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A B S T R A C T   

Objectives: Despite wide excision and post-operative irradiation, loco-regional and/or metastatic recurrence is a 
significant clinical problem in salivary adenoid cystic carcinoma (SACC). Reliable biomarkers are required to 
tailor post-treatment surveillance to patients at highest risk of recurrence. We sought to determine the utility of 
TP53 and PIK3CA mutations as prognostic biomarkers in SACC. 
Materials and methods: DNA was extracted from archival tumour blocks of 145 SACC patients from 66 UK referral 
centres and sequenced for TP53 and PIK3CA mutations. Clinical, pathological and outcome data were analysed to 
determine the impact of the genomic alterations on disease recurrence and overall survival (OS). 
Results: TP53 and PIK3CA mutations were identified in 8% (10/121 successful analyses) and 2% (3/121) of cases, 
respectively. There were too few PIK3CA mutations in this cohort for informative further analysis. TP53-mutated 
SACC had significantly shorter median OS (5.3 vs. 16.3 years, p = 0.019) and lower 10-year survival (48% vs. 
81%) compared with TP53 wild-type ACC. Solid-pattern histopathology was more frequent in TP53-mutated 
SACC (50% vs. 15%, p = 0.27). 
Conclusion: TP53-mutated recurrent and metastatic SACC was associated with shorter OS, which was significant 
when combined with published genomic data sets. Stratifying by TP53 status, in addition to established clinical, 
pathological and genomic biomarkers, may usefully inform follow-up strategy.   

Introduction 

Salivary adenoid cystic carcinoma (SACC) is a rare salivary gland 
cancer with an annual incidence rate of 0.5/100,000 per year [1]. It 
recurs in most patients despite intensive treatment of localised disease, 
usually with wide excision and post-operative radiotherapy [1]. Stan-
dard clinical and histopathological factors associated with shorter 
disease-free and overall survival include TNM stage, tumour site, solid 
pattern histology, margin status, perineural invasion, age and sex [2]. 
These factors can be used to gauge the risk of disease recurrence and 
predict overall survival (OS) following diagnosis. However, uncertainty 

persists regarding the most appropriate clinical and radiological follow- 
up after curative-intent local therapy and there is, as yet, a dearth of 
additional prognostic biomarkers to support clinical decision-making. 

Recent advances in the understanding of SACC genomics provide one 
avenue for the development of prognostic biomarkers. Oncogenic fusion 
and overexpression of the myeloblastosis (Myb) transcription factor or 
the Myb homologue (Mybl1) are seen in almost all SACC patients [3]. 
Multiple studies have evaluated the value of MYB as a prognostic marker 
in SACC. Although results are often limited by small sample sizes, both 
the presence of MYB translocation [4] and the level of Myb protein 
expression [5] have been associated with higher relapse rates and worse 
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clinical outcomes. However, more recent systematic reviews have 
demonstrated that MYB mutation and myb protein expression have 
minimal or no prognostic potential [6,7]. In contrast to MYB/MYBL1 
alterations, other genetic alterations in ACC are low-frequency events 
[8] providing a significant barrier to their clinical evaluation as prog-
nostic biomarkers. 

NOTCH pathway activation is the most frequent alteration in addi-
tion to MYB or MYBL1 [8]. NOTCH gain-of-function mutations are 
identified in 11–29% of patients with SACC [9–13]. The presence of 
NOTCH gain-of-function mutations has been shown to correlate with 
shorter disease-free and overall survival and worse outcomes with 
cytotoxic chemotherapy in comparison with NOTCH wild-type SACC 
[9]. 

Recent analysis of publically available genomic datasets or single 
institution case series confirm that TP53 mutations are seen in up to 
5–10% [8,12] and PIK3CA mutations in up to 5–22% of SACC patients 
[8,14]. We therefore sought to evaluate the utility of TP53 and PIK3CA 
mutations as prognostic biomarkers in SACC. To overcome the primary 
challenge of studying sufficient patients for a statistically meaningful 
analysis, we established a UK-wide salivary gland cancer referral 
network in collaboration with the NHS England Genomics Hub, through 
which patients were referred to assess their suitability for clinical trial 
therapies and to participate in translational and biomarker research. 

