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25 ABSTRACT

26 Pharmacological inhibition of the sonic hedgehog (SHH) pathway can be beneficial against certain 

27 cancers but detrimental in others. Adamantinomatous craniopharyngioma (ACP) is a relevant pituitary 

28 tumour, affecting children and adults, that is associated with high morbidity and increased mortality in 

29 long-term follow up. We have previously demonstrated overactivation of the SHH pathway in both 

30 human and mouse ACP. Here, we show that this activation is ligand dependent and induced by the 

31 expression of SHH protein in a small proportion of tumour cells. We investigate the functional 

32 relevance of SHH signalling in ACP through magnetic resonance imaging (MRI) -guided preclinical 

33 studies using an ACP mouse model. Treatment with vismodegib, a clinically approved SHH pathway 

34 inhibitor, results in a significant reduction in median survival due to premature development of highly 

35 proliferative and vascularised undifferentiated tumours. Reinforcing the mouse data, SHH pathway 

36 inhibition in human ACP leads to a significant increase in tumour cell proliferation both ex vivo, in 

37 explant cultures, and in vivo, in a patient-derived xenograft model. Together, our results demonstrate 

38 a protumourigenic effect of vismodegib-mediated SHH pathway inhibition in ACP.
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39 INTRODUCTION

40 Adamantinomatous craniopharyngiomas (ACPs) are benign tumours of the sellar region that 

41 are associated with high morbidity and increased mortality in long-term follow up. They constitute the 

42 most common non-neuroepithelial brain tumour in children (peak diagnosis at 5–14 years) and can 

43 also develop in adults (peak diagnosis 50–74 years). ACPs display clinically aggressive behaviour by 

44 invading vital surrounding structures such as the hypothalamus and optic chiasm, which complicates 

45 surgical resection leading to severe postoperative sequelae. Currently there are no targeted molecular 

46 treatments for these patients (Karavitaki and Wass, 2008, Muller et al., 2017) The majority of human 

47 ACPs carry somatic mutations in CTNNB1, which result in the expression of a degradation-resistant 

48 form of -catenin and activation of the WNT/-catenin pathway (Sekine et al., 2002, Kato et al., 

49 2004, Buslei et al., 2005, Brastianos et al., 2014, Apps et al., 2018).

50 The expression of functionally equivalent mutant -catenin in either pituitary embryonic 

51 precursors (Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice) or adult pituitary stem cells (Sox2CerERT2/+;Ctnnb1lox(ex3)/+ 

52 mice) results in the formation of tumours resembling human ACP (Andoniadou et al., 2013, Gaston-

53 Massuet et al., 2011). In both models, tumoural pituitaries show the presence of -catenin-

54 accumulating cells forming clusters, which share a common molecular signature with those found in 

55 humans (Gonzalez-Meljem et al., 2017). Our initial studies revealed the upregulation of the sonic 

56 hedgehog (SHH) pathway in both mouse and human ACP, a finding confirmed subsequently by 

57 independent research (Andoniadou et al., 2012, Gomes et al., 2015, Holsken et al., 2016, Gump et al., 

58 2015). However, the biological function of the SHH pathway in ACP pathogenesis remains unknown 

59 to date.

60 The SHH pathway has been implicated in the pathogenesis of multiple cancers including 

61 medulloblastoma, basal cell carcinoma, breast, colon and pancreatic ductal adenocarcinoma (PDAC) 

62 (Rimkus et al., 2016). While SHH pathway inhibition has proven beneficial against basal cell 

63 carcinoma (Sekulic et al., 2017, Sekulic et al., 2012), it has proven detrimental in other cancers, such 

64 as PDAC, where enhanced tumour progression and aggressiveness was observed in both preclinical 

65 and clinical trials (Madden, 2012, Catenacci et al., 2015). These discrepancies between favourable or 
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66 unfavourable outcomes after SHH pathway inhibition prompted us to assess the functional relevance 

67 of the SHH pathway in human ACP. Our preclinical research demonstrates that inhibition of the SHH 

68 pathway using vismodegib is not beneficial and is therefore contraindicated in human patients.

69

70 MATERIALS AND METHODS

71 Mice

72 All experimental protocols were monitored and approved by The Institute of Cancer Research 

73 Animal Welfare and Ethical Review Body, in compliance with guidelines specified by the UK Home 

74 Office Animals (Scientific Procedures) Act 1986, the United Kingdom National Cancer Research 

75 Institute Guidelines for the Welfare of Animals in Cancer Research (Workman et al., 2010) and the 

76 ARRIVE guidelines (Karp et al., 2015). Animals were monitored daily and were killed at defined 

77 humane end points (i.e. prior to the mice showing signs of severe health deterioration or 20% weight 

78 loss). Patient-derived xenografts were generated as previously described (Stache et al., 2015). All 

79 mice were housed in compliance with the Home Office Code of Practice. Mice were kept on a 12-

80 hour light/dark cycle and fed ad libitum with a complete pelleted mouse diet and with constant access 

81 to water. 

