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Background & Aims: Checkpoint inhibitor-related hepatitis
(CPI-Hep) is an emerging clinical challenge. We aimed to gain
insights into the immunopathology of CPI-Hep by comprehen-
sively characterising myeloid and lymphoid subsets.

Methods: CPI-treated patients with or without related hepatitis
(CPI-Hep; n = 22 and CPI-noHep; n = 7) were recruited. Pheno-
typic and transcriptional profiling of peripheral immune subsets
was performed and compared with 19 healthy controls (HCs).
In vitro monocyte-derived macrophages (MoMFs) were assessed
for activation and cytokine production. CD163, CCR2, CD68, CD3,
CD8 and granzyme B expression was assessed using immuno-
histochemistry/immunofluorescence (n = 4).

Results: A significant total monocyte depletion was observed in
CPI-Hep compared with HCs (p = 0.04), along with a propor-
tionate increase in the classical monocyte population
(p = 0.0002) and significant upregulation of CCR2, CD163 and
downregulation of CCR7. Soluble CD163 levels were significantly
elevated in CPI-Hep compared with HCs (p <0.0001). In vitro
MoMFs from CPI-Hep showed enhanced production of pro-
inflammatory cytokines. CD8* T cells demonstrated increased
perforin, granzyme B, ICOS and HLA-DR expression in CPI-Hep.
Transcriptional profiling indicated the presence of activated
monocyte and enhanced effector CD8" T cell populations in CPI-
Hep. Immunohistochemistry demonstrated co-localisation of
CD8"/granzyme B* T cells with CD68*CCR2*/CD68*CD163* mac-
rophages in CPI-Hep liver tissue.

Conclusions: CPI-Hep is associated with activation of peripheral
monocytes and an enhanced cytotoxic, effector CD8* T cell
phenotype. These changes were reflected by liver inflammation
composed of CD163"/CCR2" macrophages and CD8" T cells.

Lay summary: Some patients who receive immunotherapy for
cancer develop liver inflammation, which requires cessation of
cancer treatment. Herein, we describe ways in which the white
blood cells of patients who develop liver inflammation differ
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from those of patients who receive the same immunotherapy but
do not experience liver-related side effects. Targeting some of the
pathways we identify may help to prevent or manage this side
effect and facilitate cancer treatment.

© 2021 European Association for the Study of the Liver. Published by
Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Introduction
Cancer treatment has been revolutionised in the last decade by
the emergence and widening use of a new class of immuno-
therapy; immune checkpoint inhibitors (CPIs). These cancer
drugs are monoclonal antibodies targeting negative regulators of
the immune system such as cytotoxic T-lymphocyte antigen-4
(CTLA-4), programmed cell death-1 (PD-1) and its ligand, pro-
grammed cell death ligand-1 (PD-L1)." Immune checkpoints play
an important homeostatic role, preventing the generation of
autoreactivity and immune-mediated tissue damage.?
Anti-CTLA-4 (ipilimumab), anti-PD-1 (e.g. nivolumab, pem-
brolizumab) and anti-PD-L1 (e.g. durvalumab, atezolizumab)
treatments have been shown to be effective in various malig-
nancies including melanoma, non-small-cell lung cancer and
renal cell carcinoma and transformatively offer the possibility of
durable remission even in the context of metastatic disease.>'°
However, blocking these pivotal regulatory pathways has been
associated with the emergence of a new class of drug side effect;
immune-related adverse events (irAEs).? irAEs are autoimmune-
like phenomena characterised by inflammation and immune-
mediated tissue injury that may affect multiple organs, with
CPI-related hepatitis (CPI-Hep) being among the most com-
mon.”'"'? Combination CPI therapy has been associated with an
increased incidence of CPI-Hep and can affect up to 30% of pa-
tients on dual CPI treatment, 15% of whom develop severe hep-
atitis."*'* CPI-Hep presents a critical challenge in the application
of immunotherapy with significant implications for quality of life
and survivorship, given durable responses and also adjuvant
therapy. This challenge is particularly important with the recent
approval of CPI therapy for hepatocellular carcinoma (HCC), as
the development of liver inflammation following CPI treatment
may cause decompensation of a predisposed liver." Thus, there
is an urgent need to better understand the immunopathogenesis
of this condition to allow for the development of rational
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treatment strategies, which both protect the liver and preserve
the anti-tumour efficacy of CPIs.

In this study, we aim to identify the immunological changes
that occur with immune checkpoint inhibition in patients who
develop CPI-Hep with dual or single agent CPI treatment. Herein,
we characterise the phenotypic, functional and transcriptional
profile of circulating and liver tissue-infiltrating myeloid and
lymphoid subsets in patients with CPI-Hep and provide evidence
for a CCR2M&PCCR7'°¥CD163M&"monocyte and HLA-DR"8M-
COSM&hTim-3M8PCD8-mediated pathogenesis in CPI-Hep.