Patients and methods 

Patient consent and clinical data collection 

From April 2017 to September 2019 145 consecutive patients with 
histologically confirmed adenoid cystic carcinoma underwent clinical 
review at a tertiary cancer center (The Christie NHS Foundation Trust, 
Manchester, UK). Patients provided written informed consent to donate 
their formalin-fixed paraffin-embedded (FFPE) archival tumour samples 
to the Manchester Cancer Research Centre (MCRC) Biobank to undergo 
clinical, pathological and genomic data collection, analysis and publi-
cation as part of the study ELLA-01. This study was granted research 
ethics approval under the MCRC Biobank Research Tissue Bank Ethics 
(NHS NW Research Ethics Committee 18/NW/0092) and was performed 
in accordance with the Declaration of Helsinki. Comprehensive clinical 
data were collected including details on stage at diagnosis, previous 
treatments received and response to treatment where available, and 
dates of recurrence and of last follow-up or survival. 

Next-generation sequencing and histopathology classification 

DNA was extracted from archival FFPE samples and underwent next- 
generation sequencing at the Manchester Center for Genomic Medicine 
National Health Service Genomics Laboratory Hub to sequence for TP53 
and PIK3CA mutations (Qiagen GeneRead DNAseq Targeted Panel V2). 
The assay covered the entire coding region of the TP53 gene and the 
whole coding region of PIK3CA with the exception of a 31 nucleotide 
sequence at the 5′ end of exon 5 (hg19 chr3:178,921,332 to 
178,921,362). A custom bioinformatic pipeline validated to detect sin-
gle nucleotide variants and indels (<40 base pairs) to 4% variant allele 
frequency was used to detect variants. Where identified, variants were 
classified using a combination of American College of Medical Genetics 
guidelines and Association for Molecular Pathology tiering [15,16] with 
reference to publically available resources including Catalogue Of So-
matic Mutations In Cancer v19 [17–19], and other subscription-based 
resources including Human Gene Mutation Database Professional 
(Qiagen). In 2/145 cases in whom NGS analysis had failed with this 
approach, TP53 and PIK3CA mutation status was available from prior 
commercially sourced next generation sequencing (Roche, Foundation 
Medicine). Centralised review of the pathology sample was performed 
by an accredited head and neck cancer histopathologist (GB, Manchester 
University NHS Foundation Trust) in 70 patients for whom 

haematoxylin and eosin sections were available from the diagnostic 
tumour blocks. For assessment of solid component, the presence of any 
solid component was noted, and in addition, whether over a cut off of 
30% tumour area had solid morphology was noted as both have been 
associated with a more aggressive phenotype [20–22]. To detect MYB 
gene rearrangement, FFPE sections were processed using the ZytoLight 
Spec MYB dual colour break apart probe (Zytovision, Z-2143-200) as per 
manufacturer’s instructions and imaged using a Zeiss Axio Imager M1 
fluorescence microscope to determine the predominant signal pattern in 
multiple areas across the sample. 

Statistical analysis 

To determine the association between mutational status and clini-
copathological characteristics, two-sided Fisher’s exact test was used. 
Recurrence-free survival (RFS) and overall survival (OS) were calculated 
using Kaplan-Meier analysis. RFS was defined as time from diagnosis to 
relapse or death from disease, whichever event occurred first. RFS was 
censored at data cut-off at date of last follow up. OS was defined as time 
from diagnosis to death of any cause; those patients alive at data cut-off 
were censored. Median RFS and OS were reported and the difference 
between survival curves calculated using the log rank test. P values were 
two-sided, P < 0.05 was accepted as statistically significant. For muta-
tion status, age, sex, the presence of solid histopathology and peri-neural 
invasion, Cox proportional hazards models were fitted for both risk of 
recurrence and death, supplementary Table 1. Hazard ratios were 
calculated with 95% confidence intervals. Statistical analysis was per-
formed using SPSS Statistics (version 25) and Kaplan-Meier curves 
visualised using GraphPad Prism (version 8). 

