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Abstract  

 

Purpose 

Hydrogen peroxide (H2O2) plays a vital role in normal cellular processes but at 

supraphysiological concentrations causes oxidative stress and cytotoxicity, a property that is 

potentially exploitable for the treatment of cancer in combination with radiotherapy (RT). 

We report the first Phase I trial testing the safety and tolerability of intratumoural H2O2 + 

external beam RT as a novel combination in patients with breast cancer, and exploratory 

plasma marker analyses investigating possible mechanisms of action. 

 

Methods and Materials 

12 patients with breast tumours ≥3 cm (surgically or medically inoperable) received 

intratumoural H2O2 with either 36 Gy in 6 twice-weekly fractions (n=6) or 49.5 Gy in 18 daily 

fractions (n=6) to the whole breast +/- loco-regional lymph nodes in a single-centre, non-

randomised study. H2O2 was mixed in 1% sodium hyaluronate gel (final H2O2 concentration 

0.5%) before administration to slow drug release and minimise local discomfort. The 

mixture was injected intratumourally under ultrasound guidance twice-weekly 1h prior to 

RT. The primary endpoint was patient-reported maximum intratumoural pain intensity 

before and 24h post-injection. Secondary endpoints included ≥grade 3 skin toxicity and 

tumour response by ultrasound. Blood samples were collected before, during and at the end 

of treatment for cell-death and immune marker analysis. 

 

Results 

Compliance with H2O2 and RT was 100%. 5/12 patients reported moderate pain following 

injection (grade 2 CTCAE v4.02) with median duration 60min (interquartile range 20-
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120min). Skin toxicity was comparable to RT alone, with maintained partial/complete 

tumour response relative to baseline in 11/12 patients at last follow-up (median 12 

months). Blood marker analysis highlighted significant associations of TRAIL, IL-1β, IL-4 and 

MIP-1α with tumour response. 

 

Conclusions 

Intratumoural H2O2 with RT is well-tolerated with no additional toxicity compared to RT 

alone. If efficacy is confirmed in a randomised Phase II trial, the approach has potential as a 

cost-effective radiation response enhancer in multiple cancer types where locoregional 

control after RT alone remains poor. 

 

Keywords 

Hydrogen Peroxide, Breast Cancer, Radiotherapy, Radiotherapy drug combinations 
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Introduction  

 

Breast cancer presents a global challenge, with an estimated incidence of 2 million 

worldwide, 80% of whom present with locally advanced disease (1,2). In the UK, where 

women with locally advanced disease represent a minority (7-13%) of the 55,000 new 

patient presentations, the lifetime morbidity of progressive local disease is significant (3-6). 

Treatment is challenging in frail or elderly individuals who are unfit for or refuse surgery, 

and for whom RT +/- endocrine therapy is often the most appropriate option for relief of 

breast ulceration, bleeding, and pain. Locally advanced inoperable primary or recurrent 

cancers infiltrating the breast/chest wall and/or axilla, with or without metastases, are 

typically associated with life expectancies measured in years rather than months and 

present significant challenges to patients and medical professionals. This represents an area 

of unmet clinical need, where innovative approaches to enhance response to radiation 

would be highly beneficial. 

 

An interaction at a cellular level between H2O2 and ionising radiation (IR) was first reported 

in osteosarcoma (HS-Os-1) and prostate cancer (PC-3) cell lines, which demonstrated 

extreme resistance to either H2O2 or 30 Gy alone (7,8). The addition of 0.1 mM H2O2 prior to 

IR resulted in enhanced cytotoxicity without causing DNA double strand breaks that 

classically mediate cell killing (9,10). A novel mechanism was postulated to involve 

lysosomal membrane rupture with release of powerful oxidants, including heavy metal ions 

that permeabilise mitochondria and activate apoptosis (11). In vivo use involved a mixture 

of 0.5% H2O2 in 0.83% sodium hyaluronate gel, the Kochi Oxydol-Radiation Therapy for 

Unresectable Carcinomas (KORTUC) strategy designed to minimise local pain at the 
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injection site. Intratumoural injection of this H2O2 gel mixture into murine tumours prior to 

30 Gy IR demonstrated clear evidence of growth delay above that achieved by either 

modality alone. No toxicity was noted (12).  