Experimental and Translational Hepatology

Patients and methods

Patient characteristics

All patients were recruited between November 2017 and
September 2019 from 3 centres (Charing Cross Hospital, The
Royal Marsden Hospital and St. Mary's Hospital, London).
Recruited CPI-treated patients were categorised into those
who developed CPI-related hepatitis (CPI-Hep; n = 22) and
those who did not develop hepatic irAE (CPI-noHep; n = 7)
(Table 1). Healthy donors (HCs; n = 19) served as a control

Table 1. Clinical parameters of CPI-treated cancer patients with hepatitis compared to patients without hepatitis and healthy controls.

Parameters

CPI-Hep

CPI-noHep

Healthy controls

Number of patients
Age, year
Gender (F:M)
Primary malignancy
Melanoma
Lung cancer
Renal cell carcinoma
Melanocytoma
Tonsillar squamous cell cancer
Immunotherapy
Ipilimumab + nivolumab
Pembrolizumab
Nivolumab
Durvalumab
Atezolizumab
anti-PD-1 adjuvant therapy
Metastatic cancer vs. Adjuvant therapy
Metastatic cancer
Adjuvant
Grade of hepatitis
Grade 2
Grade 3
Grade 4
Peak ALT (IU/L)
ALT (IU/L) 1 month follow-up
ALT (IU/L) 3 month follow-up
Fibroscan CAP (dB/m)
Fibroscan LSM (KPa)
Bilirubin (mmol/L)
ALP
Monocytes (x10°/L)
Lymphocyte (x10°/L)
INR
Other irAE
Aseptic meningitis
Dermatitis
Pneumonitis
Cardiac
Pancreatic
Neurological
Hypothyroidism
Hypoadrenal
None
Patient outcome
Complete response
No recurrence
Partial response
Stable disease
Progressive disease
Not known

22
61.0 [21.0-82.0]
5:17

1

—_ == WO

—

N = o= = WD

9
11

2

261.0** [121.0-1628.0]
49.50%### [19,0-287.0]
30.50%%## [20.5-76.0]
241.0 [166.0-308.0]
6.650 [3.30-10.40]
10.50 [4.0-47.0]

78.0 [41.0-1133.0]

0.4 [0.2-2.0]

11 [0.3-4.6]

1.00 [0.9-1.1]

[N NN C RN NN

0= NN

3

7
73.0 [53.0-82.0]
4:3

7

n.a.

20.50 [14.0-30.0]
23.0 [21.0-38.0]
24,0 [18.0-50.0]

n.a.

n.a.

11.50 [5.0-19.0]
76.0 [53.0-101.0]
0.6 [0.5-7.7]

11 [1.0-19]

n.a.

5

19

32.0"* [21.0-65.0]
8:11

n.a.

n.a.

n.a.

n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.

n.a.

ALP, alkaline phosphatase; ALT, alanine transaminase; CAP, controlled attenuation parameter; CPI-Hep, CPI-treated cancer patients with hepatitis; CPI-noHep, CPI-treated
cancer patients without hepatitis; INR, international normalised ratio; irAE, immune-related adverse event; LSM, liver stiffness measurement. Data presented as median with
minimum and maximum values. ***p = 0.0003; ****p <0.0001, compared with CPI-noHep, by one-way ANOVA; *###p <0.0001, compared with CPI-Hep peak ALT, by Mann-
Whitney U test.
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group. Sequential samples were taken from CPI-Hep patients
at 1 month (n = 13) and 3 months (n = 7) following the first
hepatology consultation. The study was approved by the
Imperial College Tissue Bank (Ref. 12/WA/0196/R18009), City
and East ethics committee (LREC 15/L0/0363), PEACE-
(TRAcking Cancer Evolution through treatment (Rx), REC
reference number 11/LO/0003) and TRACERXx melanoma-
(TRAcking Cancer Evolution through treatment (Rx), REC
reference number 11/LO/0003).

Flow cytometry and absolute cell counts

Surface and intercellular staining of isolated peripheral blood
mononuclear cells (PBMCs) were carried out using
fluorochrome-labelled monoclonal antibodies (Table S1). The
acquisition was performed on the LSR Fortessa™ flow cytometer
and data were acquired using the BD FACSDiva™ software
(Becton Dickinson Ltd, Oxford, UK). Data was analysed with the
FlowJo software 10.6.0.

Serum levels of soluble CD163 (sCD163)

sCD163 was assessed in human sera using enzyme-linked
immunosorbent assay (ELISA) (R&D Systems, Abingdon, UK).
The optical density was measured at 450 nm using the Multiskan
Go plate reader (Thermo Fisher Scientific, Hemel Hempstead,
UK).