Results 

145 patients with histological confirmation of SACC were referred 
from 66 Local or Regional Cancer Centres within the United Kingdom 
National Health Service for centralised clinical review at a single Ter-
tiary Cancer Centre (The Christie NHS Foundation Trust, Manchester, 
UK). Archival FFPE tumour blocks were collected and TP53 and PIK3CA 
status were determined in 121/145 (83%) patients, the remaining 17% 
of samples having insufficient or poorly preserved DNA for successful 
NGS analysis. Baseline patient demographics for these patients are 
summarised in Table 1. Most patients were female (60%) and the me-
dian age was 48 years (range 16–79). Consistent with this cohort being 
evaluated for clinical trial therapies, loco-regional or distant recurrence 
was present in 96% (116/122) of patients, with lung metastases being 
the most frequent site of recurrence as previously reported in SACC 
[20,23]. On histopathology review, 32% had areas of solid morphology 
consistent with previous reports [2]. Perineural invasion was seen in the 
diagnostic biopsy samples in 32%, in keeping with previous reporting 
rates of 30% to 100% [24,25]. As no patients had entire surgical 
resection samples available for review, this may have attributed to the 
relatively low observed rate in this study. The apparent match between 
tumours showing perineural invasion and those showing a solid 
component was a noted irregularity and therefore reviewed to confirm 
that these values were correct. Vascular invasion is a further emerging 
histological marker of poor prognosis in surgically treated patients [26]. 
This is infrequent in adenoid cystic carcinoma and ideally requires ex-
amination of a standardised tumour resection specimen. Only biopsy 
samples or incomplete resection specimens were released for central 
pathology review for this study. Of 79 samples available for analysis, 9 
(11%) demonstrated evidence of vascular invasion. The majority of 
patients 105/121 (86%), did not receive systemic therapy. Of the 
remaining 16 patients (14%), 11 patients had one line of therapy, 4 
patients had 2 or more lines and 1 patient had unknown therapy. 
Consistent with a lack of standard systemic therapy options, fourteen 
different regimens were used amongst these patients, and the details are 
summarised in Supplementary Table 2. 
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To determine the frequency of TP53 and PIK3CA mutations in this 
cohort, DNA extracted from FFPE samples underwent next-generation 
sequencing and bioinformatic analysis. TP53 mutations were 

identified in 8% (10/121) of SACC patients and PIK3CA mutations in 2% 
(3/121). The nucleotide and associated amino acid change for these 
mutations are summarised in Table 2 alongside the clinical character-
istics of these patients. Given the low frequency of PIK3CA mutations in 
this cohort, subsequent clinical and pathological analysis was performed 
on the TP53 mutated cohort alone. Fig. 1A shows the locations of the 
mutations which were identified within the TP53 gene in 10/121 ACC 
patients. The majority of TP53 mutations (83%) occurred within the 
DNA-binding domain. To investigate whether the distribution of muta-
tions within the TP53 gene seen in our cohort was consistent with pre-
vious reports, we identified 928 ACC samples within a publically 
available genomic repository (cBio Cancer Genomics Portal: cBioPortal 
[27,28]). The majority of these cases (n = 673) were genomic analysis 
without any accompanying clinical data deposited by Foundation 
Medicine (Roche). The remainder were from published data sets 
including Memorial Sloan Kettering (MSK-IMPACT) study (n = 94), MSK 
(n = 88) and Sanger/MD Anderson Cancer Centre (n = 59). Consistent 
with our cohort, TP53 mutation was seen in 9% of these patients (84/ 
928). The locations of these mutations were also found to be concen-
trated within the DNA binding domain (Fig. 1B) although 9/84 (11%) 
were within the tetramerization domain. 

The distribution of clinical characteristics in SACC patients (n = 121) 
by TP53 status is shown in Table 3. Sex, age and site of primary tumour 
were evenly distributed between the patients irrespective of TP53 status. 
There was no statistical difference between individual sites of recur-
rence, although the presence of liver metastases was seen in 19% of TP53 
wild-type patients and in none with TP53 mutation. The presence of 
solid component is an established factor associated with adverse risk in 
SACC. To further assess for any association between TP53 mutation 
status and these risk factors, centralised histology review was performed 

Table 1 
Baseline characteristics of adenoid cystic carcinoma patients (n = 121).  

Characteristic N % 

Sex 
Male 48 40 
Female 73 60  

Disease Site 
Major salivary gland 64 53 
Minor salivary gland 57 47  

Disease recurrence 
Yes 116 96 
No 5 4  

Site of recurrence 
Local 36 30 
Liver 21 17 
Lung 84 69 
Bone 15 12 
Other 15 12  

Solid Component 
Present 22 18 
Absent 50 41 
NOS~ 49 41  

Perineural invasion 
Present 22 18 
Absent 50 41 
NOS 49 41 

~Histology was centrally reviewed in 70/121 cases. 

