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ABSTRACT 42 

Background: Genome-wide association studies (GWAS) of childhood cancers remain limited, 43 

highlighting the need for novel analytic strategies. We describe a hybrid GWAS and phenome-44 

wide association study (PheWAS) approach to uncover genotype-phenotype relationships and 45 

candidate risk loci, applying it to acute lymphoblastic leukemia (ALL).  46 

Methods: PheWAS was performed for 12 ALL SNPs identified by prior GWAS and two control 47 

SNP-sets using UK Biobank data. PheWAS-traits significantly associated with ALL SNPs 48 

compared to control SNPs were assessed for association with ALL risk (959 cases, 2624 49 

controls) using polygenic score and Mendelian randomization analyses. Trait-associated SNPs 50 

were tested for association with ALL risk in single-SNP analyses, with replication in an 51 

independent case-control dataset (1618 cases, 9409 controls).  52 

Results: Platelet count was the trait most enriched for association with known ALL risk loci. A 53 

polygenic score for platelet count (223 SNPs) was not associated with ALL risk (P=0.82) and 54 

Mendelian randomization did not suggest a causal relationship. However, twelve platelet count-55 

associated SNPs were nominally associated with ALL risk in COG data and 3 were replicated in 56 

UK data (rs10058074, rs210142, rs2836441).  57 

Conclusions: In our hybrid GWAS-PheWAS approach, we identify pleiotropic genetic variation 58 

contributing to ALL risk and platelet count. Three SNPs known to influence platelet count were 59 

reproducibly associated with ALL risk, implicating genomic regions containing IRF1, pro-60 

apoptotic protein BAK1, and ERG in platelet production and leukemogenesis.  61 

Impact: Incorporating PheWAS data into association studies can leverage genetic pleiotropy to 62 

identify cancer risk loci, highlighting the utility of our novel approach. 63 

 64 

 65 

 66 

 67 
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Introduction 68 

Genome-wide association studies (GWAS) have greatly enhanced our understanding of 69 

inherited genetic susceptibility to cancer (1), but GWAS of pediatric cancers remain limited due 70 

to lower disease incidence (2). Because of limited sample size, GWAS of childhood 71 

malignancies are often underpowered to detect variants of small-to-moderate effect size, 72 

preventing potentially important risk loci from reaching genome-wide statistical significance (i.e. 73 

P<5.0x10-8) (2, 3). Novel analytic approaches are needed to investigate how germline genetic 74 

variation contributes to childhood cancer risk. The incorporation of polygenic scores (4, 5), 75 

Mendelian randomization (MR) analyses, gene-pathway analyses (6), and phenome-wide 76 

association studies (PheWAS) can augment traditional GWAS approaches to expand our 77 

understanding of the genetic etiology of pediatric malignancies and other rare diseases. 78 

PheWAS have not been widely applied to childhood cancer etiology research, but 79 

represent a promising approach to understanding genetic risk in childhood cancer (7, 8). While 80 

GWAS examine millions of genetic loci and test for association with a single phenotype or 81 

disease, PheWAS test hundreds or thousands of phenotypes for association with a single 82 

genetic variant, essentially a reversal of the GWAS paradigm (9, 10). This methodology has 83 

recently become feasible through large collaborative efforts linking electronic health records 84 

(EHR) data with high-throughput genomic data (7). Using PheWAS to discover additional traits 85 

associated with cancer risk variants can reveal “intermediate phenotypes” (e.g., height, smoking 86 

behaviors) (4) that may mediate the relationship between SNPs and cancer development. Trait-87 

disease relationships can be further investigated using polygenic scores and MR approaches. 88 

PheWAS data can also be integrated into case-control studies to identify trait-associated 89 

genetic variants, create empirical candidate-SNP lists, and test for association with cancer case-90 

control status. Thus, integrating PheWAS and GWAS approaches in analyses of case-control 91 

datasets may enhance our understanding of pathways driving pediatric cancer predisposition.  92 
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Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy, 93 

accounting for nearly one-third of pediatric cancers (11). Its etiology is complex, but the disease 94 

is likely initiated in utero, with driver pre-leukemic fusion genes arising in lymphoid progenitors. 95 

ALL development is also influenced by pre/postnatal environmental exposures (e.g., infections, 96 

ionizing radiation) (11-14) and by germline genetic variants. GWAS have uncovered important 97 

inherited genetic risk loci for ALL in hematopoietic transcription factors (IKZF1, CEBPE, 98 

ARID5B, GATA3, ELK3), cell cycle regulators (CDKN2A/CDKN2B, SP4), and chromatin 99 

remodeling enzymes (BMI1), though the precise mechanisms by which these GWAS-identified 100 

risk loci influence leukemogenesis are not completely understood (15-22). 101 

We have developed an integrated GWAS-PheWAS approach to identify candidate traits 102 

and trait-associated variants that may modify cancer risk. We apply this methodology to ALL, 103 

uncovering novel phenotypes associated with known ALL risk variants and pleiotropic ALL risk 104 

loci, which we successfully replicate in an independent dataset. Our findings suggest that this 105 

hybrid GWAS-PheWAS methodology is a promising new approach for deciphering germline 106 

genetic risk in rare diseases, such as childhood cancers, where GWAS power remains limited. 107 