Phagocytosis assays and oxidative burst

Phagocytosis of Escherichia coli (E. coli) was evaluated in mono-
cytes using the pHrodo™ Green E. coli BioParticles™ (Thermo-
Fisher Scientific, Hemel Hempstead, UK) and monocyte oxidative
burst was assessed using the Burstest™ (Phagoburst™) kit
(Becton Dickinson Ltd, Oxford, UK), according to the manu-
facturer's instructions.

In vitro monocyte-derived macrophage differentiation and
functional assessment

Isolated CD14" monocytes from HCs and CPI-Hep patients (n = 3/
group) were spontaneously differentiated into monocyte-
derived macrophages (MoMFs) in vitro for up to 48 hours. In
the last 5 hours of the culture, cells were stimulated with 100 ng/
ml of lipopolysaccharide (LPS). Cells were harvested and
assessed by flow cytometry and supernatants were analysed
using Meso Scale Discovery (MSD) system (Rockville, USA).

Nanostring gene expression profiling

Gene expression analysis of the transcriptional profile of
monocytes and CD8* T cells from HCs, CPI-Hep and CPI-noHep
(n = 4/group) was performed using the NanoString nCounter®
GX Human Immunology V2 assay (NanoString™ Technologies,
Seattle, Washington, USA) following manufacturer's instructions.

Immunohistochemistry and immunofluorescence
Liver biopsy tissue was obtained from CPI-Hep patients (n = 4)
and pathological controls [hepatic resection margins of colo-
rectal metastases, (n = 2)]. Post-mortem samples were obtained
from CPI-noHep patients (n = 3).

For further details regarding the materials used, please refer
to the CTAT table and supplementary information.
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Results

Patient characteristics

In this study, 22 cancer patients with CPI-Hep were recruited and
compared to 7 CPI-noHep patients and 19 HCs (Table 1). The
median age of the CPI-Hep cohort was 61 years old, 77% were
male. Although patients treated with CPIs were significantly
older than HCs, there were weak or no significant correlations of
markers of interest with age (Fig. S1 & Table S6).

Melanoma was the primary malignancy in most patients, of
whom most received combination immunotherapy, ipilimu-
mab+nivolumab (14/22), for metastatic disease (20/22). Patients
with CPI-Hep (grade 2-4 hepatitis) presented with a significantly
elevated median alanine transaminase (ALT) compared to CPI-
noHep patients (261.0 vs. 20.50 IU/L, respectively; p <0.0001),
which decreased significantly in 1-month and 3-month follow-
up blood tests (261.0 vs. 46.0 and 30.0 IU/L, respectively; p
<0.0001). Other parameters such as bilirubin, alkaline phospha-
tase (ALP) levels, circulating monocyte and lymphocyte counts
and international normalised ratio (INR) were not altered in
CPI-Hep compared to CPI-noHep patients. Notably, 16/22 pa-
tients with CPI-Hep developed other irAEs. The response of pa-
tients with CPI-Hep to immunotherapy was heterogeneous, with
patients showing a complete response (6/22), no recurrence or
partial response (2/22, respectively), stable disease (1/22) and
progressive disease (8/22) (Table 1 & Table S7).

Marked reduction in total peripheral monocyte counts
coupled with an increased frequency of CD14"*CD16" classical
subset in patients with CPI-Hep

Monocyte recruitment to the liver from peripheral blood has
been shown to be important in the pathogenesis of other acute
liver injury syndromes.!®~'° We assessed absolute numbers and
proportions of monocyte subsets in HCs, and patients with CPI-
Hep and CPI-noHep using flow cytometry. We distinguished
between non-classical CD14*CD16™", intermediate CD14"*CD16"
and classical CD14™CD16~ (Fig. 1A & Fig. S2A). Patients with CPI-
Hep showed a significant reduction of the absolute numbers of
total CD14" monocytes compared to HCs (p = 0.04) but not CPI-
noHep (Fig. 1A). This reduction was further reflected in the
classical monocyte compartment of patients with CPI-Hep
(p = 0.0003) (Fig. 1A). Patients with CPI-Hep presented the
lowest proportion of non-classical monocytes, compared to HCs
and CPI-noHep (4.179% +1.043% vs. 7.916% +0.9632% and 13.80%
+2.417%, respectively) and the highest proportion of classical
monocytes (93.80% 11.394% vs. 87.92% +1.127% and 82.61%
+2.559%, respectively) (Fig. 1A). The frequency of non-classical
monocytes in patients with CPI-Hep correlated negatively with
AILT levels (r = -0.51; p = 0.02), whereas the frequency of classical
monocytes correlated positively with ALT (r = 0.52; p = 0.02)
(Fig. S2B).