 

In this study we report the first systematically conducted Phase I trial testing intratumoural 

H2O2 in combination with RT in locally advanced breast cancer (NCT02757651). The primary 

objective was assessment of safety and tolerability of H2O2 injections with moderately 

hypofractionated RT. Secondary endpoints included the proportion of patients requiring 

additional pain medication, incidence of ≥ grade 3 skin toxicity, and tumour response 

assessment. Exploratory analysis of plasma markers was also performed.  

 

Materials and Methods  

 

Study design 

This non-randomised study involved patients with locally advanced or locally recurrent 

breast cancer (with or without metastases) in whom RT was indicated for loco-regional 

disease control. Patients were either inoperable due to comorbidities or local disease 

extent, or else surgery to the breast primary was not appropriate due to presence of 

metastatic disease.  

 

The single centre study was conducted at XXX (CCR4502). Approval by the Research Ethics 

Committee (REC) and the Medicines and Healthcare products Regulatory Agency (MHRA) 

was obtained prior to trial commencement (IRAS 203161, REC 16/LO/1566, EudraCT 2016-
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000833-40). Monitoring was undertaken by the Clinical Trials Unit at XXX. The trial schema is 

shown in Figure 1. 

 

Eligible patients were over 18 years of age, had histologically confirmed breast cancer, and 

required breast RT for local control and/or palliation of loco-regional symptoms. They had at 

least one breast tumour measuring ≥3 cm in diameter in a superficial location accessible for 

injection. Any combination of oestrogen receptor (ER), progesterone receptor (PR) and 

HER2 expression was allowed. Exclusion criteria included prior RT to the breast and 

concomitant biological therapies other than trastuzumab, pertuzumab and denosumab. 

Pregnancy was excluded in female patients of child-bearing age. Patients were excluded if 

the anatomical location of the breast tumour, such as proximity to blood vessels or the 

brachial plexus, precluded safe access for intratumoural injection. This precaution 

minimised the risk of injection into a blood vessel causing embolism, an adverse effect that 

this has not been described in the literature in relation to intratumoural H2O2 (13,14).  

 

Drug formulation 

 

A slow release 0.5% H2O2 solution was created by mixing 0.4 ml of 3% H2O2 (2.0 ml sterile 

ampoules supplied by Stockport Pharmaceuticals, UK) with 2.0 ml OSTENIL® (20 mg sodium 

hyaluronate in a 2.0 ml pre-loaded syringe provided by AAH Pharmaceuticals, UK), the latter 

licensed for intra-articular injection of arthritic joints (15). The low molecular weight of H2O2 

(34 g/mol) ensures rapid equilibration of drug within the gel. The mixture is a colourless, 

viscous solution (pH 6.8-7.8) stored at
 
room temperature and stable for 2 hours following 

preparation, as determined by viscosity measurements (performed by Stockport 
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Pharmaceuticals, UK). The gel allows slow release of H2O2 over at least 24 hours, as 

evidenced by generation of oxygen microbubbles upon injection, a feature that provides a 

strong rationale for twice-weekly administration during RT (16). In the trial, the drug and gel 

were mixed under aseptic conditions using two syringes connected via a 2-way tap. Once 

made up, each syringe contained 2.4 ml of 0.5% H2O2, the contents of both syringes typically 

needed for tumours measuring 30-60 mm in diameter. 

 

Radiotherapy  

 

Six patients received 49.5 Gy in 18 daily fractions of 2.75 Gy, and 6 were treated with 36 Gy 

in 6 twice-weekly fractions of 6 Gy to the whole breast ± locoregional lymph nodes. The 

equivalent RT dose expressed in conventional 2 Gy fractions (EQD2) was 57 Gy and 65 Gy for 

these two schedules respectively (Figure S1). Patients on the 6 Gy twice-weekly schedule, 

requiring lymph node irradiation in addition to the breast, were treated to a total dose of 30 

Gy in 5 twice-weekly fractions of 6 Gy to the nodal regions, in order not to exceed brachial 

plexus tolerance dose (as per standard institutional guidelines). 