82 Hesx1Cre/+ mice have been previously described (Andoniadou et al., 2007). The line was 

83 maintained on a C57BL/6J background for over 50 generations. Heterozygotes were used for crosses 

84 with Ctnnb1lox(ex3)/+ mice (Harada et al., 1999) to obtain Hesx1Cre/+and Ctnnb1lox(ex3)/+ mice (Gaston-

85 Massuet et al., 2011). For xenografts, we used NIH nu/nu were bred in our local Biological Services 

86 Unit.

87

88 Drug administration

89 Four week-old male Hesx1Cre/+;Ctnnb1lox(ex3)/+  mice were administered vismodegib (Roche) 

90 or vehicle in 2% DMSO, 30% PEG 300, 5% Tween 80, ddH2O via oral gavage at a dose of 100 

91 mg/kg of body weight twice a day (approximately 7.30 am and 4.00 pm).  

92

93 Human samples
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94 Experiments using human samples were covered by the ethical approval 14 LO 2265 or the 

95 ethical approval of specific tissue banks. Human ACP samples were kindly provided by the GOSH 

96 Histopathology Department. 

97

98 Ex vivo culture of ACP human tumours

99 Explant cultures were performed as previously described (Apps et al., 2018). Small pieces 

100 from three different human ACP tumours (approximately 1 mm3; four replicates per tumour) were 

101 placed on 0.2 μM Whatman filters (SLS) in 24 well plates containing 500 μl of media (DMEM-F12 

102 (Gibco), 1% Pen/Strep (Sigma) and 1% FBS (PAA)) supplemented with either Vismodegib 100 μM 

103 (Selleckchem) or vehicle (DMSO) and medium was changed every 24h. After 72h, tumour pieces 

104 were passed through a Qiashredder column (Qiagen) and processed for total RNA extraction using the 

105 RNeasy Micro kit (Qiagen). Approximately 1 μg of total RNA was reverse-transcribed to cDNA 

106 using the Transcriptor First Strand cDNA Synthesis Kit and random hexamers (Roche). 

107

108 Magnetic Resonance Imaging (MRI)

109 Multi-slice T2-weighted images were acquired using a 7T Bruker microimaging system with a 

110 3 cm birdcage coil over a 2.5 cm field-of-view (RARE; TR= 4500 ms, TEeff= 36 ms). MRI was 

111 performed on the final day of treatment and at least every 2 weeks thereafter, until mice presented 

112 with neurological symptoms or lost condition (Boult et al., 2017).

113

114 Histology and immunostaining on histological sections

115 Immunohistochemistry and immunofluorescence were carried out using the same antibodies, 

116 concentrations and retrieval conditions as previously described (Gonzalez-Meljem et al., 2017, 

117 Andoniadou et al., 2013, Apps et al., 2018). Immunostaining of SHH protein was also conducted as 

118 previously described (Carreno et al., 2017). Section immunostaining was performed as previously 

119 described (Andoniadou et al., 2012). Briefly, slides were de-waxed in HistoClear, re-hydrated from 

120 100% EtOH to double distilled MilliQ water and underwent antigen retrieval in an antigen retrieval 

121 unit (BioCare Medical Decloaking Chamber NXGEN) for 2 minutes at 95°C. Slides were then 
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122 washed in 1X PBT, which consists of 1X PBS and 0.1% Triton X-100. Histological slides were then 

123 blocked for 1 hour at RT in blocking buffer and 10% heat inactivated sheep serum (HISS), blocking 

124 buffer contains 0.1% Triton X-100, 0.15% glycine, 2mg/ml BSA in 1X PBS. SHH was visualised by 

125 using the TSA™ Plus Fluorescein System (Perkin Elmer), following the manufacturer’s protocol. 

126 Primary and secondary antibodies were diluted into blocking buffer and 1% HISS. Sections were 

127 counter stained with 4',6-Diamidino-2-Phenylindole (DAPI) for 5 minutes (1:10,000, Sigma) and 

128 mounted onto coverslips with VectaMount (Vector Laboratories). For immunohistochemical 

129 stainings, slides were first incubated with an Avidin-Biotinylated Peroxidase Complex (Vector). 

130 Chromogenic detection was then conducted by addition of 3,3'-diaminobenzidine (DAB, Vector) for 

131 2-5 minutes and then counterstained with Mayer’s hematoxylin (Sigma).

132  

133 Quantitative analysis of immunofluorescent stainings

134 The proliferative and mitotic indexes were calculated as a percentage of the Ki67 positive or 

135 p-histone H3 positive cells out of the total of DAPI-stained nuclei, respectively. Specifically: In Fig. 

136 2C and D, a total of 15,600 and 16,700 respectively DAPI positive nuclei were counted; 15,213 for 

137 vehicle and 13,300 for Vismodegib in Fig. 3D; and 10,037 and 2,332 in Fig. 4D and G. Cells were 

138 counted using ImageJ, a Gaussian filter was applied and the cell counter plugin was used. Endomucin 

139 positive staining in pixels was analysed as a percentage of the total area using ImageJ.  