Patients with CPI-Hep display increased levels of soluble and
cell surface expression of CD163

sCD163/CD163 were shown to be a marker of monocyte/
macrophage activation.’°=2® Circulating monocytes in CPI-Hep
patients had increased CD163 mean fluorescence intensity
(MFI) levels (Fig. 1B & Fig. S2A). This was particularly noted in the
intermediate monocyte subset when compared to HCs and CPI-
noHep patients (2,892 *457.8 vs. 686.3 *28.65 and 958.1
+190.5, respectively), whilst significant upregulation of CD163
expression on classical monocytes was only significant when
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Fig. 1. Serum sCD163 levels, phenotypic and functional characterisation of circulating monocytes. ELISA and flow cytometry analysis of circulating
monocytes of HCs (n = 19), CPI-Hep (n = 22) and CPI-noHep (n = 7). (A) Absolute numbers and frequency of circulating monocyte subsets (one-way ANOVA). (B)
MFI expression levels of the activation marker CD163 in monocyte subsets (one-way ANOVA). Spearman correlation of CD163 (MFI) expression on total CD14*
monocytes with ALT levels in CPI-Hep. (C) Levels of sCD163 in serum of HC, CPI-Hep and CPI-noHep (Kruskal-Wallis). Comparison of sCD163 in steroid-treated (n
= 16) and steroid-naive (n = 6) CPI-Hep patients to CPI-noHep (Mann-Whitney U test). (D) MFI expression of chemokine receptors (CCR2, CCR7) (one-way
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production (oxidative burst) gated on total CD14" monocytes in whole blood of HC (n = 15) and CPI-Hep (n = 19) (Mann-Whitney U test). *p <0.05, **p <0.01, ***p
<0.001, ***p <0.0001. ALT, alanine aminotransferase; HCs, healthy controls; MFI, mean fluorescence intensity; ROS, reactive oxygen species.
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compared to HCs (p = 0.0015) (Fig. 1B). This cell surface increase
in CD163 expression correlated positively with ALT levels in CPI-
Hep (r = 0.62; p = 0.006) (Fig. 1B). Elevated sera levels of sCD163
were also detected in CPI-Hep patients compared to HCs (p
<0.0001) (Fig. 1C). When compared to CPI-noHep patients, dif-
ferences did not reach statistical significance. However, when
stratified based on administration of immunosuppressive ste-
roids, sCD163 levels were significantly elevated in non-steroid-
treated CPI-Hep patients compared to both CPI-noHep
(p = 0.002) and CPI-Hep steroid-treated patients (p = 0.01)
(Fig. 1C). None of the changes reported in the activation profile
on monocytes and in the circulation of CPI-Hep patients were
affected by differences in CPI treatment regimen (Fig. S3A).

Peripheral monocytes in CPI-Hep are characterised by a
CCR2MEMCCR7'° tissue homing phenotype

Next, to understand the role of the reported monocytic pheno-
type in the pathogenesis of CPI-Hep, we explored their migratory

JOURNAL
OF HEPATOLOGY

receptor CCR2 when compared to HCs and CPI-noHep (14,976
42,585 vs. 3,742 +373.6 and 3,281 #£179.5, respectively). The
highest levels however were detected in the classical population
and were significantly elevated in CPI-Hep patients compared to
HCs (p = 0.04) (Fig. 1D). In contrast, the expression of the lymph
node homing receptor CCR7 was significantly reduced in the CPI-
Hep patients intermediate (p = 0.009 compared to HC) and
classical (p <0.0001 and p = 0.4 compared to HC and CPI-noHep,
respectively) monocyte subsets (Fig. 1D). The effect of combi-
nation therapy was not distinct to that of single therapy regimen
in inducing a CCR2ME"CCR7'°" phenotype in CPI-Hep patients
(Fig. S3A).

Discontinuation of CPI therapy with use of corticosteroids
reverses the main phenotypic alterations observed in
monocytes from CPI-Hep patients

Monocyte phenotype was further evaluated longitudinally in
CPI-Hep patients following withdrawal of CPI therapy, treatment

capacity to the inflamed liver tissue. Chemokine receptor with immunosuppressants and improvement in liver inflam-
profiling revealed that intermediate monocytes from CPI-Hep mation. Of the cell surface markers tested, no significant differ-
patients expressed increased levels of the tissue homing ences were detected in the immunophenotype based on steroid
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Fig. 2. Invitro differentiated MoMFs from patients with CPI-Hep show inflammatory function. (A) Data show surface marker expression in monocytes ex vivo
and in MoMFs after 48 hours of culture. 100 ng/ml of LPS was added to the cells in the last 5 hours of culture (Mann-Whitney U test). (B) Levels of inflammatory
cytokines secreted by MoMFs after 24 hours of culture following LPS-stimulation (Mann-Whitney U test). *p <0.05, **p <0.01, ***p <0.001. LPS, lipopolysaccharide;

MoMFs, monocyte-derived macrophages.
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treatment of samples collected at enrolment (day 1) (Fig. S4A).
However, when compared to day 1 samples, cell surface
expression, as well as soluble levels of CD163, were reduced at
both 1- and 3-month follow-ups, approaching levels seen in HCs
(Fig. 1E). Similarly, the elevated CCR2 expression was diminished
in sequential samples (Fig. 1E). An opposite trend was observed
in CCR7 expression, which remained persistently reduced
throughout the course of follow-up (Fig. 1E).