 

The RT schedule was selected according to the patient’s performance status and 

comorbidities, with fitter patients selected for the daily treatment schedule. RT was 

delivered using a linear accelerator, with 6-10 MV photons, and 3D-planned using data from 

a CT planning scan, and using standard tangentially opposed fields. Patients were simulated 

and treated in the supine position on a breast board with both arms abducted. The clinical 

target volume (CTV) comprised the entire ipsilateral breast, including the deep fascia, but 

excluding underlying muscle or overlying skin (when not involved with disease). The RT dose 
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was prescribed to the 100% isodose, ensuring the target volume was within the 95%-107% 

isodose lines. Organs at risk including the heart, lung and contralateral breast were outlined 

and standard guidelines for dose tolerances followed. A standard treatment verification 

protocol was used, consisting of daily imaging for the first 3 days, and subsequent weekly 

imaging. In cases where there was skin involvement by tumour, treatment included 5 mm 

wax bolus throughout RT to maximise dose to skin, in keeping with standard practice. In 

patients treated with 49.5 Gy in 18 fractions, a sequential boost dose to the tumour bed 

(13.35 Gy in 5 daily fractions using mini-tangential opposed beams or a directly applied 

electron beam) was allowed, but this needed to be declared at time of trial entry. A tumour 

bed boost dose increased the EQD2 to that comparable with 36 Gy in 6 fractions and with 

dose intensities previously reported in earlier patient cohorts treated with the same drug 

preparation (17,18). 

 

Intratumoural injections of H2O2 in sodium hyaluronate gel  

 

Transdermal intratumoural KORTUC injections were administered twice-weekly 

commencing in the second calendar week of RT. Each patient received 4 to 6 doses in total 

(median = 5 injections), the smaller number given to patients prescribed 6 fractions. The 

rationale for starting KORTUC in the second week was to allow for reduction in tumour 

interstitial pressure during the first week of RT, enabling technically easier and more 

tolerable injections for the patient. Injections were performed (23-gauge needle) under 

ultrasound (US) guidance by a trained radiologist or radiographer after 0.5% lignocaine 

injection to anaesthetise the skin. For tumours measuring 30-60 mm in size, two syringes 

(4.8 ml) of 0.5% H2O2 in sodium hyaluronate gel was injected at each time point. Three 
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syringes (7.2 ml) were required for tumours >60 mm in size. Uniform and accurate delivery 

under US guidance via 2-3 differently angled needle tracks was aided by the immediate 

appearance of oxygen microbubbles as H2O2 degraded to oxygen and water within the 

tumour (see Figure 2A). The needle tip was positioned at the deepest aspect of the tumour 

and the gel released slowly whilst withdrawing the needle towards the surface. For smaller 

tumours, it was possible to achieve even distribution of the H2O2 gel mixture within the 

tumour via a single skin puncture site and by altering the angle of the needle (working from 

left to right or top to bottom within the tumour). For some larger tumours (for example > 60 

mm) it was necessary to inject the tumour via more than one skin entry point from different 

directions to ensure even distribution of oxygen microbubbles throughout the tumour 

volume. The number of needle tracks within the tumour and skin entry points were decided 

by the radiologist during the ultrasound scan, and guided by the extent and distribution of 

oxygen microbubbles during the injection procedure. If any gel tracked back to the skin 

surface upon withdrawal of the needle it was promptly wiped away with sterile gauze. If 

patients had >1 distinct tumour in the breast/axilla, the clinician/radiologist was required to 

clearly document the injected lesion (usually the largest) to aid response assessment. RT 

was delivered within 1-2 hours after H2O2 injection.  

 

Treatment monitoring  

 

Within each RT group (daily or twice-weekly fractions), a minimum gap of 1 week was 

stipulated between the first and second patient, during which acute toxicity data associated 

with intratumoural injections (pain, skin toxicity, and tumour lysis) was reviewed by an 

Independent Data Monitoring Committee (IDMC). Based on predetermined criteria, the 
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second and third patients in each group and subsequently the fourth, fifth and sixth patients 

in each group were allowed to be treated concomitantly.  