140

141 Quantitative reverse transcriptase PCR (qRT-PCR)

142  Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) amplification was 

143 performed on murine anterior pituitaries and human tumour samples as previously described (Apps et 

144 al., 2018, Gonzalez-Meljem et al., 2017). RNA was extracted from tissues using the RNeasy Micro or 

145 Mini Kit (Qiagen). RNA was quantified using 1.2µl of extracted RNA on a NanoDrop 1000 

146 Spectrophotometer. Complementary DNA (cDNA) was retro-transcribed from 1µg of extracted RNA 

147 using the iScript Reverse Transcription Supermix for RT-qPCR kit (BioRad). Thermocycling 

148 conditions were performed according to manufacturer’s instructions. qRT-PCR was performed using 

149 64 iTaq Universal SYBR Green Supermix (BioRad), thermocycling conditions were performed 
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150 according to manufacturer’s instructions. Analysis was performed using CFX Manager BioRad 

151 software. 3µl of the amplified product was run by gel electrophoresis in order to visualise correct 

152 product size. Relative quantitation of the target gene was performed against glyceraldehyde 3-

153 phospate dehydrogenase (Gapdh) as the house-keeping gene in murine and human samples. The 

154 average Ct values were calculated for the control and test sample genes. ΔCt was calculated by 

155 subtracting the Ct of the house-keeping gene from the target gene Ct values for both test and control 

156 samples. ΔΔCt was then calculated as the ratio of expression between the test and control samples. 

157 Finally, the fold change was calculated by 2 –ΔΔCt for each sample. SHH, GLI1 and PTCH1 levels 

158 were measured using the Qiagen QuantiTect Primers (Cat. QT00205625, QT00060501, 

159 QT00075824). Murine Shh and Gli1levels were measured with the Qiagen QuantiTect Primers (Cat. 

160 QT00122479, QT00173537).

161

162 Murine pituitary adherent clonogenic cell culture

163  Clonogenic assays were performed on murine tumoural pituitaries as described (Carreno et 

164 al., 2017, Haston et al., 2017, Gaston-Massuet et al., 2011). Pituitaries were dissected using aseptic 

165 forceps and the posterior pituitary was removed. After mincing with forceps, the remaining tissue was 

166 placed into 200 µl of enzyme mix, which consisted of Hanks' Balanced Salt Solution (HBSS, Gibco), 

167 0.5% w/v Collagenase (Worthington), 50µg/ml DNAase I (Worthington), 1% Fungizone and 0.1X 

168 trypsin (Sigma), for 4 hours in a 37°C water bath. HBSS was added to make a final volume of 500µl 

169 post incubation and the solution was triturated into a single cell suspension. Once single cell 

170 suspensions were achieved, 9.5ml of HBSS was added and the cells spun down for 5 minutes at 

171 1000rpm. Cells were re-suspended in growth medium, which consisted of DMEM/F12, 5% FCS, 1% 

172 PenStrep, 20ng/ml human recombinant bFGF (R&D Systems) and 50 ng/ml cholera toxin. Cells were 

173 plated at clonal density in a 6-well plate at 2000, 4000 and 8000 cells per well. Fresh bFGF was added 

174 after 2 days, medium was then changed on the third day and every 3 days after colony establishment. 

175 Colony counting was conducted after 7 days in culture. Colonies were washed with PBS and fixed for 

176 20 minutes with 4% PFA, washed again in PBS and stained with Harris haematoxylin for 15 minutes 

177 at room temperature. 
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178

179 Xenografts

180  Patient-derived xenograft (PDX) mice were generated as described (Stache et al., 2015). 

181 NIH nu/nu mice were anesthetised with 2% isoflurane and the top of the head was disinfected. An 

182 ~1cm incision was made to the skin of the head to expose the skull. The incision was treated with 

183 10% xylocaine. 30% H2O2 was applied to the skull to remove the periosteal membranes. A 1 mm in 

184 diameter hole was bored into the skull, 1 mm left and 1 mm posterior of the Bregma. Human ACP 

185 tumour tissue was dissected into 1-2 mm3 pieces and these were inserted into the cortex using forceps. 

186 The skin was then sutured to close the wound. The surgical area was disinfected again. Mice were 

187 placed on a heated mat and monitored until recovery. 

188

189 Statistics

Independent unpaired t-tests and one-way ANOVA were used to analyse the data from the 

qRT-PCR and proliferative assays using GraphPad Prism. Immunofluorescence was analysed using 

Image J. P<0.05 was considered statistically significant. The “n” value indicated throughout the text 

refers to number of biological replicas, i.e. different mice, pituitaries or tumour samples. Technical 

replicas, i.e. number of repeats for the same sample, were three for the qRT-PCR experiments. In 

general, we have not performed power calculations to estimate the sample size. In most of the 

quantitative experiments, we have used at least three biological replicas (e.g. Fig. 1C, Fig. 3D,E), 

often 6 or more (e.g. Fig. 1D, Fig. 2C-F). Only in the xeno-transplantation experiments, have we used 

two human tumours (Fig. 4E). Many of these experiments use embryos or mouse and human tumours, 

which are samples not readily available. For the preclinical trial (Fig. 1F), we performed a power 

calculation, based on pilot experiments. A total of 12 mice per group was decided to compensate for 

sample attrition.