Circulating monocytes from CPI-Hep maintain their
functional ability for effective microbial clearance

Functional defects in monocyte phagocytosis and/or oxidative
burst are well recognised in acute liver failure (ALF) and alcoholic
hepatitis.>*2° We hypothesised this may also be the case in
CPI-Hep. Circulating monocytes from CPI-Hep demonstrated an
unaltered microbial clearance capacity coupled with high pro-
duction of reactive oxygen species (ROS) as measured by the
oxidative burst assay compared with HCs (Fig. 1F & Fig. S2C).

In vitro spontaneously differentiated monocyte-derived
macrophages from patients with CPI-Hep show pro-
inflammatory properties

As we have established an inflammatory CD163Me"CCR2Meh
tissue-homing phenotype of peripheral monocytes in patients
with CPI-Hep, we aimed to address the functionality of those
monocytes once differentiated into macrophages, in order to
mimic liver MoMFs in CPI-Hep. To this end, the ex vivo activation
profile of monocytes from HCs and CPI-Hep patients was
compared to in vitro spontaneously differentiated MoMF. Sub-
sequently, we assessed the secretion of inflammatory cytokines
by MoMF from CPI-Hep patients compared to HCs. Phenotyping
revealed an increased frequency of CD14" monocytes expressing
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the activation markers CD40 and CD163 ex vivo, while the pro-
portion of CD83-expressing monocytes remained similar to HCs
(Fig. 2A). Following stimulation with LPS, MoMFs from both, HCs
and CPI-Hep patients showed an increased frequency of CD40
and CD163 expression (Fig. 2A). However, the frequency of
CD163"CD14" monocytes was significantly higher in CPI-Hep
patients compared to HC. Levels of inflammatory cytokines
(IFNy, IL-1B, IL-6, IL-12p70, TNFa) secreted by MoMFs from CPI-
Hep patients following LPS-stimulation were significantly
increased compared to HC levels (Fig. 2B), while no differences
were detected in IL-10 levels.

Increased gene expression of activation and reduction of
negative regulators are characteristics of peripheral
monocytes in CPI-Hep

Gene expression profiling of flow-sorted monocytes (Fig. S5A)
from representative HC, CPI-Hep and CPI-noHep patients was
carried out using quantitative NanoString™ gene expression
arrays. Compared to CPI-noHep, monocytes from patients with
CPI-Hep showed a significantly increased expression of survival
factors (FLT3, PF4), macrophage activation and polarisation
(CD163, GATA3, JUN) and the complement factor CIQB. In
contrast, transcription factors (NRIP3, NR4A1), cytokines (TNFSF9,
IL1B) and immune regulatory molecules (DUSP2, GADD45B,
CD83, PTGS2, GPR183) were significantly reduced in monocytes
from patients with CPI-Hep (Fig. 3A&B; Fig. S5B). The monocytic
distinct transcriptional profile between CPI-Hep and CPI-noHep
patients was explored further between CPI-Hep and HCs, con-
firming upregulation of the macrophage activation marker
(D163 and identifying upregulation of survival factors (PF4, FLT3)
(Fig. 3A).

B

Q o o Q
[T o)
TTI3222¢8
mmm CPI-Hep vs. HC oooooooa o
mmm CPl-noHep vs. HC O O0O0O0O0O0O0LOo

CD163

FLT3
c1oB
GATA3
TUBA4A
SPTBN1
ETS1
socst
PF4
JUN
PTGS2
GADD45B
GPR183
cD83
1B
NR4A1
DUSP2
NRIP3

e

TNFSF9

Fig. 3. Gene expression pattern of peripheral monocytes. Quantitative microarray gene expression analysis of HCs (n = 4), CPI-Hep (n = 4) and CPI-noHep
(n = 4) using NanoString Technologies. (A) Data show log2-fold change of significantly DE genes and (B) agglomerative cluster (heatmap, z-score; blue = min
and red = max magnitude of expression) of monocytes in CPI-Hep vs. CPI-noHep. For every such gene expression, CPI-Hep (blue bars) and CPI-noHep (grey bars)
were compared to baseline of HCs. *p <0.05, **p <0.01, ***p <0.001 (Wald test). DE, differentially expressed; HCs, healthy controls.
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Peripheral CD8"* T cells in CPI-Hep are predominantly HLA-
DRMEPICOSMETim3MiEh