 

Primary endpoint 

 

This related to the timing, severity and duration of pain post-injection recorded via a self-

reported questionnaire completed by patients at home. An 11-point numerical scale ranging 

from 0 (“no pain”) to 10 (“worst possible pain”) recorded severity and duration prior to and 

over 24 hours after each H2O2 injection (Figure S1). Patient-reported scores were used to 

calculate i) the proportion of patients with pain scores ≥5 points above baseline after any of 

the intratumoural injections, and ii) the requirement for additional pain medication.  

 

Secondary endpoints 

 

Secondary endpoints included acute RT-induced skin toxicity, serum biochemistry and 

tumour response. Skin toxicity was assessed weekly in all patients during and for 4 weeks 

after RT by a member of the clinical team. Standardised proformas recorded the degree of 

erythema and desquamation of the skin of the breast. In each of the RT groups, if 

�� ���� �ℎ	� one of the first 3 patients had a persistent CTCAE (v4.02) skin toxicity ≥ grade 

3 six weeks after RT, the IDMC allowed recruitment to continue for a further 3 patients 

within that RT schedule. If moist desquamation was seen beyond skin folds, weekly 

assessments were continued until severity reduced to ≤ grade 1. The proportion of patients 

with ≥ grade 3 skin toxicity at any time from the start of RT to 4 weeks post-RT, and the 

worst grade of skin toxicity reported from the start of RT to 4 weeks post RT were recorded 



10 

 

in these cases. However it was recognised that if cancer infiltrated skin, patients would 

typically experience ≥ grade 3 skin toxicity after RT alone. 

 

In every patient, routine biochemistry including serum potassium, calcium and uric acid 

were measured 2 days after the first H2O2 dose to rule out tumour lysis prior to proceeding 

with subsequent doses (19).   

 

Tumour response was assessed at 3, 6, and 12 months post-treatment. At each timepoint 3-

dimensional US measurements were obtained and the tumour volume calculated on the 

assumption that breast tumours assume a hemi-ellipsoid shape, as previously demonstrated 

(20). Maximum tumour dimension alone was not considered an accurate representation of 

tumour response especially when tumours ‘flatten’ following radiotherapy. Tumour volumes 

were compared against pre-treatment measurements applying RECIST-like principles, with 

complete response (CR) defined as disappearance of the target lesion, partial response (PR) 

as at least a 30% reduction in tumour volume, and stable disease (SD) as less than a 30% 

reduction or 20% increase in tumour volume.  

 

Statistical considerations 

 

Based on the previously published data, 30-100% patients experienced pain described as no 

worse than ‘mild’ (or CTCAE grade 1) for several hours following injection (17,21-23). A 

single case of tumour lysis syndrome (mild) was reported in a total of 139 breast cancer 

patients in the Japanese literature. Given this knowledge of the safety of H2O2 plus RT, the 
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Phase I trial required 12 patients to be recruited. Patients treated with once-daily and twice-

weekly fractions of RT were analysed as a single stratum and the study population defined 

as all patients who registered for the trial and received at least one dose of intratumoural 

H2O2. Tumour volumes were calculated using 3-dimensional measurements obtained from 

US scans. 

 

Plasma Markers  

 

Blood samples were obtained pre-RT and at the end of the first and last weeks of RT. Blood 

(two 9 ml K3-EDTA tubes) was obtained by venepuncture and processed within 30 minutes. 

Plasma and buffy coat were isolated by centrifugation at 1600 x g for 10 minutes at room 

temperature and frozen in aliquots at -80°C. All the plasma samples subsequently 

underwent one freeze-thaw cycle prior to assay. 

 

ELISA and Luminex Assay 

 

Frozen plasma samples were thawed on ice and brought to room temperature. They were 

spun at 10000 x g for 10 minutes and the plasma supernatant assayed either by ELISA or 

Luminex assay as per manufacturers’ protocols. Results were measured against a normal 

plasma control obtained from a healthy donor (Cambridge BioScience Ltd). The absorbance 

for ELISA was obtained using a POLAR star Omega plate reader spectrophotometer (BMG 

LABTECH). The Luminex Human XL Cytokine Discovery Panel (15-plex, #FCSTM18-15, R&D 

System) was carried out with a minimum of 100 events per bead using a Luminex 200 

system with xPONENT v3.1 software (Millipore). The plasma samples were assayed in 

duplicate wells for individual targets at their corresponding time-points (pre-RT, end of first 



12 

 

week of -RT and post-H2O2 + RT) and the log2 fold change calculated. Further information 

regarding the ELISA and Luminex analytes, their dilutions and kit details used in this study 

are provided in Table S1.  