190

191 RESULTS 

192 SHH protein is expressed in mouse and human ACP leading to the paracrine activation of the 

193 SHH pathway
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194 The expression of SHH at the mRNA level in the -catenin-accumulating cell clusters and 

195 activation of the SHH pathway in human ACP have been thoroughly documented (Andoniadou et al., 

196 2012, Gomes et al., 2015, Gump et al., 2015, Holsken et al., 2016). However, the SHH protein has not 

197 been identified in human or mouse ACP. Double immunostaining revealed the co-localisation of -

198 catenin and SHH protein in clusters of both human and mouse ACP (Figs. 1A and 1B, respectively). 

199 qRT-PCR revealed that Shh mRNA expression was increased in Hesx1Cre/+;Ctnnb1lox(ex3)/+  mutant 

200 mice relative to age-matched Ctnnb1lox(ex3)/+ controls at one (134±1 -fold), four (125±1 -fold) and eight 

201 (68 -fold) weeks of age (n=3-5 samples/group, p<0.0001, Student’s t-test). The expression of the SHH 

202 pathway target gene Gli1 was also up-regulated at all stages in mutant pituitaries compared to controls 

203 (one week: 15.3±0.2 -fold p=0.018; four weeks: 8.7±0.1 -fold; eight weeks: 4.9±0.3-fold; n=3-5 

204 samples/group; p<0.0001; Student’s t-test) (Fig. 1C). Note that a similar decreasing trend in Gli1 and 

205 Shh mRNA expression was observed over time (Fig. 1C). Since mutations in the components of the 

206 SHH pathway have not been identified in humans (Brastianos et al., 2014, Apps et al., 2018) or mouse 

207 ACP (Gonzalez-Meljem et al., 2017), our data suggest that the SHH pathway is activated in ACP in a 

208 ligand-dependent manner.

209

210 Inhibition of the SHH pathway in a genetically modified murine model of ACP results in 

211 reduced survival and increased tumourigenesis

212 To assess the role of the SHH pathway in the pathogenesis of ACP, we performed a magnetic 

213 resonance imaging (MRI)-guided preclinical trial using the smoothened (SMO) inhibitor vismodegib 

214 in the Hesx1Cre/+;Ctnnb1lox(ex3)/+  ACP mouse model. Clinical trials have demonstrated that treatment 

215 with vismodegib results in long-term responses in patients with advanced basal cell carcinoma 

216 (Sekulic et al., 2017, Sekulic et al., 2012) and this inhibitor is currently being used in numerous 

217 ongoing clinical trials for other human cancers (Rimkus et al., 2016). 

218  Pharmacokinetic studies in mice have shown that serum levels of vismodegib decrease after 

219 12 hours and suggested that a twice a day dosing regime leads to more permanent pathway inhibition 

220 (Wong et al., 2011). An administration dose of 100 mg/kg of body weight was chosen as it is the 
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221 highest non-toxic dose identified in the literature (Wong et al., 2011). A dosing regimen of twice a 

222 day for seven days was chosen as it was hypothesised that any pharmacological effect on the SHH 

223 pathway would be evident after seven days. This dosing regimen revealed an overall reduction in 

224 relative Gli1 mRNA levels in the vismodegib-treated tumoural pituitaries compared to vehicle-treated 

225 control pituitaries, which did not reach significance (vehicle: 2.5-fold, vismodegib: 1.5-fold, n=8; 

226 p=0.35, ANOVA) (Fig. 1D). We noted a high degree of variability in Gli1 expression levels in the 

227 vehicle-control group as well as untreated Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice (2.1-fold relative to 

228 Ctnnb1lox(ex3)/+ controls, n=7 mice), with some animals showing much higher Gli1 levels than others, 

229 suggesting a similarly inherent heterogeneity in the ACP mouse model to that reported in human ACP 

230 (Gomes et al., 2015). Gli1 expression mRNA levels were lower and more uniform with vismodegib 

231 treatment. We did not evaluate GLI1 expression at the protein level.

232 For the preclinical trial, Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice were dosed twice a day with 100 

233 mg/kg of body weight of vismodegib or vehicle (11 and 12 mice, respectively) for a total of 56 doses 

234 over 28 days (the maximum allowed by UK animal welfare authorities) (Fig. 1E). Treated mice were 

235 monitored by MRI and killed at a defined humane endpoint (i.e. prior to the mice showing signs of 

236 severe health deterioration or 20% weight loss). Surprisingly, a significant decrease in survival was 

237 observed in the vismodegib-treated animals in comparison with vehicle-treated controls (11.9 weeks 

238 vs. 33.3 weeks; p=0.049, log rank test) (Fig. 1F). 