Next, we characterised circulating T cells in CPI-Hep patients,
compared to HCs and CPl-noHep patients (Fig. S6A). Pro-
portions, as well as absolute numbers of CD8*, CD4" and regu-
latory T cells (Tregs) were comparable between HCs, CPI-Hep and
CPI-noHep patients (Fig. S6B). Flow cytometry analysis showed
no differences in CD4" T cell activation status or Treg proportions
compared to CPI-noHep patients, though some treatment-
related changes were observed (Fig. S6C). As CD8* T cells were
implicated to be important mediators of immune-mediated liver
damage,?’~%° detailed immunophenotyping of CD8" T cells was
performed. CD8" T cells in CPI-Hep patients showed an increased
frequency of expression of the activation markers ICOS and HLA-
DR (ICOS: 9.128% +1.414% vs. 2.397% 10.5977% and 3.477%
+0.5378%; HLA-DR: 19.98% +3.087% vs. 4.200% +0.5881% and
6.397% +0.7769% in CPI-Hep, HCs and CPI-noHep, respectively)
(Fig. 4A). Notably, the frequency of activated ICOS"&"CD8* T cells
correlated positively with sCD163 levels (r = 0.61, p = 0.004)
(Fig. S6D). This was accompanied by a significant increase in the
frequency of CD8" T cells expressing the inhibitory markers Tim3
in CPI-Hep patients compared to both controls (p = 0.0009 and
p = 0.02) and Lag3 compared to HCs (p = 0.04) (Fig. 4B). This
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significant increase in the frequency of CD8* T cells expressing
markers of activation in CPI-Hep patients remained elevated
following treatment with corticosteroids and continued to be
elevated after up to 1 month of follow-up (Fig. S4B, Fig. 4A&B).
Evaluation of differences in CPI treatment regimen on the CD8* T
cell phenotype in CPI-Hep showed no distinct effects on markers
associated with activation (Fig. S3B).

Increased cytotoxicity in peripheral CD8" T cells from CPI-Hep
We examined the production of the cytolytic mediators gran-
zyme B and perforin. Intracellular cytokine staining revealed an
increased frequency of CD8" T cells producing granzyme B in CPI-
Hep patients compared to HC and CPI-noHep patients (54.56%
+4.616% vs. 19.79% +4.212% and 25.03% +5.905%, respectively).
Significantly enhanced levels of perforin were detected in CD8" T
cells in CPI-Hep patients compared to HCs and CPI-noHep pa-
tients (48.87% +3.486% vs. 27.56% +4.196% and 25.22% +5.564%,
respectively) (Fig. 4C). Similar to the activation markers, the
frequency of CD8" T cells producing cytolytic mediators
remained elevated over the first month of follow-up and steroid
treatment (Fig. 4C, Fig. S4B). Functional markers were not
affected significantly by differences in CPI treatments (Fig. S3B).
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Activated CDS* T phenotype in CPI-Hep patients is confirmed
by transcriptional profiling

Subsequently, the gene signature of flow-sorted CD8* T cells
(Fig. S5A) from CPI-Hep patients was also determined using
NanoString™ gene expression array. CD8* T cells from patients
with CPI-Hep compared to CPI-noHep had an upregulated T cell
activation and costimulatory gene profile (CD6, NFKB1, IMPDH2,
CD27); T cell development, differentiation and functional
markers (CD45RA, DNMT3A), both associated with naive/effector
T cells; T cell trafficking (SELL, CCR7), cytokine signalling (ISG20,
IL6ST, IL6R) and immune checkpoints (HAVCR2, CTLA4). Down-
regulated genes included genes associated with cytotoxicity and
regulation of cytotoxicity (GZMA, GNLY, SLAMF7), T cell develop-
ment, differentiation and functional markers (PTPN22, ITGAL,
PSTPIP1, EOMES, WNT10B, CD45R0), associated with memory T
cells; and negative regulators (SMAD3, CD59, RORA, TIGIT, HLA-C,
LILRB1) (Fig. 5A&B; Fig. S5C). Compared to HCs, CPI-Hep showed
upregulation of the immune checkpoints (HAVCR2 and CTLA4)
and T cell activation/cytokine signalling (PLCG2, ISG20) (Fig. 5A).
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Intrahepatic CD68*CCR2*/ CD163" and CDS* inflammatory