 

Exploratory translational endpoints  

 

Exploratory analyses of plasma biomarkers of cell death, inflammation, and immune 

response were conducted to test feasibility of investigating novel mechanisms of action and 

biomarkers of response in trial patients. A linear mixed effect model was used to model the 

random effect of longitudinal data that the markers generated (24). The model was built to 

study the effect of each marker, and to quantify its significance in terms of association with 

tumour shrinkage over time. The difference between individual and temporal variability was 

treated as random effect. The impact of each marker was regarded as a fixed effect. The 

model used was: 

 

Tumour_volume = marker + time + marker: time + random_effect (time) 

 

The ‘:’ colon sign denotes the variation of each plasma marker with time. Each marker was 

used to fit a mixed model individually with all patient samples and 20 models were fitted in 

total. A p-value for the coefficient of each marker was calculated to indicate whether the 

fixed effect had significance (at the 5% level). All graphs were generated using Graphpad 

Prism v8.1 (Mac OS), Graphpad Software, La Jolla California USA. 
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Results 

 

Patient characteristics 

 

Patient demographics, tumour characteristics, prior treatment and RT target volumes are 

summarised in Table 1. 13 patients (11 female, 2 male) were recruited to the study between 

February 2017 and August 2018. All patients had locally advanced or recurrent breast 

cancer, and were inoperable due to co-morbidities, local extent of disease or metastatic 

disease. One patient withdrew due to clinical deterioration unrelated to the trial before 

starting RT and received no H2O2, so an additional (13
th

) patient was recruited. Median age 

was 77 years (range 45-93). Three patients were wheelchair-bound due to co-morbidities 

and frailty. Breast tumour stage was T2 in 5/12 patients and T4 in 7/12 patients. 6/12 had 

N0 and 6/12 N1 disease (axillary node involvement). 8/12 patients had distant metastases. 

Breast tumour size varied from 30 mm to 164 mm (maximum dimension). 10 patients had 

ER+/HER2- disease and 2 had triple negative disease. There were no patients with 

inflammatory breast cancer. All patients had received 1-4 previous lines of treatment for 

their breast cancer, and the majority had progressed on prior systemic treatment. Three 

patients had prior surgery for breast cancer, but had locally recurrent disease. During RT, 

7/12 patients continued taking concurrent endocrine therapy and 2/12 continued 

bisphosphonate therapy for metastatic bone disease.  

 

Compliance with treatment protocol and follow-up 

 

Compliance with H2O2 injections was 100% in all patients, including 1 with needle phobia. All 

patients received RT within the prescribed 1-2 hours of receiving the H2O2 injection, with a 



14 

 

single exception of a patient given 1 RT fraction before H2O2 injection in error. Results are 

reported at a minimum follow-up of 12 months for all patients alive at the time of reporting 

(range 2-24 months). 11 patients completed 12 months follow up, and the twelfth died of 

rapidly progressive metastatic disease just under 2 months following RT.  

 

Primary endpoint 

 

The pain scores are summarised in Table 2, with respective grades detailed in Figure S1 (iii). 

3/12 patients experienced grade 1 (mild) tumour pain post injection, and 5/12 experienced 

grade 2 pain (moderate severity, limiting activities of daily living) as per CTCAE v4.02 (25). 

The remainder did not report any additional pain following intratumoural injection. Median 

pain duration was 60 minutes with an inter-quartile range of 20-120 minutes.  

 

4/12 patients reported pain ≥5 points above baseline during treatment. One patient was 

taking opiate analgesia (oral morphine) prior to starting radiotherapy to control pain 

resulting from a fungating breast tumour. 6/12 patients required additional analgesia to 

manage their symptoms (paracetamol and codeine-based). In these cases, management 

included ensuring compliance with pre-existing painkillers and optimising analgesia +/- 

anxiolytics for the remainder of their treatment.  