 108 

Materials and Methods  109 

Prior GWAS ALL risk loci. We accessed the NHGRI-EBI GWAS Catalog 110 

(https://www.ebi.ac.uk/gwas/) to compile a list of variants previously identified by GWAS as 111 

associated with B-cell precursor ALL risk in European-ancestry populations at genome-wide 112 

statistical significance (i.e. P<5.0x10-8) (access date: November 27, 2018) (23). We pruned this 113 

list of significant variants for linkage disequilibrium (R2≤0.15 in European-ancestry populations) 114 

using LDlink (24) and cross-referenced recent reviews on ALL GWAS (3), identifying 12 115 

genome-wide significant independent ALL risk SNPs, which were included in our ALL SNP-set. 116 

 117 
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Control SNP Sets. We compiled 2 comparison SNP-sets to serve as controls for PheWAS 118 

analyses. A set of unlinked control SNPs (1000 Genomes Project) was generated using 119 

SNPsnap (Broad Institute) (25). Four control SNPs were matched to the 12 ALL risk SNPs on: 120 

minor allele frequency (±5%), surrounding gene density (±50%), distance to nearest gene 121 

(±50%) and, as a proxy for haplotype block size, the number of other SNPs in LD at R2≥0.50 122 

(±50%). For several ALL risk SNPs, we could not generate more than 4 control SNPs without 123 

loosening our matching parameters, but the gain in statistical power achieved beyond a case-to-124 

control ratio of 1:4 is minimal (26, 27).  125 

Because ALL risk SNPs are trait-associated variants that may be more likely to 126 

associate with additional traits in PheWAS analyses, we identified a second control SNP-set by 127 

querying the GWAS catalog for chronic lymphocytic leukemia (CLL) risk SNPs. We used the 128 

same methodology as for ALL risk SNPs, yielding 31 unlinked CLL-associated variants used as 129 

another control SNP-set. 130 

 131 

eQTL and in silico SNP functional analyses. We characterized ALL risk SNPs and control 132 

SNP-sets using HaploReg to annotate chromatin state and regulatory motifs surrounding each 133 

SNP (28). We examined whether variants were expression quantitative trait loci (eQTLs), 134 

protein-binding, located in DNAse hypersensitive sites, promoter or enhancer histone marks, or 135 

predicted to change transcription factor binding motifs.  136 

 137 

UK Biobank GeneATLAS and PheWAS analyses. The UK Biobank atlas of genetic 138 

associations (http://geneatlas.roslin.ed.au.uk/) was constructed by genotyping 452,264 139 

European-ancestry individuals for 805,426 genetic variants, performing genome-wide SNP 140 

imputation and quality-controls, and linking genetic data to EHR data (29). GeneATLAS 141 

contains data for 778 traits (118 quantitative, 660 binary) and associations with 9,113,133 142 

genetic variants (genotyped or imputed). GeneATLAS is searchable and can be queried for 143 
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genetic (e.g. SNPs) or phenotypic (e.g., height) data to assess genotype-phenotype 144 

associations (see Canela-Xandri et. al. for additional details) (29). 145 

We queried GeneATLAS for trait associations with 12 known ALL risk SNPs and two 146 

control SNP-sets (31 CLL-associated SNPs, 48 matched SNPsnap controls). Summary 147 

statistics for traits associated with each queried variant were downloaded from GeneATLAS for 148 

downstream analyses. Significant SNP-trait associations (P<0.01) were carried forward in 149 

subsequent SNP-set analyses. Although a more stringent p-value threshold for carrying SNP-150 

trait associations forward was considered (e.g. 0.05/778), this was determined to be too 151 

conservative because many of the 778 traits in GeneATLAS have high genetic correlations with 152 

each other (e.g. weight and hip circumference, 0.909; reticulocyte percentage and reticulocyte 153 

count, 0.952). Additionally, these individual SNP-trait associations were carried forward for 154 

SNP-set enrichment comparisons between ALL-associated SNPs and control SNP-sets, and as 155 

such the PheWAS significance threshold is somewhat arbitrary so long as it is the same 156 

threshold across all SNP-sets. PheWAS results for the 12 ALL risk SNPs and 778 traits were 157 

compared to results for the two control SNP-sets using the R Statistical Programming 158 

Environment (http://www.R-project.org/, version 3.5.2). Using Fisher’s exact tests, we compared 159 

PheWAS traits associated with >1 ALL SNP between the ALL and control SNP-sets to 160 

determine if traits were enriched for association with known ALL risk variants. 161 

 162 

ALL case-control discovery cohort. We included 959 European-ancestry ALL cases from the 163 

Children’s Oncology Group (COG) in our discovery dataset (16). Genotype data were 164 

downloaded from dbGaP study accession phs000638.v1.p1, including ALL patients from COG 165 

protocols 9904 and 9905 for whom DNA was obtained from remission blood samples (30). 166 

Controls included 2624 European-ancestry subjects from the Wellcome Trust Case-Control 167 

Consortium (http://www.wtccc.org.uk/) (31). Cases and controls were genotyped on the 168 