Table 2 
TP53 and PIK3CA mutations and clinical characterstics.  

Base change Variant allele 
frequency 

Amino acid 
change 

Predicted 
Functional 
effect 

Histology Sex Age Primary site TNM Site of 
metastasis 

Perineural 
invasion 

TP53 mutations 
c.584 T > C 7% reads Ile195Thr Loss of 

function 
Solid > 30% F 62 Parotid TXN0M0 Lung Absent 

c.1146delA 29% reads Lys382fs*40 Loss of 
function 

Tubular / 
cribriform 

F 78 Sublingual TXNXM1 Lung Absent 

c.428_429delTG 13% reads Val143fs*5 Loss of 
function~ 

Tubular / 
cribriform 

M 47 Submandibular T4bN2cM1 Lung Absent 

c.668delC 73% reads Pro223fs*24 Loss of 
function 

Solid > 30% F 48 Trachea T4N2M0 Lung and lymph 
node 

Absent 

c.814G > T 4% reads Val272Leu Loss of 
function 

Tubular / 
cribriform 

F 64 Ethmoid sinus T4bN0M0 No recurrent 
metastatic 
disease 

Absent 

c.527G > A 4% reads Cys176Tyr Loss of 
function 

Tubular / 
cribriform 

F 72 Post nasal 
space 

T1N0M0 No recurrent 
metastatic 
disease 

Present 

c.832C > T 17% reads Pro278Ser Loss of 
function 

Solid < 30% and 
tubular / 
cribriform 

F 74 Parotid TxNxM0 Lung, liver, 
skin, bone 

Present 

c.373A > G 14% reads Thr125Ala Partially 
functional 

Tubular / 
cribriform 

F 56 Parotid T3N0M0 Lung, local Present 

c.329G > C 50% reads Arg110Pro Loss of 
function 

Solid > 30% M 40 Submandibular T3N0M0 Lung Present 

c.467G > C 8% reads Arg156Pro Loss of 
function ~~ 

Solid < 30% and 
tubular / 
cribriform 

F 37 Parotid T1N0M0 Lung Present  

PIK3CA mutations 
c.1633G > A 11% reads Glu545Lys Activating Tubular / 

cribriform 
F 69 Parotid T1N1M0 Local, lymph 

node 
Absent 

c.1258 T > C 18% reads Cys420Arg Activating ~ Tubular / 
cribriform 

M 47 Submandibular T4bN2cM1 Lung Absent 

c.1633G > A 8% reads E545K Activating Tubular / 
cribriform 

F 34 Larynx T4aN0M1 Lung Absent 

~ This patient has co-existent TP53 Val143fs*5 and two PIK3CA mutations: Cys420Arg 18% and Glu545Lys 8%. 
~~ This patient has two co-existent TP53 mutations – c.467G > C Arg156Pro 8% and c.824G > A Cys275Tyr 4%. 
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on 60/121 (50%) of TP53 wild-type patients and this was compared with 
histological characteristics for all TP53 mutated patients. Although the 
small numbers in the TP53 mutated group limits the power of the sta-
tistical analysis, solid component and peri-neural invasion were both 
seen more frequently in patients with TP53 mutations, being detected in 
50% of patients with TP53 mutations and in 15% of patients with wild- 
type TP53 (p = 0.27). 

To investigate whether TP53 mutations may be co-existent with MYB 
gene rearrangement, and therefore may represent a putative sub-group 
of MYB altered SACC or in contrast whether TP53 mutations and MYB 
alterations may be mutually exclusive. MYB gene rearrangement was 
assessed by fluorescent in situ hybridisation (FISH) in 40 SACC patients 
(4 TP53 mutated and 36 TP53 wildtype). MYB rearrangement was seen 
in 50% of the TP53 mutated and 73% of the TP53 wild-type SACC pa-
tients (p = 0.15). Fluorescent in situ hybridisation images are demon-
strated in Fig. 2. 