239 T2-weighted MRI throughout the trial up until each humane end point for both treated and 

240 vehicle groups demonstrated no significant differences in tumour phenotype and size of total and solid 

241 tumour volume (Fig. 2A). In other words, the vismodegib-treated mice did not develop larger 

242 tumours; at the humane end point tumours were similar in size. MRI revealed tumour enlargement 

243 and heterogeneity in both groups prior to the development of hyperintense cysts, expansion of a solid 

244 portion of the tumour and presentation of hypointense haemorrhagic regions, consistent with our 

245 previous imaging studies (Boult et al., 2017). Furthermore histologically, tumours showed no gross 

246 morphological differences between the groups (Fig. 2B). However, the MRI data revealed that the 

247 doubling time of the solid component of the tumours was shorter in vismodegib-treated tumours 

248 compared with controls (vismodegib: 8.1±1days; n=6; vehicle: 15.3±3days; n=7; p=0.044; Student’s 
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249 t-test) (Fig. 2F). In agreement with these observations, the Ki67 proliferative index was increased in 

250 the vismodegib treated group (41.3±7%, n=10) compared with controls (27.4±5.5%, n=9) (p=0.0002, 

251 Student’s t test) (Fig. 2C). The mitotic index, measured by phospho-Histone H3 (pHH3) 

252 immunofluorescence, was also increased in the vismodegib treated group (vismodegib: 6.5±3%; 

253 n=10; vehicle: 3.6±0.8%; n=9; p=0.016; Student’s t-test) (Fig. 2D). Vismodegib treatment led to 

254 increased vasculogenesis, as assessed by immunofluorescence staining against the endothelial marker 

255 endomucin (fluorescent area: 7.8±2% in vismodegib-treated group; 5.4±1.4% in control group; n=6; 

256 p=0.0319; Student’s t-test) (Fig. 2E). Together, these results suggest that chemical SHH pathway 

257 inhibition using vismodegib in Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice results in formation of aggressive 

258 tumours. 

259

260 Vismodegib-treated Hesx1Cre/+;Ctnnb1lox(ex3)/+ mouse pituitaries develop tumours prematurely 

261 and show increased numbers of clonogenic cells

262 We hypothesised that inhibiting the SHH pathway could lead to an increase in the number of 

263 cells with clonogenic tumour cells within, potentially tumour-initiating cells. Four week-old 

264 Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice were treated with either vismodegib (100 mg/kg of body weight) or 

265 vehicle for 7 days, after which tumoural pituitaries were dissected and subjected to either histological 

266 analysis or assessment of the clonogenic potential as previously described (Gaston-Massuet et al., 

267 2011, Andoniadou et al., 2013) (Fig. 3A). H&E staining identified tumour lesions in vismodegib-

268 treated Hesx1Cre/+;Ctnnb1lox(ex3)/+   pituitaries (3/3 pituitaries, Fig. 3B, arrows), which were not present 

269 in the vehicle treated mice (0/3 pituitaries). These tumoural lesions were synaptophysin negative, 

270 suggesting loss of differentiation into hormone-producing cells (Fig. 3C), consistent with previous 

271 observations in mouse and human ACP. Furthermore, vismodegib-treated tumoural pituitaries showed 

272 a higher Ki67 proliferative index compared with controls (controls: 3±1.2%; vismodegib: 8.8±1.0%; 

273 n=3; p=0.0037; Student’s t-test) (Fig. 3D). We have previously shown the expansion of clonogenic 

274 SOX2 positive tumour cells in the Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice (Andoniadou et al., 2013, Gaston-

275 Massuet et al., 2011). Immunofluorescent staining revealed an elevation in SOX2 expression in the 

276 vismodegib treated Hesx1Cre/+;Ctnnb1lox(ex3)/+   pituitaries compared with vehicle-treated controls. 
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277 Moreover, dissociation of tumoural pituitaries into single cell suspensions and culture in stem cell-

278 promoting media showed a significant increase in the numbers of colonies in vismodegib-treated 

279 animals relative to controls (vehicle: 2597±98; vismodegib: 4924±167; n=3; p=0.0003; Student’s t-

280 test) (Figs. 3E,F). Currently, there is no ACP primary cell culture that maintains the mutation 

281 sustaining cells throughout passages. Together, these results suggest that the inhibition of the SHH 

282 pathway leads to an increase in clonogenic tumour cells, with increased proliferative capacity, which 

283 promotes the development of premature tumour lesions (Fig. 3G). 

284

285 Inhibition of the SHH pathway in human ACP tumours leads to increased proliferation

286 Finally, we assessed the relevance of the murine studies in human ACP. Small pieces of 

287 human ACP tumours (1-2mm3) were cultured ex vivo in the presence of vismodegib or vehicle and 

288 after 3 days, tissue was analysed (Fig. 4A) (Apps et al., 2018). Vismodegib treatment resulted in the 

289 overall down-regulation of the SHH pathway, as assessed by qRT-PCR against GLI1, PTCH1 and 

290 SHH (Fig. 4B), and the concomitant increase of the proliferative index (38.7±12%) relative to the 

291 vehicle controls (5.1±3%; n= 3; p=0.0085; Student’s t-test) (Figs. 4C,D). To assess the effects of 

292 vismodegib in vivo, small fragments of human ACP were engrafted into the brains of 20 

293 immunodeficient mice (Fig. 4E). After 3 months, mice were divided into two groups (10 mice/group) 

294 and administered 100 mg/kg of body weight of vismodegib or vehicle, twice a day for 3 weeks, after 

295 which brains were collected for histological analysis. Immunofluorescent staining revealed a 

296 significant increase in the Ki67 proliferative index in Vismodegib-treated xenograft mice (12.7±2%, 

297 n=4) relative to the vehicle-treated controls (1.8±0.5%, n=3) (p<0.0001, Student’s t-test) (Figs. 