Affymetrix 6.0 array. As described previously, genotyping quality-control (QC) measures were 169 
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implemented for cases and controls (16). We excluded samples or SNPs with genotyping call 170 

rates <98%, individuals with suggested non-European-ancestry, IBD proportion >0.20, or with 171 

discrepant sex between genotype and clinical report.  172 

 173 

Genotype imputation. ALL case-control SNP data underwent genome-wide imputation as 174 

previously described (5). Haplotype phasing was performed with SHAPEIT (version 2.790) (32), 175 

and whole-genome imputation was performed using Minimac3 software (33) with 64,976 human 176 

haplotypes from the Haplotype Reference Consortium (2016 release) as the reference panel 177 

(34). SNPs with imputation quality (info) scores <0.60 or posterior probabilities <0.90 were 178 

excluded (16).  179 

 180 

Platelet count polygenic score and single-SNP associations. We constructed a polygenic 181 

score for platelet count using 287 independent genetic variants associated with platelet count in 182 

a prior GWAS of blood cell trait indices (223 were included after QC filtering) (35) (S7 Table). 183 

The polygenic score for each individual in the ALL case-control dataset was determined based 184 

on signed, weighted beta estimates for each platelet count-associated variant, as reported in 185 

Astle et. al. (35) and calculated using the PLINK toolkit (36). We performed logistic regression 186 

for the platelet count polygenic score, adjusting for 10 principal components (PCs). We also 187 

tested platelet count-associated SNPs for association with ALL case-control status via single-188 

SNP association analyses.  189 

 190 

Mendelian randomization analyses. To assess for a causal relationship between platelet 191 

count and ALL risk, we performed formal MR analyses with the R package 192 

“MendelianRandomization”(37, 38). Using summary statistics of SNP-exposure (i.e., platelet 193 

count) and SNP-outcome (i.e., ALL) associations, we used the (1) inverse-variance weighted 194 
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(IVW), (2) MR-Egger, and (3) weighted median methods to test for a causal relationship 195 

between platelet count and ALL risk in our case-control dataset (39, 40).  196 

 197 

ALL replication study. The ALL replication dataset was a meta-analysis of two prior published 198 

GWAS of B-cell precursor ALL, including German GWAS (834 cases, 2024 controls) (19) and 199 

UK GWAS II (784 cases, 7,385 controls) (20). German cases were genotyped using Illumina 200 

Human OmniExpress-12v1,0 arrays and controls were genotyped using the same platform or 201 

Illumina-HumanOmni1-Quad1_v1. UK GWAS II cases and controls were genotyped using an 202 

Illumina Infinium OncoArray-500K. Fixed-effects meta-analysis was used to estimate beta 203 

values, standard errors, and p-values for queried risk loci in this combined GWAS meta-analysis 204 

(1618 ALL cases, 9409 controls). For additional information on the GWAS meta-analysis used 205 

for replication, see Vijayakrishnan et. al. (21).  206 

 207 

Results  208 

Overview of methods. An overview of the methodology applied in our study is displayed in 209 

Figure 1. We used the GWAS catalog and a thorough literature review to identify known ALL 210 

risk variants from GWAS of European-ancestry populations. PheWAS analyses were then 211 

performed with the UK Biobank GeneATLAS database to test each ALL-associated variant and 212 

control variant for association with 778 traits in the UK Biobank. After determining which traits 213 

were enriched for association with the ALL SNP-set compared to control SNP-sets, we returned 214 

to the GWAS catalog to identify SNPs associated with these traits. Using polygenic score, MR, 215 

and candidate SNP approaches, we examined whether PheWAS-identified traits or trait-216 

associated variants conferred ALL risk, and replicated single-SNP associations in an 217 

independent ALL case-control dataset.  218 

 219 
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Risk variants for PheWAS analysis. Using the GWAS catalog, we identified 12 independent 220 

(R2≤0.15), genome-wide significant (P<5.0x10-8) ALL risk SNPs (Table 1), which all previously 221 

replicated in independent cohorts. Two SNP-sets served as controls for our PheWAS analyses, 222 

including 31 SNPs previously associated with chronic lymphocytic leukemia (CLL) and 48 223 

control SNPs matched to ALL risk SNPs on minor allele frequency, gene density, distance to 224 

nearest gene, and number of SNPs in LD (25). Functional annotation and in silico analysis of 225 

the ALL SNP-set and control SNP-sets demonstrated similar characteristics in terms of impact 226 

on chromatin structure, including promoter and enhancer histone marks, DNAse 227 

hypersensitivity, and impact on regulatory motifs; however, ALL-associated and CLL-associated 228 

SNPs were likelier to be eQTLs (S1 Table).  229 

 230 

UK Biobank PheWAS analyses. We utilized the UK Biobank GeneATLAS database to conduct 231 

a PheWAS for 12 ALL-associated SNPs (S2 Table), 31 CLL-associated SNPs (S3 Table), and 232 

48 matched control SNPs (S4 Table) to test for association with 778 traits. We used the same 233 

PheWAS approach and nominal significance threshold to identify SNP-trait associations (i.e. 234 