During a median follow-up from diagnosis of 6.6 years (range 3–465 
months), 31/121 (26%) patients had died during the follow up of this 
study, death occurred in 40% of patients with TP53 mutation and in 23% 
with TP53 wild-type SACC (p = 0.14). Of the 121 patients, 97 (80%) 
were initially treated with surgical resection with curative intent. Of the 
10 patients with a TP53 mutation, resection with curative intent was 
possible in 8 patients consistent with the proportion of all SACC patients 
in this study. As resection margin status is known to impact on survival, 
we sought to analyse this, however, histopathological assessment of 
operative resection margins was only available from 16 patients. Adju-
vant photon radiotherapy was given in 79/121 patients (65%), 2 pa-
tients received adjuvant proton bean therapy and 2 treated with upfront 
palliative carbon-ion. No patients were lost to follow up. Fig. 3 shows the 
Kaplan-Meier analysis for RFS (Fig. 3A) and OS (Fig. 3B) from diagnosis 
for patients with TP53-mutated and wild-type SACC. For patients 
without metastatic disease at diagnosis (n = 101), the median RFS was 
shorter in patients with TP53 mutation (44 vs. 50 months, p = 0.25, 
Fig. 3A). For all SACC patients, the median OS was shorter in the pres-
ence of TP53 mutation (64 vs. 196 months, p = 0.06; Fig. 3B). When cox 
proportional hazards models were fitted for the variables including 
mutation status, age, sex, and the presence of solid component or peri-
neural invasion, only age was associated with a significantly increased 
risk of recurrence (HR 2.69; 95% confidence interval 1.45–5.01) in 
univariate analysis (Supplementary Table S1). 

To determine whether our finding that TP53 mutation was associated 
with adverse clinical outcomes in SACC is consistent with other insti-
tutional data, we extracted the overall survival data from 144 SACC 

patients available within cBioPortal with and without TP53 mutation 
(11 TP53 mutated and 133 TP53 wild-type) and performed Kaplan- 
Meier survival analysis. Consistent with our findings, there was a 
shorter median overall survival for patients with TP53 mutation 
although this difference did not reach statistical significance. The me-
dian overall survival for TP53-mutated ACC was 29 vs. 169 months in 
TP53 wild-type ACC (P = 0.106; HR 2.13, 95% confidence interval 
0.83–5.44 Fig. 4A). To increase the statistical power of the current study, 
we combined the overall survival data in the UK cohort (n = 121) with 
that extracted from cBioPortal (n = 144) to develop a cohort of 265 ACC 
patients with data on both TP53 mutation and overall survival time (21 
with TP53 mutation, 244 TP53 wild-type). This confirmed that OS was 
significantly shorter in patients harboring TP53 mutations with a me-
dian OS of 64 vs.196 months (HR, 2.26 95% confidence interval 
1.12–4.56; P = 0.019; Fig. 4B). 

Discussion 

The primary aims of this study were to determine the utility of TP53 
and PIK3CA mutations as prognostic biomarkers in SACC. TP53 muta-
tions were identified in 8% of ACC patients, consistent with the expected 
5–10% frequency [8,27,28].The presence of TP53 mutations was asso-
ciated with a shorter recurrence-free and significantly shorter overall 
survival with a trend towards higher frequency of solid component. 

Somatic mutations in the TP53 gene are one of the most frequent 
alterations in human cancer. Large-scale genomic sequencing studies 
have confirmed that approximately half of all cancers harbour a TP53 
mutation, although the frequency and distribution of mutations can vary 
significantly between tumour types [29–31]. Most TP53 mutations are 
missense and result in loss of function [32]. Of 11 TP53 mutations 
identified in this study, 10 have previously been categorised using 
functional transactivation assays as loss-of-function, with no evidence of 
gain-of-function. One missense alteration (TP53 Thr125Ala) is partially 
functional and likely to represent a rare hypomorphic allele. The ma-
jority of missense mutations occur in the DNA-binding domain, implying 
that this feature of the p53 protein is crucial for tumour suppression 
[32], and all the missense alterations identified in this study were also 
within the DNA binding domain. Alternate p53 mutant alleles have been 
reported which may reflect selection of function or gain-of-function that 
promote tumorigenesis and drive chemotherapy-resistance, invasion 
and metastasis [33]. TP53 mutations encountered in cancer may acquire 
some combination of these opposing loss- or gain-of-function charac-
teristics [34]. None of the TP53 variants detected in this study fell into a 

Missense

Truncating  
In-frame deletion  

A 

B 

Fig. 1. Distribution of TP53 mutations in adenoid cystic carcinoma. Individual variants and their distribution within the TP53 gene are shown by circles. Mis-sense 
are shown in green, in-frame deletions shown in brown and truncating mutations in black. (A) show the distribution of TP53 mutations identified in this study of ACC 
patients and (B) shows the distribution of TP53 mutations of ACC patients within the cBioPortal analysis. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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known gain-of-function category. There are, however, comparatively 
few documented gain-of-function TP53 variants and this status would 
only be allocated following intensive functional laboratory 
investigation. 