 

Secondary endpoints 

 

Skin toxicity and tumour lysis 
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The highest grade of skin toxicity reported was grade 3 in 5/12, grade 2 in 4/12 patients, 

grade 1 in 1/12, and grade 0 in 2/12 patients (Table 2 and Figure S1 (iv)). All 5 patients who 

experienced grade 3 skin toxicity had been treated with bolus during radiotherapy (due to 

skin involvement by tumour). There was no suggestion of enhancement of erythema due to 

local leakage of H2O2. The acute radiation skin toxicity observed in the trial was comparable 

to that expected with standard RT alone, including in patients with cancer infiltrating 

overlying skin (26). There were no cases of tumour lysis syndrome.  

 

Tumour response 

 

Figure 2B (i) and Table S2 detail the tumour response based on US measurements at 

successive time-points post-treatment. At the last imaging assessment percentage tumour 

volume reduction was between 50 and 100% as shown in Figure 2B (ii). All evaluable 

patients in this study maintained loco-regional control in the irradiated target lesion at last 

clinical follow-up (median 12 months, range 2-24 months). Patient 12 died of metastatic 

disease 6 weeks after RT and was not evaluable at the 3-month endpoint for tumour 

response. 

 

As an illustrative example Figure 2C shows tumour extent in patient 10 pre-RT and 12 

months post-treatment (patient maintained CR at 18 months). Only 1/12 patients had >1 

distinct tumour lesions within the RT treatment volume. In this patient only the tumour 

injected with H2O2 showed maintained PR at 12 months, whereas the 2 lesions receiving the 

same RT alone showed stable disease (the non-injected lesions acting as internal controls). 

With regards to tumour response assessment, there were discrepancies in 2 patients 
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between US and clinical response assessments (Table S2). In patient 9, US measurements 

between 6 and 12 months suggested an increase in tumour size despite an excellent partial 

response on clinical examination. Radiology review of the US images at 12 months post-

treatment indicated changes consistent with fibrosis rather than active tumour. Similarly, 

patient 8 demonstrated a complete response on clinical assessment at 12 months, despite 

the presence of stable measurable disease on US. A staging PET/CT scan performed 

concurrently confirmed complete metabolic response in the H2O2 + RT-treated breast 

tumour, as shown in Figure 2D.  

 

Exploratory secondary endpoint (post-hoc analysis) 

 

10/12 patients consented to provide blood for research at the time points shown in Figure 

3A. The exploratory target panel for ELISA and Luminex assays comprised 21 markers 

involved in cell death, the immune checkpoint, chemo-attraction, immune regulation and 

angiogenesis (Table S3). Log2 transformed fold change of targets normalised to their 

baseline (pre-RT) expression were plotted for all patients, comparing levels after RT alone 

(at the end of 1
st

 week of treatment) and after H2O2 + RT (end of treatment) (Figure 3B and 

Figure S3). There was no consistent trend when comparing RT alone versus H2O2 + RT in this 

small exploratory cohort. However, upregulation of markers involved in inflammation, 

immune modulation and Damage Associated Molecular Patterns (DAMPs) was noted (27). 

Application of a linear mixed effect model identified four significant (p<0.05) associations 

with tumour shrinkage, suggesting TRAIL mediated apoptosis with increased activated T-cell 

signaling (IL-4, MIP-1α) and macrophage stimulation (IL-1β) (Figure 3C and Table S4). 

 



17 

 

Discussion 

 

This Phase I study raised no concerns relating to local or systemic toxicity when 

intratumoural H2O2 is delivered with RT doses per fraction up to 6 Gy in patients with locally 

advanced primary or recurrent breast cancer unsuitable for primary surgery or palliative 

debulking. The intervention is well tolerated even by the frail, older patients and those with 

needle phobia. In those patients with pre-existing pain symptoms, it was important and 

straightforward to optimise pain medication prior to starting treatment.  