P<0.01) for ALL and control SNPs. The proportion of variants in each SNP-set (12 ALL-235 

associated, 31 CLL-associated, 48 matched control) that was associated with a particular 236 

PheWAS trait was compared across groups to ascertain phenotypes enriched for association 237 

with ALL SNPs compared with control SNPs (S5 Table).  238 

We determined that 76 of the 778 traits in the database were nominally associated 239 

(P<0.01) with >1 of the 12 ALL risk SNPs. PheWAS traits significantly associated with >1 ALL 240 

risk SNP were carried forward for enrichment comparisons between ALL and control SNP-sets 241 

(S6 Table). All 76 PheWAS traits compared between SNP-sets are depicted in Figure 2 242 

showing the relative proportion of significant SNP-trait associations in each SNP-set. Platelet 243 

count was the phenotype most enriched for association with ALL risk variants. Specifically, 9 out 244 

of 12 (75%) ALL SNPs were nominally associated with platelet count, compared to 11 of 31 245 
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(35.5%) CLL SNPs (P = 0.047) and 6 of 48 (12.5%) control SNPs (P < 0.001) (Table 2). 246 

Notably, many of the PheWAS-identified traits were enriched for association in the ALL SNPs 247 

compared to the control SNPs, but only 5 traits were significantly enriched for association with 248 

ALL SNPs compared to both control SNPs and CLL SNPs, and platelet count was associated 249 

with the highest proportion of ALL SNPs (Table 2).  250 

 251 

Platelet count polygenic score analyses. Given that platelet count was the trait most enriched 252 

for association with ALL SNPs in PheWAS analyses, we constructed a polygenic score for 253 

platelet count using 287 previously-published variants from a recent GWAS on blood cell indices 254 

(35) (S7 Table). Of these, 223 SNPs were successfully imputed (info score ≥0.60, posterior 255 

probability ≥0.90) in our ALL case-control dataset (959 cases, 2624 controls) and used in 256 

polygenic score construction. The polygenic score for platelet count was not associated with 257 

ALL case-control status in a logistic regression model adjusting for sex and 10 PCs (P=0.819).  258 

 259 

Mendelian randomization analyses. To test for a causal relationship between platelet count 260 

and ALL risk, we used several MR analytical approaches wherein genetic variants are used as 261 

instrumental variables to assess causality in exposure/risk factor associations. Estimates from 262 

IVW (PIVW=0.948), MR-Egger (PMR-Egger=0.857, PMR-intercept=0.912), and median-weighted (PMR-263 

median=0.857) MR methods were non-significant and consistent with the null polygenic score 264 

results. These MR results suggest that platelet count does not mediate ALL risk and that there 265 

is no causal relationship between these two traits. 266 

 267 

Platelet count-associated SNPs as candidate ALL risk loci. To examine whether individual 268 

platelet count-associated variants might have pleiotropic effects on ALL risk, we performed 269 

single-SNP association analyses for 223 platelet count-associated SNPs in 959 ALL cases and 270 

2624 controls (S8 Table). Twelve SNPs were nominally associated (P<0.05) with ALL case-271 
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control status (notably, not more than expected by chance) after adjusting for sex and 10 PCs 272 

(Table 3). The directional effect of platelet count-associated alleles (i.e., increased versus 273 

decreased platelet count) did not correlate with the direction of effect on ALL susceptibility (i.e., 274 

protection versus risk).  275 

 These 12 candidate SNPs were carried forward for evaluation in an independent UK ALL 276 

case-control dataset (1618 cases, 9409 controls). Nine SNPs were successfully genotyped or 277 

imputed in this dataset, of which three associations were successfully replicated at P<5.6x10-3 278 

(i.e. 0.05/9) (Table 4). SNPs had similar magnitudes of effect in the UK ALL case-control and 279 

discovery data. The replicated variants map to 3 distinct genomic loci on 5q31.1, 6p21.31, and 280 

21q22.2 (Table 4). To interrogate these risk loci further, we identified the genes in which these 281 

variants resided and associated genes for which these variants were expression quantitative 282 

trait loci (eQTLs) (28). We found that the 5q31.1 region was adjacent to IRF1, a gene encoding 283 

interferon regulatory factor 1, which regulates host immune responses, including interferon 284 

signaling. The 6p21.31 region includes BAK1, a pro-apoptotic protein known to be disrupted in 285 

adult-onset malignancies. Finally, the 21q22.2 region encodes the hematopoietic transcription 286 

factor ERG, known to be associated with ALL risk in Hispanics and children with Trisomy 21 (i.e. 287 

Down Syndrome) (41, 42).  288 

 289 

Discussion 290 

We provide a novel framework (Figure 1) for leveraging existing GWAS and PheWAS 291 

data to uncover traits associated with known disease risk variants and to identify trait-associated 292 

variants as possible candidate risk loci. We apply this framework to an investigation of ALL 293 

predisposition that combines rich genotype-phenotype data available from the UK Biobank with 294 

ALL case-control analyses. We first identify SNPs associated with ALL using the GWAS 295 

catalog. We then perform PheWAS on these SNPs and control SNP-sets using the UK Biobank 296 