In addition to TP53 mutations, this study aimed to evaluate the 

utility of PIK3CA mutations as a prognostic biomarker in SACC. Despite 
analysing almost the entire PIK3CA gene, we identified a lower than 
expected frequency of PIK3CA mutations, 2% compared to 5% in the 
cBioPortal dataset and 22% in a recently published institutional series 
[14]. This relatively low frequency in our cohort precluded any further 
clinical and pathological investigation. Although it is not possible 
formally to test this hypothesis within the current study, one possibility 
is that this relative difference in frequency may be related to the timing 
of the biopsy that was analysed in relation to the disease course. If, as has 
been clearly demonstrated, mutations are acquired during evolution 
from a primary tumour to a metastasis [8,35], analysis of tissue samples 
collected at metastasis may detect a higher frequency of genetic alter-
ations compared with analysis of primary tumours. 

There have been recent advances in the development of drug ther-
apies in SACC with lenvatinib showing 15% response rates in a 
biomarker-unselected population [36]. However, there remains an ur-
gent need for the development of new and effective drug therapies. 
Current approaches being studied in biomarker-selected patients include 
the gamma secretase inhibitor, AL101, in SACC with NOTCH gain-of- 
function mutations (NCT03691207), and all-trans retinoic acid (ATRA) 
is being studied in biomarker-unselected patients (NCT03999684). 
Although TP53 mutation has been proposed as a putative biomarker to 
predict response to the Wee1 inhibitor, AZD1775, based on patients in 
early phase trials benefiting from this drug being enriched for the 
presence of TP53 mutations [37], the utility of TP53 mutations as a 
predictive biomarker is yet to be borne out. 

In this cohort of SACC patients, we have shown co-existence of TP53 
mutations and MYB gene rearrangements suggesting that TP53 mutation 
may make up a distinct sub-set of MYB rearranged SACC with a different 
disease course. Given the critical role of TP53 in maintaining genomic 
integrity, ongoing studies are interrogating the hypothesis that TP53 
altered ACC defines a novel subset of SACC with a distinct mutational 
burden. Such a differential mutational landscape may be exploited to 
identify differential therapeutic approaches with both genetically tar-
geted therapies and immune therapies. 

Beyond providing an understanding of individual genomic drivers of 
cancer in isolation, clinically annotated biorepositories such as that 
developed for this study will be invaluable for understanding tumour- 
immune-microenvironment interactions in SACC. The development of 
immune checkpoint inhibitors has revolutionised the way cancer is 
treated; however, these immunotherapies are only effective in a subset 
of tumour types and significant responses to immune checkpoint 
blockade are rarely reported in SACC [38,39]. The challenge currently 
facing oncology is to design improved immunotherapies and treatment 
strategies that encompass more tumour types. Advancements in next- 
generation sequencing (bulk RNA-seq, single-cell RNA-seq and mass 
cytometry by time-of-flight (CyTOF)) have enabled researchers to gain 
unprecedented insight into the immune landscape of multiple human 
tumours, revealing potential biomarkers and targets for new immuno-
therapies [40–42]. The microenvironment of SACC has been shown to be 

Table 3 
Clinical and pathological characteristics of TP53 mutated and wild-type salivary 
adenoid cystic carcinoma.   

TP53 MT (n = 10) TP53 WT (n = 111) P value  

N % N %  

Sex 
Male 2 20% 46 41%  0.31 
Female 8 80% 65 59%  
Disease Site 
Major salivary gland 7 64% 57 51%  0.33 
Minor salivary gland 3 36% 54 49%   

Disease recurrence 
Yes 10 100% 106 95%  0.99 
No 0 0% 5 5%   

Site of recurrence 
Local 3 30% 33 30%  0.99 
Lung 9 82% 75 68%  0.50 
Bone 0 0% 15 14%  0.6 
Liver 0 0% 21 19%  0.21 
Other 1 9% 15 14%  0.99  