298 3F,G). 

299

300 DISCUSSION

301 The main highlight of this research is the demonstration that the inhibition of the SHH 

302 pathway using vismodegib, a well-established SMO inhibitor used in the clinic (De Smaele et al., 

303 2010), results in premature tumour formation and increased tumour cell proliferation in both 
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304 genetically engineered and patient-derived xenograft mouse models. These data suggest that the use 

305 of vismodegib and potentially other SMO inhibitors is contraindicated in ACP patients. 

306 The activation of the SHH pathway in human ACP was initially documented from research in 

307 the Hesx1Cre/+;Ctnnb1loxex3/+ mouse model of ACP. The presence of mRNA expression was 

308 demonstrated in five human ACP tumours (Andoniadou et al., 2012). These results were extended 

309 further in a larger cohort of tumours by Gomes et al., who revealed the expression of GLI1, GLI3, 

310 SUFU and SMO in human ACP at the protein level (Gomes et al., 2015). More recently the activation 

311 of the SHH pathway has been demonstrated in gene expression analyses of ACP (Holsken et al., 

312 2016, Donson et al., 2017, Apps et al., 2018). Mutations in components of the SHH pathway (i.e. loss-

313 of-function mutations in PTCH1 or gain-of-function mutations in SMO) have not been identified in 

314 independent sequencing efforts neither in human nor in mouse ACP, suggesting that the SHH 

315 pathway may be activated in a paracrine manner (Theunissen and de Sauvage, 2009).  Here, we 

316 extend these observations by demonstrating the presence of SHH protein within the beta-catenin-

317 accumulating cell clusters, hence reinforcing the idea that the SHH pathway is activated in a ligand-

318 dependent fashion. Of relevance, we have recently shown that these clusters contain senescent cells 

319 and act as signalling hubs within the tumours by activating the expression of numerous secreted 

320 factors, including SHH, FGF, EGF, BMP, TGF beta among others (Apps et al., 2018, Gonzalez-

321 Meljem et al., 2017). 

322 We show that treatment with vismodegib leads to accelerated tumourigenesis with tumours 

323 showing an elevated proliferation index, increased clonogenic potential in vitro and enhanced 

324 vascularity. In concordance with our preclinical data, research in mouse models of other human 

325 cancers, in which the activation of the SHH pathway is also ligand dependent, has revealed that the 

326 inhibition of this pathway (e.g. using vismodegib) is protumourigenic. For instance, the inhibition of 

327 the SHH pathway in pancreatic ductal adenocarcinoma (PDAC) murine models either chemically or 

328 genetically promotes tumour cell proliferation, undifferentiated phenotypes as well as increased 

329 vascularity, resulting in greater tumour burden and shorter survival (Lee et al., 2014, Rhim et al., 

330 2014). Similarly, SHH pathway inhibition in colorectal cancer (CRC) murine models leads to higher 

331 numbers of cells with tumour-initiating potential and accelerated tumour formation (Gerling et al., 
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332 2016, Madison et al., 2005). Not unexpectedly, the inhibition of the hedgehog pathway in human 

333 PDAC and CRC was shown to yield rather disappointed results and patients either did not respond or, 

334 even worse, showed signs of faster cancer progression  (Ko et al., 2016, Berlin et al., 2013, Catenacci 

335 et al., 2015). Moreover, a clinical trial using saridegib (an SMO inhibitor also known as IPI-926) in 

336 patients with PDAC was stopped due to increased tumourigenesis in the drug-treated group relative to 

337 the controls (Rimkus et al., 2016, Madden, 2012) (http://investors.infi.com/static-files/a2cbb418-

338 8048-4f1f-94cc-dbbff91245be).

339  A limitation of the research presented here is the absence of corroborating genetic data to 

340 further elucidate the possible mechanisms by which SHH pathway inhibition leads to increased 

341 tumourigenesis in ACP. Unfortunately, Hesx1Cre/+;Shhflox/- mice die at birth, which prevents such 

342 genetic study (i.e. the Hesx1Cre/+;Ctnnb1loxex3/+;Shhflox/- mice cannot be generated) (Carreno et al., 

343 2017). Although ACP cellular models have been used, these have not been molecularly characterised 

344 and in our hands, the CTNNB1 mutations that characterise the ACP tumours are lost in the culture 

345 cells. Nonetheless, our cellular and molecular characterisation suggest that common mechanisms 

346 underlie the protumourigenic effects of SHH pathway inhibition in ACP, PDAC and CRC. We 

347 propose that in addition to the angiogenic effects, such inhibition prevents exit of the cell cycle, 

348 resulting in higher numbers of proliferative tumour cells and accelerated tumourigenesis (Fig. 3G). In 

349 summary, using a clinically approved and widely employed SMO inhibitor in both the 

350 Hesx1Cre/+;Ctnnb1loxex3/+ mice and a human xenograft model, our research demonstrates that the 

351 inhibition of the SHH pathway has a tumour-promoting effect. We conclude that the use of 

352 vismodegib, and potentially other SMO inhibitors may be contraindicated in ACP patients. 

