-existing recognition of the 

tumour by the immune system, through presentation of neoantigens which result from 

somatic mutations accumulated by the tumour 141. Accordingly, the CPIs have been most 

effective in tumour types with an abundance of somatic mutations (that is, a high TMB) 142 

which increases the likelihood of a potent neoantigen being presented to the immune 

system. Initially, it was expected that CPIs might circumvent the clonal diversity faced by 

targeted therapies; however, it has become apparent that clonal evolution has a profound 



 

 

impact on immunotherapy success and failure. Subclonal neoantigens do not stimulate an 

adequate tumour response, as shown by reduced sensitivity to checkpoint blockade in 

melanoma and NSCLC tumours that have a significant proportion of subclonal mutations143. 

This pattern has been confirmed across additional tumour types144. Neoantigen evolution, 

or immune-editing, underlies some aspects of acquired resistance to CPIs. Loss of both 

clonal and subclonal neoantigens under selective pressure of CPI treatment has been 

reported. Clonal neoantigens are lost through deletion of the chromosome region that 

harbours the alteration, whereas subclonal neoantigens are lost through outgrowth of 

alternative subclones145. Critically, peptides generated from the lost neoantigens elicited 

clonal T-cell expansion in autologous T-cell cultures145, suggesting that they generated 

functional immune responses. Neoantigen immune-editing has also been reported in the 

context of adoptive transfer of autologous lymphocytes that specifically target proteins 

encoded by cancer-specific mutations, another area of active clinical development which 

holds much promise146. T-cell recognized neoantigens were selectively lost over time in 

metastatic melanomas treated by adoptive T-cell transfer, accompanied by the 

development of neoantigen-specific T-cell reactivity in tumour-infiltrating lymphocytes147, 

which indicates immune-editing. 

Inactivation of antigen presentation is another important mechanism of acquired CPI 

resistance. For example, point mutations, deletions or LOH in B2M, which encodes an 

essential component of MHC class I antigen presentation, and in the genes encoding 

interferon-receptor-associated Janus kinase 1 (JAK1) or JAK2, have all been reported as 

common mechanisms43,148. Just as with the drivers of resistance to targeted therapy, these 

alterations were selected and expanded under therapy. Vaccine strategies are also 

vulnerable to these alterations. In a trial of an RNA-based vaccine against a spectrum of 

cancer mutations, neo-epitope-specific killing was demonstrated in a patient who initially 

responded but developed resistance owing to the outgrowth of β2-microglobulin-deficient 

melanoma cells149. Another mechanism of immune evasion occurs through selection of 

tumour populations where HLA is either mutated or lost. In a recent report of adoptive T 

cell transfer in a patient with colorectal cancer, profiling of a progressive lesion revealed loss 

of the chromosome 6 haplotype encoding the HLA allele that recognizes the targeted 

mutant KRAS150.  

 

 

[H1] Conclusions and perspective  

An understanding of the dynamics of cancer evolution might lead to improvement in clinical 

outcomes, as it enables prognoses to be accurately determined and ‘evolution-aware’ 

patient management to be applied. Genomic analysis provides a quantitative measurement 

of evolutionary dynamics and evolutionary potential. There is tremendous value still to be 

gleaned from analyses of the rapidly growing public repository of cancer genomic data; 

particular insight can be gained from the large sample numbers and the inter-comparison of 

evolutionary dynamics between cancer types. However, we caution that our inferences are 



 

 

severely restricted by the limitations of single-biopsy, bulk-sequenced data sets. As 

sequencing costs continue to fall, deeper sequencing (e.g. exceeding the current ‘best’ of 

100x whole-genome), will allow more accurate determination of clonal fractions (reducing 

error on inferences derived from these data) and enable the resolution of smaller clones. 

Single-cell sequencing technology promises to circumvent much of the complexity of ‘bulk’ 

sequencing data, and this maturing technology promises the concurrent measurement of 

genotypes and phenotypes in individual cells151, together with a characterization of their in-

situ microenvironment42.  

Improving the availability of samples from which to study cancer evolutionary 

dynamics also presents a bottleneck; we hope initiatives such as our TRACERx 152 and 

PEACE153 studies, which provide infrastructure for longitudinal and post-mortem collection 

of tumour samples, will become more common. Even at a single time-point, these studies 

provide greater representative tumour sampling relative to single-tumour biopsies, which 

under-represent tumour bulk, leading to the risk of clonal illusion. Quantitative genomic 

analysis of ‘liquid biopsies’ (the analysis of tumour DNA from peripheral blood samples) may 

overcome this issue and provide an amenable route for minimally-invasive longitudinal 

disease monitoring as well as predictions on disease course and treatment response59,137,154-

156. In summary, evolutionary genomics provides an ever-improving lens to reveal the clonal 

dynamics of cancer and impact patient outcomes. 

 

Box 1. Is cancer a special case of evolution? 

Despite major overlaps between evolutionary biology and cancer biology, there are a few 

aspects of cancer evolution that indicate tumours may be a special case of evolutionary 

systems. First, tumours are extremely large populations, much larger than most common 

ecosystems and more akin to bacteria colonies, with populations in the order of 100s of 

billions of cells. This implies that the total diversity is astounding. Another special feature of 

cancers is chromosomal instability, which is central to cancer evolution. Chromosomal 

instability allows for the generation of true ‘hopeful monsters’ — grossly altered clones that 

may be adaptive — a phenomena thought to be very rare in species evolution. Cancer cell 

plasticity, or phenotypic change that does not require underlying heritable variation, is also 

a fundamental force that guides tumour adaptation and makes the system rather ‘non-

Darwinian’ in some contexts. 
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Figure 1. Modes of cancer evolution. Cancers evolve according to Darwinian rules: mutation 

and selection of beneficial new mutations drives the expansion of subclones, and between 

and within selected clones, the cellular populations experience neutral drift. Different 

‘modes’ of evolution appear depending on when and how the evolutionary process is 

sampled. 