immune aggregates are enriched in livers of CPI-Hep patients
In view of the reported phenotypic and transcriptional changes
of circulating monocytes and CD8* T cells in CPI-Hep patients
and the activated pro-inflammatory functional profile of in vitro
MoMFs, we next investigated immune cell recruitment/
enrichment of these populations within liver tissue using
immunohistochemistry and immunofluorescence. To this end,
liver biopsies from patients with CPI-Hep were stained and
compared to pathological control tissue (hepatic resection mar-
gins of colorectal metastases) and post-mortem liver samples
from CPI-noHep patients. Notably, the predominant CPI regimen
in CPI-Hep and CPl-noHep was combination ipilimu-
mab+nivolumab (Table S4). Patients with CPI-Hep showed
lobular liver inflammation and focal aggregates of increased, but
non-significant, numbers of intrahepatic CD163* and CD68*
macrophages and CD3" and CD8" T cells (Fig. 6A-D), whereas
pathological controls and post-mortem liver tissue of CPI-noHep
patients show fewer and evenly distributed macrophages with
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Fig. 5. Gene expression pattern of peripheral CD8" T cells. Quantitative microarray gene expression analysis of HCs (n = 4), CPI-Hep (n = 4) and CPI-noHep
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Fig. 6. Immune staining of intrahepatic macrophages and CD8" T cells. Representative pictures of liver biopsies of CPI-Hep (n = 4), pathological control (n = 2)
and post-mortem tissue from CPI-noHep (n = 3). (A) Single stains for CD163, CD68, (B) CD3 and CD8 with 200x magnification. (C) Absolute numbers of CD163%,
CD68* (Kruskal-Wallis) and (D) CD3* and CD8" cells per HPF (Kruskal-Wallis). HPF, high power field.

typical Kupffer cell morphology and CD8" T cells (Fig. 6A&B).
Analyses further revealed the presence of CCR2 and granzyme B-
positive cells within focal aggregates in liver tissue of patients
with CPI-Hep (Fig. 7A&B). In addition, double immune stains
revealed co-localisation of CD68" macrophages with CD163" and
CCR2" expression and the close proximity of cytotoxic CD8" T
cells with CD68" macrophages within immune aggregates in
livers of patients with CPI-Hep (Fig. 7C-E).

Discussion
This work has provided the first characterisation of the periph-
eral and intrahepatic immune phenotype and transcriptional
profile of human T cells and monocytes/macrophages in patients
with CPI-Hep.

The presence of CCR2ME"CCR7'°" classical monocytes in blood
and the reduction of the absolute numbers of classical

Journal of Hepatology 2021 vol. 75 | 177-189

monocytes, combined with the increased presence of
CD68*CCR2* macrophages in liver biopsies, suggests monocyte
recruitment to the liver from the circulating monocyte pool may
be mechanistically important in the pathogenesis of CPI-Hep. In
paracetamol and carbon tetrachloride-induced liver injury the
CCR2-mediated recruitment of inflammatory classical monocytes
has been shown to drive hepatocyte injury and fibrosis.'®'8!° In
human paracetamol-induced ALF a relative monocytopaenia is
also observed with avid recruitment of monocytes to the liver,
where evidence suggests they mature into MoMFs.!”

Additional evidence of monocyte activation in CPI-Hep comes
from our observation of upregulation of CD163 on both a tran-
scriptional level and MFI expression of CD163 on the cell surface
of monocytes, which correlated with disease severity; this was
further reflected in the liver by co-localisation of intrahepatic
CD163 with CD68. Moreover, in vitro differentiated MoMFs from
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patients with CPI-Hep show an increased frequency of CD163
expression, suggesting that the peripheral activated phenotype is
maintained on differentiation. Previous studies have provided
substantial evidence that CD163 and sCD163 are biomarkers of
monocyte/macrophage activation in liver disease.’’*> Serum
levels of sCD163 have previously been reported to be signifi-
cantly raised in patients receiving CPIs who developed any organ
irAE.> We replicated this finding, noting an increase in sCD163
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in sera from our patient cohort with CPI-Hep, indicating that the
CD163/sCD163 axis may have potential as a biomarker for irAE
and CPI-Hep in particular.

Moreover, this activated monocyte/MoMF profile was
accompanied by the increased production of pro-inflammatory
cytokines by in vitro MoMFs from patients with CPI-Hep. This
indicates an inflammatory ‘M1-like’ polarisation with enhanced
pro-inflammatory capacity of MoMFs in the pathogenesis of CPI-
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Hep. Evidence of monocyte activation is further enhanced by
gene expression profiling in monocytes, which demonstrated
downregulated expression of regulators of immune responses
and T cell activation in CPI-Hep. These include GPR183, a nega-
tive regulator of Type I IFN responses and regulator of TLR-
mediated responses,®! as well as PTGS2, an enzyme which
catalyses the generation of prostaglandins.