353
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1 Figure legends

2

3 Figure 1. 

4 Inhibition of the SHH pathway in Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice, a murine model of human 

5 adamantinomatous craniopharyngioma (ACP), results in reduced median survival.

6

7  (A) Double immunofluorescence on formalin-fixed paraffin-embedded (FFPE) histological sections 

8 of human ACP showing the expression of SHH in the β-catenin-accumulating cell clusters. Scale bar: 

9 25 μm. (B) Double immunofluorescence on FFPE histological sections of Hesx1Cre/+;Ctnnb1lox(ex3)/+ 

10 tumoural pituitaries revealing the expression of SHH in the β-catenin-accumulating cell clusters at 

11 specific time points of postnatal life. Note the overall reduction in SHH staining from one to 8 weeks 

12 of age. Scale bar: 50 μm (C) qRT-PCR analysis showing the up-regulation of Shh and the target 

13 pathway gene Gli1 in the tumoural pituitaries of the Hesx1Cre/+;Ctnnb1lox(ex3)/+  ACP mouse model 

14 compared with Ctnnb1lox(ex3)/+ controls at specific ages  (Shh: one week, 134-fold; four weeks, 125-

15 fold; 8 weeks, 68-fold;  Gli1: one week, 15.3-fold, p=0.018; four weeks, 8.7-fold, p<0.0001; eight 

16 weeks, 4.9-fold, p<0.0001; (n=3-5 tumoural pituitaries per time point, Student’s t-test). (D) qRT-PCR 

17 analysis of Gli1 expression levels in Hesx1Cre/+;Ctnnb1loxex3/+ tumoural and Ctnnb1lox(ex3)/+  control 

18 pituitaries  treated twice daily with vismodegib (100 mg/kg) for one week in comparison with vehicle-

19 treated and untreated mice. There is an overall reduction in Gli1 expression levels upon vismodegib 

20 treatment, which does not reach significance possibly due to the marked variability in Gli1 expression 

21 levels in the untreated and vehicle treated controls (untreated: 2.1-fold, n=7 mice; vehicle: 2.5-fold, 

22 n=8 mice; vismodegib: 1.5-fold, n=8 mice; p=0.35, One-way ANOVA). (E) Schematic diagram of the 

23 preclinical trial. Age-matched Hesx1Cre/+;Ctnnb1loxex3/+ male mice are dosed twice daily with 100 

24 mg/kg vismodegib (11 mice) or vehicle (12 mice) for 28 days starting around 4-5 weeks of age (56 

25 doses). At the end of treatment, mice are left untreated and monitored by MRI every two weeks and at 

26 the humane end point. (F) Kaplan-Meier analysis showing a reduction in median survival in the 

27 vismodegib-treated (11.9 weeks, n=11, red line) relative to the vehicle-treated mice (33.3 weeks, 

28 n=12, blue line; p=0.049, Mantel-Cox (log-rank) test). Data represent the mean ± SD. 
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29 Figure 2.

30 Highly proliferative and vascularised tumours are formed upon treatment with vismodegib in 

31 the Hesx1Cre/+;Ctnnb1lox(ex3)/+ ACP mouse model.

32

33 (A) Axial T2-weighted MRI scans of vismodegib and vehicle -treated Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice 

34 at the level of the brain (two examples of each are shown, labels indicate days after the end of 

35 treatment). Note the expansion of the pituitary to form a solid tumour component (arrows) and the 

36 development of hyperintense cysts and hypointense haemorrhagic regions in both vehicle and 

37 vismodegib -treated groups. (B) Hematoxylin-eosin (H&E) staining of FFPE histological sections of 

38 Hesx1Cre/+;Ctnnb1loxex3/+ tumours showing similar histology between experimental groups. 

39 Immunofluorescence revealing the increased expression of Ki67 (proliferative marker), pHH3 

40 (mitotic marker) and Endomucin (endothelial marker) in vismodegib-treated tumours compared with 

41 the vehicle-treated controls. Scale bar: 50 μm. (C) The Ki67 proliferation index (fraction of Ki67+ve 

42 cells out of total DAPI+ve cells) is increased in the vismodegib-treated group (vehicle: 27.4±5.5%, 

43 n=9 tumours; vismodegib: 41.3±7.%, n=10 tumours; p=0.0002, Student’s t-test). (D) The mitotic 

44 index (fraction of pHH3+ve cells out of total DAPI+ve cells) is elevated upon vismodegib treatment 

45 (vehicle: 3.6±0.8%, n=9 tumours; vismodegib: 6.5±3%; n=10 tumours; p=0.016, Student’s t-test). (E) 

46 Vasculature is increased in the vismodegib-treated group as assessed by immunofluorescence against 

47 Endomucin (total fluorescent area: vehicle: 5.4±1.4%; vismodegib: 7.8±2%; n=6 tumours per group; 

48 p=0.0319, Student’s t-test). (F) Doubling time of the solid component of the tumours, as calculated 

49 from contiguous MRI scans, is reduced by 47% upon vismodegib treatment (vehicle: 15.3±3 days, 

50 n=7 tumours; vismodegib: 8.1±1 days, n=6 tumours; p=0.044, Student’s t-test). Data represent 

51 mean ± SD. 