 

Commencing H2O2 injections in the second calendar week of radiotherapy ensured that there 

were no technical challenges (i.e. resistance due to tissue turgor) to injecting the prescribed 

volume of drug in any of the patients. Given that H2O2 breaks down to O2 within the tumour 

(2 molecules of H2O2 degrade to 1 molecule of O2 and 2 molecules of water), it is 

hypothesised that this may contribute to reoxygenation of hypoxic areas, thereby alleviating 

radiation resistance. Therefore, aside from the classical DNA damage effects, another 

mechanism of synergy between H2O2 and RT may result from reoxygenation. This is currently 

being investigated in the laboratory setting. In tumours that do not reoxygenate 

spontaneously during fractionated RT, H2O2 is expected to be most effective after the 

second week of RT, where such tumours are likely to be enriched with hypoxic 

radioresistant subpopulations (28-30) .  

 

Acute skin toxicity was no different to that expected after the same RT alone. As predicted, 

grade 3 radiation dermatitis occurred only in those patients with tumour involving skin, when 
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a 5 mm layer of wax ‘blanket’ ensured 100% prescribed RT dose to skin instead of 

approximately 70% of prescribed dose in patients without skin involvement (31). Grade 3 

skin desquamation managed with standard supportive measures including barrier creams 

and dressings ensured complete resolution of symptoms in every case. Overall, toxicity and 

tolerability were entirely consistent with extant literature, and these Phase I data will 

contribute to an application for regulatory approval if the planned randomised Phase II study 

confirms efficacy. 

 

In view of the limitations of US in response assessment, MRI has been selected as the 

imaging modality to monitor tumour response in the forthcoming Phase II trial. In patients 

with locally advanced breast cancers treated with radiotherapy alone at equivalent doses to 

those used in this study, local control rates would be expected to be 45-57% at 3 years post-

treatment, with lower rates associated with larger tumours (32,33). Although it is impossible 

to draw conclusions on efficacy in this Phase I trial, anecdotal tumour responses are 

suggestive of enhanced anti-tumour effect. Since lifetime control of symptomatic locally 

advanced breast cancer is a major determinant of patient quality of life as well as 

survivorship, there is potential for an effective treatment to be globally beneficial, where 

women with inoperable breast cancer often have limited access to effective treatment 

(34,35). Intratumoural H2O2 injections are inexpensive and easy to administer, requiring 

minimal additional training and infrastructure. 

 

Our study has also established that circulating plasma markers can be successfully 

quantified using the ELISA and Luminex platforms, providing insights into mechanisms of cell 
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death following treatment. IR and H2O2 induce ROS, inflammatory signaling, DNA damage, 

senescence and cell death. In addition, IR can modulate the immuno-inflammatory axis 

through the generation of ROS and DAMPs (36). The wide range of potential mechanisms of 

interaction informed the choice of 21 markers in our exploratory panel.  

 

The effect of H2O2 within the cell is concentration dependent; having a role in signalling and 

homeostasis at nanomolar concentrations (nM) and triggering cell death at 

supraphysiological (mM) concentrations (37). The physiological outcome within the cell is 

modulated by antioxidant enzymes such as catalases, peroxidases and thioredoxin-linked 

systems (38). By affecting protein kinases and phosphatases, H2O2 influences a number of 

signaling cascades including ERK, JNK, MAPK, p38, TNFα, NFκB, IL-1β, IL-6, IL-8, MCP-1 and 

MIP (37,39,40). Several publications have demonstrated apoptosis as the principal mode of 

cell death following H2O2 treatment (11,41-43). The intrinsic mitochondrial pathway is 

thought to be the predominant mechanism of apoptosis (44). One study reported apoptosis 

induction following exposure to H2O2 levels <0.4 mM and upregulation of RIP, a gene 

associated with necrosis, at higher concentrations (45). Exposure to H2O2 can result in 

increased expression of inflammatory cytokines (46). IL-1 is a key mediator of T-cell and 

dendritic cell (DC) function. Increased IL-1α levels occur in cells undergoing necrosis, 

whereas IL-1β signals towards apoptosis (47,48). Another study reported that treating 

murine splenic T-cells with H2O2 resulted in a significant increase in IL-4 production, a key 

regulator of humoral and adaptive immunity (49). Both IL-1β and IL-4 were significantly 

associated with tumour shrinkage in our study. 
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In our plasma analysis, a significant association between TRAIL and tumour shrinkage was 

also found. Intracellular ROS such as H2O2 are thought to mediate apoptosis via death 

receptor ligands such as TRAIL (44). A study in an astroglial cell line demonstrated an 

increase in TRAIL gene expression in cells treated with H2O2 in a dose-dependent manner up 

to a concentration of 0.8 mM (50). TRAIL-dependent apoptosis regulates the priming of 