GeneATLAS, identifying platelet count as the trait most enriched for association with ALL risk 297 
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loci. Returning to the GWAS catalog, we identify genetic determinants of platelet count. We then 298 

use a two-stage case-control design (43, 44) to examine whether SNPs associated with platelet 299 

count modify ALL risk, confirming three risk loci near IRF1, BAK1, and ERG.  300 

Potential modifications to this hybrid GWAS-PheWAS approach could be implemented in 301 

future applications based on features of the cancer undergoing analysis and the datasets 302 

available. For cancers with many known GWAS hits (e.g. breast cancer), it may be preferable to 303 

use a more stringent p-value threshold for the PheWAS analysis to streamline subsequent SNP-304 

set enrichment comparisons. Similarly, trait-associated SNPs could be evaluated for their 305 

association with cancer using a more stringent p-value threshold in a one-stage case-control 306 

design when sample sizes are large or when replication sets are unavailable. 307 

We identified platelet count as significantly enriched for association with ALL risk SNPs; 308 

however, our results did not suggest a direct role for platelet count in mediating ALL risk, as the 309 

polygenic score for platelet count was not associated with ALL case-control status. Null results 310 

from MR analyses also support the conclusion that there is no causal relationship between 311 

platelet count and ALL. This indicates that platelet count and ALL may have overlapping genetic 312 

architecture due to pleiotropic loci independently influencing both traits, which appears 313 

reasonable since regulatory variants in hematopoietic transcription factors could influence each 314 

phenotype. This interpretation is supported by our single-SNP association results, identifying 315 

and replicating 3 ALL risk loci using platelet count-associated variants as candidate SNPs. Two 316 

of these ALL risk alleles were associated with higher platelet count (rs10058074 near IRF1, 317 

rs210142 in BAK1), whereas one ALL risk allele was associated with reduced platelet count 318 

(rs2836441 in ERG). In addition to hematopoietic transcription factor genes, pleiotropic variants 319 

in cell-cycle regulators are also candidate modifiers of both platelet count and ALL risk, as 320 

supported by our identification of a shared locus in pro-apoptotic protein BAK1.  321 

The ALL risk SNP that we identify at 5q31.1 (rs10058074) is intronic, but has suggestive 322 

functional significance as a cis-acting eQTL for IRF1, a master transcriptional regulator of 323 
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immune response and oncogenesis (45, 46), as well as for PDLIM4, an F-actin-binding protein 324 

that influences T cell trafficking (47). This is one of the first ALL risk loci found that is related to 325 

“immune response gene elements”, long posited to be important based on a hypothesized 326 

infectious etiology for ALL (11). Interferon immune responses are particularly important for 327 

controlling viral pathogens, which is notable since congenital cytomegalovirus infection was 328 

recently associated with ALL risk (48, 49). Two associated variants at 6p21.31 (rs210142, 329 

rs75080135) are also intronic, but both are cis-acting eQTLs for BAK1 (BCL2 antagonist killer 1) 330 

(50), which encodes a pro-apoptotic protein that is a known CLL GWAS hit (51) and important 331 

for B cell homeostasis (52). Located 6kb apart and both associated with ALL risk in our 332 

discovery analysis, rs210142 and rs75080135 are in only weak LD in 1000 Genomes 333 

Europeans (R2=0.11) and were both associated with ALL risk in UK replication data, although 334 

only the rs210142 association survived Bonferroni correction. The associated SNP at 21q22.2, 335 

rs2836441, is located in the 5’ untranslated region of ERG, a transcription factor from the 336 

erythroblast transformation-specific family that is frequently deleted or alternatively spliced in the 337 

DUX4-rearranged ALL subtype (53). 338 

Since our analyses were completed, the largest ALL GWAS to-date has been published 339 

by Vijayakrishnan and colleagues (54). This meta-analysis of four GWAS totaling 5,321 cases 340 

and 16,666 controls identified 4 novel B-ALL risk loci reaching genome-wide significance (54). 341 

Of these 4 loci, one (9q21.31) was significant for B-ALL risk overall, two (5q31.1, 6p21.31) for 342 

the high-hyperdiploid subtype, and one (17q21.32) for the ETV6-RUNX fusion subtype. Notably, 343 

their 5q31.1 and 6p21.31 risk loci overlap substantially with those identified through our hybrid 344 

GWAS-PheWAS approach. Their lead SNP at 5q31.1 (rs886285), located in C5orf56, is in weak 345 

LD (R2=0.17) with the SNP (rs10058074) discovered through our approach, yet both variants 346 

appear to modulate expression of the master transcription factor IRF1. Compellingly, their lead 347 

SNP at 6p21.31 (rs210143) is only ~100 bases away (R2=0.95) from the SNP identified through 348 

our approach (rs210142), and they too detected multiple signals in BAK1 that implicate 349 
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decreased expression of this pro-apoptotic protein as an important hallmark of leukemogenesis. 350 