In addition to changes in monocyte phenotype and gene
expression, we observed differences within the T cell compart-
ment in CPI-Hep patients. Interestingly, the CD4" T cell popula-
tion shows less phenotypic alteration associated with either CPI
treatment or toxicity than the CD8 population. In our cohort,
circulating CD8" T cells of CPI-treated patients show a distinct
effector/effector memory phenotype, compared to HCs. We also
provide evidence that, when compared to CPI-noHep, CDS8* T
cells in CPI-Hep patients present an effector-like transcriptional
profile and dysregulated effector memory formation
(CD45RA*CD45RO"EOMES'°"WNT10B'*“DNMT3AME"  transcrip-
tional profile).>?

Effector CD8" T cells, once activated, show strong T cell recep-
tor, costimulatory and cytokine signalling. This is consistent with
our observations of increased HLA-DR and ICOS expression at the
protein level, and the upregulation of genes such as NFKB1, IL-6
receptors and 1SG20.>*-3° In CPI-Hep, CD8" T cells further show
an upregulation of genes associated with T cell responsiveness and
cytolytic activity (CD6, IMPDH2)*’ and a downregulation of genes
important for regulating immune responses in CD8* T cells
(PTPN22, LILRB1, TIGIT, CD81, SLAMF7 and CD59), which regulate
cytotoxicity to limit autoreactivity/autoimmunity.**-*!

In accordance with our phenotypic observations in patients
with CPI-Hep, effector CD8* T cells produce cytolytic mediators
such as granzyme B and perforin in high levels.*? In contrast,
effector memory T cells, as seen in the CPI-noHep cohort, are
granzyme A" but only express low levels of granzyme B and
perforin with limited cytotoxic activity without prior stimula-
tion.*? Although, we observe a discordance of cytolytic mediators
in gene/protein expression, the increased presence of granzyme
B*Perforin"CD8* T cells in the periphery, coupled with CD8/
granzyme B co-localisation in liver biopsies and the proven
reduction of expression of regulating factors suggests CD8-
mediated cytotoxicity may play an important role in the patho-
genesis of hepatocyte injury in CPI-Hep. This is in line with
recent studies showing that infiltration of activated CD8" T cells
in other forms of drug-induced liver injury is associated with
liver pathology.?’

Finally, the co-localisation of CCR2/CD68 macrophages with
cytotoxic T cells observed in liver biopsies raises questions about
the nature of the cellular crosstalk within the liver. This is further
implicated by the positive correlation of ICOSME"CD8* T cells
with monocyte activation and the fact that the observed acti-
vation was particularly increased in the intermediate monocyte
subset (CD163M&"CCR2MEM) in CPI-Hep, compared to CPI-noHep.
Intermediate monocytes were shown to be predominantly
pro-inflammatory and to express the highest levels of antigen
presentation molecules and may therefore be more potent acti-
vators of CD8" T cells in CPI-Hep.**~*°

Our study has a number of limitations. Firstly, immune phe-
notyping was limited to cells of monocyte and T cell lineage.
However, other immune cells might play a role. Secondly, there
was a degree of heterogeneity of treatment and tumour type
among our patient cohort. For example, greater numbers of CPI-

Journal of Hepatology 2021 vol. 75 | 177-189

JOURNAL
OF HEPATOLOGY

Hep patients were treated with combination CPI than CPI-noHep.
Although, comparison of combination and single CPI treatment
in CPI-Hep showed no differences in the reported phenotypic
changed, the patient numbers were insufficient to do subgroup
analyses of specific CPIs and tumour types or of the response
rates to immunotherapy, though this has been addressed in
larger cohorts.*>*’ In addition, the CPI-Hep group contained
patients who had commenced corticosteroid treatment by the
time of initial sampling. We mitigated the confounding effect of
steroid treatment by selecting only steroid-naive patients for
gene expression analysis and comparisons of steroid-treated
with naive patients did not show significant differences in
immunophenotyping. By concentrating our study on CPI-Hep
patients, and due to the fact that CPI-noHep patients showed
no development of other irAEs, we are unable to determine
whether the peripheral changes we have described are common
to all organ toxicities (irAEs) or specific to liver toxicity. Future
work looking to replicate this phenotype in patients with
different organ irAEs would be of value.

In conclusion, we have demonstrated an association between
an activated peripheral monocyte phenotype and an expanded
effector CD8* T cell population with liver toxicity in CPI-treated
patients. Peripheral changes are mirrored in the liver where an
inflammatory infiltrate characterised by co-localised CD8" T cells
and CCR2* macrophages is demonstrated. A number of the
pathways highlighted in this work have potential utility in dis-
ease monitoring and management as biomarkers. Though asso-
ciative, these findings provide novel and important evidence
regarding the immunopathogenesis of CPI-Hep and highlight
future areas for research in this condition that is of increasing
clinical consequence.
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