52

53 Figure 3. 

54 Vismodegib treatment results in higher numbers of clonogenic cells and premature formation of 

55 tumours. 

56
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57 (A) Diagram of the experimental approach. Four-week old Hesx1Cre/+;Ctnnb1loxex3/+ male mice are 

58 dose twice daily with either vismodegib (100mg/kg) or vehicle for one week, after which pituitaries 

59 are dissected and analysed both histologically and in a clonogenic assay.  (B) H&E staining on FFPE 

60 histological sections of vehicle and vismodegib -treated mice showing the presence of large tumoural 

61 lesions (arrows) and cysts (arrowheads) in vismodegib-treated animals. The control pituitaries show 

62 smaller cysts (arrowheads) and no tumour lesions are detectable (n=3 pituitaries per group). This is in 

63 agreement with our previous observations of a latency period of around 17 weeks for tumour 

64 formation (Boult et al., 2017)(Boult et al. 2017). Scale bar: 100 μm. (C) The premature tumour 

65 lesions are Synaptophysin-ve (black arrow) by immunohistochemistry, and highly proliferative, as 

66 assessed by immnufluorescence against Ki67 (white arrow). (D) Quantitative analysis demonstrates 

67 the higher Ki67 proliferative index upon vismodegib treatment (vehicle: 3.2±1.2%; vismodegib: 

68 8.8±1.0%, n=3 pituitaries per group; p=0.0029, Student’s t-test). Scale bar: 200 μm.  (E) 

69 Quantification of the clonogenic potential of pituitaries from mice treated with either vehicle or 

70 vismodegib (n=3 pituitaries per group). Note that vismodegib treatment results in drastic increase in 

71 clonogenic potential of nearly 90% relative to the vehicle controls (vehicle: 2597±98 colonies; 

72 vismodegib: 4924±167 colonies, n=3 pituitaries per group; p=0.0003, Student’s t-test). (F) 

73 Representative examples of plates seeded with 2000, 4000 and 8000 pituitary cells from vehicle and 

74 vismodegib -treated Hesx1Cre/+;Ctnnb1loxex3/+ mice. Plates are stained with haematoxylin. (G) 

75 Schematic summary of main findings. The expression of oncogenic -catenin in 

76 Hesx1Cre/+;Ctnnb1loxex3/+ mice  results in formation of -catenin-accumulating cell clusters, which 

77 secrete SHH and activate the pathway in surrounding tumour cells inducing a more quiescent 

78 phenotype characterised by exit of a proliferative, Ki67+ve state. vismodegib-mediated inhibition of 

79 the SHH pathway leads to more proliferative and aggressive tumours. All graph bars represent mean ± 

80 SD. 

81

82 Figure 4. 
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83 Inhibition of the SHH pathway leads to increased tumour cell proliferation in both explant 

84 cultures and xenograft models of human ACP.

85 (A) Schematic diagram of the explant culture experiments. Three ACP tumour samples were cut into 

86 1-2 mm3 cubes and cultured in the presence of vismodegib (100 μM) or vehicle (DMSO). 

87 Four biological replicates were performed for each analysis (i.e. four pieces of tumours per 

88 treatment). (B) qRT-PCR analysis showing the overall inhibition of the SHH pathway as assessed by 

89 a variable reduction in GLI1, PTCH1 and SHH expression upon vismodegib treatment in three human 

90 ACP tumours. One sample did not show reduction of GLI1, but both PTCH1 and SHH expression 

91 were reduced. (C) Double immunofluorescence on FFPE histological sections showing increased 

92 expression of Ki67+ve in the human ACP explants cultured in the presence of vismodegib relative to 

93 the DMSO-treated controls. Scale bar: 25 μm. (D) Quantitative analysis revealing a higher Ki67+ve 

94 proliferative index in vismodegib compared with vehicle -treated explants (vehicle: 5.1±3%; 

95 vismodegib: 38.7±12%; n=3 tumours per group; p=0.0085, Student’s t-test). (E) Schematic diagram 

96 of the human ACP xenograft experiments. Two human ACP tumours were cut into 1-2mm3 and 

97 implanted into the cortex of 20 immunosuppressed mice (11 animals with Tumour 1 and 9 with 

98 Tumour 2). Three months later, mice were randomised into two groups of 10 mice each and dosed 

99 twice daily with 100 mg/kg vismodegib or vehicle for 21 days, after which brains were dissected and 

100 analysed histologically. (F) Double immunofluorescent staining revealing the presence of Ki67+ve 

101 cells (arrows) in the proximity of β-catenin-accumulating cell clusters (asterisks) in both vismodegib 

102 and vehicle -treated xenografted human ACP tumours. Scale bar: 25 μm. (G) Quantitative analysis 

103 showing an elevation of the Ki67 proliferative index in the xenografted tumours upon treatment with 

104 vismodegib (vehicle: 1.8±0.5%, n=3 tumour-bearing mice; vismodegib: 12.7±2%, n=4 tumour-

105 bearing mice; p<0.0001, Student’s t-test). All graph bars represent mean ± SD. 

106
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