The GWAS meta-analysis from Vijayakrishnan and colleagues also confirmed ERG (21q22.2) 351 

as an ALL risk locus in European-ancestry populations, which we and others had previously 352 

identified as a GWAS hit for ALL in Hispanic populations (41, 42), but had been unable to 353 

replicate in European-ancestry populations.  354 

While risk loci at 5q31.1, 6p21.31, and 21q22.2 were very recently associated with the 355 

high-hyperdiploid subtype of ALL at genome-wide significance, our results suggest that these 356 

susceptibility loci may influence ALL risk overall – not just subtype-specific risk – and may also 357 

be broadly involved in non-malignant hematopoiesis. The fact that the same risk loci identified 358 

through a largescale collaborative GWAS and a recent Hispanic ALL GWAS were uncovered 359 

through our combined GWAS-PheWAS methodology, despite our limited sample size, confirms 360 

the utility of the approach we have developed. These results provide further evidence of the 361 

importance of these loci in B-cell ALL and suggests our approach has applicability to the study 362 

of rare malignancies, including childhood cancers.  363 

There are several limitations to our study and valid concerns of our hybrid GWAS-364 

PheWAS approach. One limitation of using the UK Biobank for this study investigating genetic 365 

risk in a pediatric cancer is that the UK Biobank GeneATLAS PheWAS database was 366 

constructed using genetic and EHR data from adults 40-69 years of age. Thus, applying this 367 

approach to rare adult-onset diseases may be more appropriate than for pediatric diseases, as 368 

the overlap between these adult traits and pediatric phenotypes are largely unknown. For the 369 

PheWAS analyses, we used a p-value threshold of <0.01 to carry a SNP-trait association 370 

forward to enrichment analyses, rather than a Bonferroni-corrected threshold (i.e. 0.05/778 371 

traits). While many of the traits in the GeneATLAS are highly correlated (e.g. standing height 372 

and sitting height, BMI and waist-to-hip ratio), cancers that have more than just 12 GWAS hits to 373 

evaluate via PheWAS may benefit from a more stringent threshold. Another significant limitation 374 

of our study was the limited case sample size in our discovery dataset. Because of our limited 375 
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sample size, we implemented a two-stage study design, first screening for nominally-associated 376 

SNPs in our discovery dataset (P<0.05), and then attempting replication in an independent 377 

sample. Despite these limitations, interest in our hybrid GWAS-PheWAS approach for 378 

investigating inherited genetic risk in rare diseases, where traditional approaches remain limited, 379 

appears warranted.  380 

Although multiple GWAS in the past decade have contributed to our understanding of 381 

inherited susceptibility to ALL, there remains significant missing heritability (55). The most 382 

recent and largest ALL GWAS determined that known risk alleles accounted for 31% of the total 383 

variance in genetic risk of ALL (54); thus, there is a need for additional studies investigating ALL 384 

genetic risk loci. A recent review on the benefits and pitfalls GWAS emphasized the need for 385 

novel analytic approaches to enhance our understanding of genotype-phenotype associations in 386 

the post-GWAS era and the utility of large biorepository databases linking EHR and genotyping 387 

data, polygenic scores, and innovative study designs (8). This review also highlighted that, while 388 

increasing GWAS sample size may reveal more associations, new methods for analyzing the 389 

wealth of existing data are essential (8).  390 

One opportunity would be to leverage LD score regression to identify traits associated 391 

with a cancer of interest. Although the sample-size limitations that apply to our study would also 392 

apply to analyses using LD score regression, replacing the PheWAS portion of our methodology 393 

with LD score regression is an intriguing approach for identifying traits with shared genetic 394 

determinants in future applications. In summary, our novel hybrid application of PheWAS 395 

represents a promising approach to investigate inherited genetic risk, especially in childhood 396 

cancers where GWAS remain underpowered and where innovative analytic strategies can help 397 

to decipher complex etiology and guide future prevention and screening strategies. 398 
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Table 1. Summary of previously published genome-wide significant risk loci for B-cell ALL 560 

 561 

Author (year reported) in ALL GWAS  Locus       ALL risk SNP Gene OR (95% CI) 

Trevino LR et al. (2009) 7p12.2 rs11978267 IKZF1 1.69 (1.40-1.90) 

Wiemels JL et al. (2018) 7p15.3 rs2390536 SP4 1.18 (1.11-1.24) 

Wiemels JL et al. (2018) 8q24.21 rs4617118 Intergenic 1.34 (1.21-1.47) 

Xu H et al. (2015) 9p21.3 rs3731249 CDKN2A, CDKN2B 1.63 (1.18-1.56) 

de Smith AJ et al. (2018) 10p12.2 rs10741006 PIP4K2A 1.40 (1.40-1.53) 

de Smith AJ et al. (2018) 10p12.31 rs12769953 BMI1 1.27 (1.20-1.35) 

Migliorini G et al. (2013) 10p14 rs3824662 GATA3 1.31 (1.21-1.41) 

Papaemmanuil E et al. (2009) 10q21.2 rs7089424 ARID5B 1.65 (1.54-1.36) 

Wiemels JL et al. (2018) 10q26.13 rs3740540 LHPP 1.20 (1.15-1.28) 

Vijayakrishnan J et al. (2017) 12q23.1 rs4762284 ELK3 1.19 (1.12-1.26) 