 

 

 
Figure 2. Challenges in detecting selection. a. Limited sampling in time and space confounds 

measurement of evolutionary dynamics. (i) Sampling within a clone shows neutral dynamics. (ii) 

Non-uniform spatial sampling can look like selection when it is just genetic divergence. (iii) If driver 

mutations accrue rarely but exhibit a strong effect, most evolutionary time shows only neutral 

dynamics. (iv) Selection occurs within a small niche that is below the detection limit, so evolution 

appears neutral because selected subclones are undetectable. (v) Using frequency/phylogenetic 

methods, selection can only be detected when multiple subclones are sampled. b. Bulk sequencing 

data has a profound time bias, allowing only the earliest – and so highest frequency – mutations to 

be detected. As a tumour doubles its cell number, new mutations that arise represent an 

exponentially smaller fraction of the tumour, and so rapidly fall below detectable frequency. c. Error 

in copy-number assignment propagates and confounds the identification of tumour subclones. 

Limited depth sequencing (say 100X) causes dispersion in the true VAF of a variant, and true VAF is 

determined by clonal abundance and underlying copy-number state (coloured shapes on plot). This 

leads to mutations in different clones, or at different copy-number states, being erroneously 

misassigned clonal identities (red boxes). The 1/f2 tail of low frequency mutations is an inevitable 

consequence of tumour growth, and further complicates clonal inference on VAF data. 

 



 

 

 
 

Figure 3. Clonal evolution and metastases. Different modes of evolution in the primary 

tumour can impact the mode of metastatic progression26. Metastatic capacity is associated 

with increased chromosome complexity90. A. Tumours that evolve in a punctuated fashion 

with early onset of clonal chromosome complexity grow rapidly and metastasise early and 

widely. Metastases are monophyletic (single dominant clone seeds all the metastatic sites) 

and monoclonal (single clone seeds single site), and there is limited inter-metastatic 

heterogeneity. B. Tumours that evolve in a branched/Darwinian fashion grow more slowly 

are composed of distinct subpopulations of cells with differential metastatic capacity and 

chromosome complexity is acquired late. They can be associated with solitary or oligo-

metastases. When they spread to multiple sites they may do so in a polyphyletic fashion 

(different subclones seed different sites), which may include organ-specific patterns and 

result in inter-metastatic heterogeneity116. If multiple clones seed the same site, the 

metastasis is polyclonal. 

 

 

  



 

 

 
 

Figure 4. Clonal evolution of treatment resistance. A. Resistant mutations can be present in 

the tumour population before the start of therapy, usually as a minor subclone131,133. They 

may evade detection in the baseline sample if they are present at very low frequency or a 

restricted to an unsampled region of the tumour. They may be even neutral or deleterious 

before therapy. Under the selective pressure of therapy, the treatment-sensitive population 

diminishes leaving the resistant population to expand under positive selection. Multiple 

subclones bearing distinct resistant mutations can emerge at the same time, indicating 

parallel evolution of resistance134-137. B. Treatment resistance can be a result of a de novo 

mutation which carries a selection advantage under therapy and becomes fixed in the 

tumour population. In this case resistance takes longer to emerge128.  
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Glossary  

 

Clonal evolution 

A process by which genetic and epigenetic alterations create diversity that acts as substrate 

for natural selection. 

 

Subclone 

A populations of cells in the tumor that harbour the same set of genomic alterations 

 

Genetic drift 

A stochastic random process that changes subclone frequency 

 

Selection 

A non-random process shaped by environmental and tumour properties that changes 

subclone frequency  

 

Chromosome instability 

A type of genomic instability that involves parts of or entire chromosomes.  

 

Mutator phenotype  

Increase in mutation rates in cancer 

 

Neutral evolution 

Clonal diversity not caused by selection 

 

Phylogenetic tree  

A branching diagram showing the hierarchy of clones within the tumour 

 

Clonal sweep  

Reduction of diversity due to the fixation of a variant due to strong positive selection.  

 

Punctuated equilibrium  

Rapid speciation events with long periods of intervening stasis.  

 

Hopeful monster 

The generation of an individual with a grossly-altered genome compared to its ancestor, 

which may be adaptive. A hopeful monster is the result of punctuated change in the 

genome. 

 

Passenger mutation  

A mutation that has no effect on clone fitness 



 

 

 

Driver mutation  

A mutation that increases clone fitness 

 

Variant Allele Frequency 

Relative frequency of a variant in a tumour sample, expressed as a percentage  

 

Aneuploid 

The presence of an abnormal chromosome complement 

 

Fixation 

Rise of a variant in frequency in the population to 100% 

 

Chromoplexy  

A complex rearrangement of the cancer genome that involves a number of chromosomes 

 

Chromothripsis  

A complex rearrangement of the cancer genome that involves a single chromosome 

 

Patient-derived xenografts 

A tumour model where the tissue from patient’s tumour is implanted in an immunodeficient 

mouse. 

  

Immune checkpoint blockade 

Therapies that target immune checkpoints such as CTLA4 and PD1 which tumours can use to 

escape anti-tumour immune responses 

 