Solid component 
Present 5 50% 17 15%  0.27 
Absent 5 50% 43 39%  
NOS~ 0 0% 51 46%   

Perineural invasion 
Present 5 50% 17 15%  0.27 
Absent 5 50% 43 39%  
NOS 0 0% 51 46%   

TNM 
T Stage      
TX 0 0% 1 1%  
T1 1 9% 7 6%  
T2 0 0% 7 6%  
T3 1 9% 7 6%  
T4 2 18% 10 9%   

N Stage 
NX 0 0% 1 1%  
N0 2 18% 23 21%  
N1 0 0% 4 4%  
N2 2 18% 4 4%   

M Stage 
MX 0 0% 0 0%  
M0 3 27% 30 27%  
M1 1 9% 2 2%  
UNKNOWN 6 60% 79 71%  

~Histology was centrally reviewed in 70/121 cases. 

Fig. 2. (A) Cells show two intact fusion signals indicating no evidence of MYB gene rearrangement. (B) Cells show one intact fusion signal and clearly separated red 
and green signals, indicative of MYB gene rearrangement. (C) Cells show one intact fusion signal (i.e. red and green signals co-localised) and red and green signal 
separated by a small distance. This may be suggestive of an intrachromosomal rearrangement of MYB rather than a standard translocation. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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largely depleted of immune cells [43–45]. Using bulk RNA-seq SACC has 
been characterised by T-cell exclusion and an increased presence of 
myeloid-derived suppressor cells and M2-polarised macrophages, lead-
ing to an immunosuppressive microenvironment that correlates with 
tumour recurrence [46]. The rarity of fresh samples is a major challenge 
that faces SACC research. Large patient cohorts are required in order for 
correlations between clinical data and immune profiling to have suffi-
cient statistical power, and findings in SACC studies that focus solely on 
fresh samples will likely be limited in their significance. The advent of 
Imaging Mass Cytometry, combining CyTOF with imaging, means bio-
repositories of FFPE tumours will be an invaluable resource to the 
salivary oncology field, enabling researchers to understand both the 
immune phenotype and spatial relationships occurring within the 
tumour microenvironment. 

Regarding study limitations, the authors acknowledge that the 
cohort of patients included in the study were limited to those evaluated 
for trial therapies which could introduce the possibility of selection bias. 
Other variables such as advanced stage, radiotherapy resistance, lymph 
node involvement, slow kinetic of relapse and growth and high grade 
transformation have been shown to have a negative impact on prognosis 
[47]. Due to the large geographical nature of the data set, incomplete 
data for variables such as the TNM stage, resection margin, PNI and 

tumour grade lead to small numbers in sub-groups and subsequent 
multivariate analysis was not possible. This highlights the limitations of 
incomplete clinical data when analysing referrals from multiple cancer 
centres. Further limitations include the use of biopsy material analysed 
for solid component, peri-neural and peri-vascular invasion which may 
have underestimated the incidence. 

Conclusion 

In conclusion, we have shown when combining clinical and genomic 
data from the UK cohort from 66 cancer centres, with the cBioPortal 
clinical and genomic data, that TP53 mutation was associated with 
shorter overall survival in recurrent and metastatic salivary ACC. This 
study highlights the challenges associated with real-world clinical, 
genomic and pathological data acquisition, where limited data on 
multiple prognostic factors restricts the ability to perform multi-variate 
survival analysis. These findings raise the possibility that stratifying by 
genomic predictors of clinical outcomes may usefully inform follow-up 
strategy in addition to established clinical, pathological and genomic 
biomarkers. Further studies are required to translate these findings to 
clinical practice. 

Fig. 3. (A) Kaplan-Meier estimates of recurrence free survival of adenoid cystic carcinoma patients without metastatic disease at diagnosis with TP53 mutation (n =
7) versus wild-type TP53 (n = 94). (B) Kaplan-Meier estimates of overall survival in patients with TP53 mutation (n = 10) versus wild-type (n = 111). 

Fig. 4. (A) Kaplan-Meier estimates of overall survival for ACC patients by TP53 mutation status from cBioPortal (n = 144) in patients with TP53 mutation (n = 11) 
versus wild-type TP53 (n = 133). (B) Kaplan-Meier estimates of OS from combined data cBioPortal and UK data-sets in patients with TP53 mutation (n = 21) versus 
wild type (n = 265). 
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