Papaemmanuil E et al. (2009) 14q11.2 rs2239633 CEBPE 1.34 (1.22-1.41) 
Wiemels JL et al. (2018) 17q21.1 rs2290400 IKZF3 1.18 (1.11-1.25) 

 562 

Abbreviations: ALL, acute lymphoblastic leukemia; SNP, single nucleotide polymorphism; GWAS, genome-wide association study; OR, 563 

odds ratio; 95% CI, 95% confidence interval 564 

rsIDs from GRCh37/hg19 build 565 

 566 

  567 
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Table 2. Selected PheWAS traits compared between ALL SNP-set and control SNP-sets for enrichmenta 568 

 569 

UK Biobank PheWAS Trait 
ALL vs. CLL 

SNP-set 
ALL vs. matched 
control SNP-set

b 
UK Biobank PheWAS Trait 

ALL vs. CLL 
SNP-set 

ALL vs. matched 
control SNP-set 

 
P

c
 P

c
 

 
P

c
 P

c
 

platelet count 0.047 <0.001 weight 0.737 0.035 

lymphocyte count 0.191 <0.001 white blood cell count 0.865 0.035 

monocyte percentage 0.033 <0.001 whole body fat mass 0.568 0.004 

monocyte count 0.309 0.002 whole body fat-free mass 0.737 0.035 

neutrophil percentage 0.531 0.001 whole body water mass 0.737 0.035 

platelet crit 0.664 <0.001 asthma 0.815 0.393 

eosinophil count 0.892 0.002 body fat percentage 0.815 0.080 

impedance of whole body 0.103 0.012 body mass index 0.615 0.393 

standing height 0.248 0.039 melanoma/malignant skin neoplasms 1.000 0.028 

basophil count 0.048 <0.001 hematocrit percentage 0.815 0.080 

comparative height (age 10) 0.169 <0.001 hemoglobin concentration 1.000 0.080 

eosinophil percentage 0.956 0.006 hip circumference 1.000 0.080 

neutrophil count 1.000 0.015 chronic rheumatic heart diseases 0.026 0.028 

basal metabolic rate 0.737 0.013 multiple valve diseases 0.026 0.028 

basophil percentage 0.073 0.013 mean reticulocyte volume 0.387 0.393 

lymphocyte percentage 0.583 0.071 mean sphered cell volume 0.156 0.162 

mean platelet volume 1.000 0.124 oily fish intake 0.418 0.080 

platelet distribution width 1.000 0.071 trunk fat mass 1.000 0.080 

sitting height 1.000 0.035 waist circumference  1.000 0.028 

trunk fat-free mass 1.000 0.124 water intake 0.105 0.005 

trunk predicted mass 1.000 0.124 alcohol intake frequency 0.376 0.747 

 570 

Abbreviations: ALL, acute lymphoblastic leukemia; SNPs, single nucleotide polymorphisms; CLL, chronic lymphocytic leukemia 571 

Bold values indicate nominal significance (P < 0.05) 572 

 573 
a Individual SNP-trait associations available in S2 Table (ALL SNP-set), S3 Table (CLL SNP-set) and S4 Table (SNPsnap SNP-set) 574 
b Control SNPs generated using SNPsnap matched to ALL SNPs based on minor allele frequency (±5%), surrounding gene density 575 

(±50%), distance to nearest gene (±50%), and linkage disequilibrium at R2≥0.50 (±50%).  576 
c P value calculated with fisher’s exact test, summary of all 76 PheWAS traits tested for enrichment in S6 Table577 
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Table 3. Multivariate logistic regression of platelet count-associated variants and ALL risk in discovery case-control cohorta 578 
 579 

Locus SNP rsID Effect alleleb EAFc Gene OR
e
 (95% CI) P 

2q32.3 rs7585866 G 0.37 SDPR 0.87 (0.77-0.99) 0.041 

4q24 rs4699154 C 0.72 near TET2d 1.22 (1.06-1.39) 3.80 x 10
-3 

5q31.1 rs10058074 G 0.57 near IRF1d 1.15 (1.02-1.30) 0.023 

6p21.31 rs210142 C 0.73 BAK1 1.17 (1.02-1.33) 0.021 

6p21.31 rs75080135 C 0.24 GGNBP1 1.20 (1.02-1.40) 0.024 

6q23.3 rs1331308 C 0.51 HBS1L 1.17 (1.04-1.32) 0.011 

6q23.3 rs7776054 G 0.27 HBS1L 0.84 (0.73-0.97) 0.016 

7q32.2 rs11556924 T 0.38 ZC3HC1 0.88 (0.77-0.99) 0.034 

12q24.21 rs35427 T 0.60 intergenic 0.87 (0.76-0.98) 0.026 

18q12.3 rs16977972 T 0.17 SETBP1 1.20 (1.01-1.41) 0.034 

21q22.2 rs2836441 G 0.11 ERG 0.81 (0.67-0.96) 0.019 

22q11.21 rs1059196 C 0.66 SEPT5, GP1BB 1.15 (1.00-1.32) 0.044 

 580 

Abbreviations: SNP, single nucleotide polymorphism; EAF, effect allele frequency; OR, odds ratio; 95% CI, 95% confidence interval 581 

Bold values indicate nominal significance (P < 0.05) 582 

 583 
a Multivariate logistic regression adjusted for sex and top 10 ancestry-informative principal components  584 
b Effect allele coded as allele previously associated with increased platelet count from Astle et. al. (35) 585 
c Effect allele frequency in European-ancestry individuals from 1000 Genomes Project  586 
d Neighboring gene located on UCSC Genome Browser 587 
e Odds of ALL associated with each additional copy of the effect allele  588 

Sample size in discovery cohort (959 Children’s Oncology Group cases, 2624 controls); rsIDs from GRCh37/hg19 build589 
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Table 4. Independent replication of ALL risk loci in combined meta-analysis of UK GWAS II and German GWAS 590 

 591 

Locus SNP rsID Effect allele Gene OR (95% CI)c P Pheterogeneity 

2q32.3 rs7585866a G SDPR - - - 

4q24 rs4699154 C near TET2b 0.98 (0.89-1.06) 0.621 0.300 

5q31.1 rs10058074 G near IRF1b 1.15 (1.05-1.26) 8.46 x 10-4 0.625 

6p21.31 rs210142 C BAK1 1.19 (1.10-1.28) 1.20 x 10-4 0.780 

6p21.31 rs75080135 C GGNBP1 1.15 (1.05-1.25) 6.80 x 10-3 0.038 

6q23.3 rs1331308 C HBS1L 0.96 (0.88-1.04) 0.264 0.008 

6q23.3 rs7776054 G HBS1L 1.00 (0.91-1.09) 0.941 0.165 

7q32.2 rs11556924 T ZC3HC1 0.99 (0.90-1.07) 0.749 0.381 

12q24.21 rs35427 T intergenic 1.03 (0.95-1.13) 0.508 0.902 

18q12.3 rs16977972a T SETBP1 - - - 

21q22.2 rs2836441 G ERG 0.85 (0.77-0.94) 5.13 x 10-3 0.733 

22q11.21 rs1059196a C SEPT5, GP1BB - - - 

 592 

Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; 95% CI, 95% confidence interval 593 

Bold values indicate Bonferroni-corrected significance (P < 0.05/9) with concordant direction of effect in replication analyses 594 

 595 
a Data missing since SNPs did not pass quality control filtering in the replication cohort  596 
b Neighboring gene located on UCSC Genome Browser 597 
c Odds of ALL associated with each additional copy of the effect allele, estimates were determined using a fixed-effects model using beta 598 

values and standard errors 599 

Sample size in replication cohort; combined UK GWAS II and German GWAS (1618 cases, 9409 controls) (21); rsIDs from GRCh37/hg19 600 

build 601 
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FIGURE LEGENDS: 602 

Figure 1. Methodology for hybrid analysis of GWAS and PheWAS data. This figure illustrates our 603 

approach for investigating phenotype associations with known disease risk variants in order to identify novel 604 

candidate risk loci and/or intermediate phenotypes for subsequent analysis in case-control cohorts. 605 

Specifically, this figure depicts our application of this approach to acute lymphoblastic leukemia (ALL), 606 

which identified platelet count as a phenotype enriched for association with ALL GWAS hits and 607 

downstream analysis of the role of platelet count-associated variants in relation to ALL risk in a case-control 608 

cohort. Created with Biorender. NHGRI-EBI GWAS catalog diagram attributable to Buniello et. al. (56) 609 

a GWAS catalog (NHGRI-EBI) - https://www.ebi.ac.uk/gwas/ (23, 56)  610 

b PheWAS catalog (UK Biobank GeneATLAS) - http://geneatlas.roslin.ed.ac.uk/phewas/ (29) 611 

c SNPsnap controls (Broad Institute) - https://data.broadinstitute.org/mpg/snpsnap/(25) 612 

d PLINK (genome association analysis toolkit) - https://www.cog-genomics.org/plink2 (36) 613 

Abbreviations: GWAS, genome-wide association study; PheWAS, phenome-wide association study; ALL, 614 

acute lymphoblastic leukemia; SNPs, single nucleotide polymorphisms.  615 

 616 

Figure 2. UK Biobank PheWAS traits in ALL SNP-set versus control SNP-sets. This figure shows the 617 

percentage of ALL-associated (12 SNPs total), CLL-associated (31 SNPs total), and matched control SNPs 618 

(48 SNPs total) that were significantly associated (P < 0.01) with PheWAS traits in the UK Biobank Traits 619 

are depicted in descending order of percentage/proportion associated with ALL SNPs from left to right then 620 

top to bottom. (A) shows the first subset of 38 traits and (B) shows the second subset of 38 traits, since 76 621 

traits total were significantly associated with >1 SNP in the ALL SNP-set, and thus were carried forward for 622 

statistical analysis and enrichment comparisons across SNP-sets (see S5 Table and S6 Table for full 623 

results of proportions and of trait enrichment comparisons between SNP sets). 624 

Abbreviations: PheWAS, phenome-wide association study; ALL, acute lymphoblastic leukemia; CLL, 625 

chronic lymphocytic leukemia; SNP, single nucleotide polymorphism 626 

 627 

 628 
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