CD8
+
 memory T-cells by CD4

+
 TH1 cells (51). In a study using a murine macrophage cell line 

(B10R), exposure to H2O2 increased the transcription of the chemokines MIP-1α, MIP-1β, 

MIP-2 and MCP-1 (52). MIP-1β was undetectable in 7/10 patients but MIP-1α expression 

was detected to a varying degree in all cases, suggesting activation of CD8
+
 T lymphocytes. 

In summary, the analyisis of blood biomarkers showed correlations with clinical tumour 

response and suggest an inflammatory/immune response associated with apoptotic cell 

death. These mechanisms of action are potentially relevant to an interaction between IR 

and drug. However, in this cohort, all of whom received H2O2 + RT, it is difficult to 

distinguish the contribution of H2O2 over and above that of RT alone. The plasma analyses 

have been valuable in informing the selection of markers to investigate in a subsequent 

trial.  

 

In conclusion, the results from this Phase I trial confirm intratumoural H2O2 in combination 

with RT is a safe and simple intervention with the potential for high global impact if efficacy is 

confirmed in the forthcoming randomised Phase II trial. Proof of concept in breast cancer 

could lead to rapid evaluation in other challenging and accessible primary sites, including 

cancers of the head and neck, cervix uteri and soft tissue sarcomas, where loco-regional 

control with RT alone is poor. 
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Figure Legends 

 

Figure 1. Phase I trial schema 

A non-randomised study design testing intratumoural H2O2 in sodium hyaluronate gel in 

combination with two radiotherapy fractionation schedules in patients with locally 

advanced breast cancer, and corresponding follow up schedule. #- radiotherapy fraction; 

US- ultrasound; RT- radiotherapy. 

 

Figure 2. Intratumoural H2O2 administration and tumour response  

(A) Sequence of ultrasound images of a breast tumour showing H2O2 administration, red 

arrow indicating (i) Needle entering under ultrasound guidance (ii) H2O2 + sodium 

hyaluronate gel mixture being injected intratumourally (iii) Breakdown of H2O2 with 

formation of echogenic oxygen microbubbles (white) within the tumour (B) Tumour volume 

changes (i) Box plot showing the cumulative fold decrease (log2 transformed) for all 12 

patients, at the indicated time points post-RT (ii) waterfall plot showing % tumour volume 

change up to 12 months post-RT normalized to baseline tumour measurement (data 

represent tumour measurements at  9 and 12 months post-RT for 3 and 8 patients 

respectively). (C) Clinical photographs of patient 10 (i) Left breast with fungating tumour 

(baseline) (ii) 12 months post-treatment with H2O2 + RT. (D) 
18

F-FDG PET scans of patient 8 

(i) High tracer uptake in left breast tumour at baseline (ii) Complete metabolic response at 

12 months post-treatment. 

 

Figure 3. Analysis of Phase I trial plasma markers 
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(A) Scheme showing clinical imaging and blood sampling performed in this study. #-

radiotherapy fraction (B) Box & Whisker plot depicting log2 transformed fold change of 

analysed targets from individual patients. Values are normalized to their baseline expression 

for all 21 targets. (C) Plot shows the significant markers associated with tumour volume 

shrinkage, with multi-comparison adjusted p-value < 0.05. The bar shows the fixed effect of 

each marker with error bars, ranked by p values. A negative coefficient means that the 

marker is positively correlated with tumour shrinkage.  

 
Table Legends 

 
Table 1.  Summary of patient demographics, tumour characteristics, previous lines of 

treatment and RT treatment volumes. Patients 1, 3, 4, 5, 11 and 13 received 36Gy/6 

fractions, and 2, 6, 8, 9, 10 and 12 received 49.5Gy/18 fractions. *Performance status 

(Eastern Cooperative Oncology Group) 

 

Table 2.  Summary of pain scores and RT acute skin toxicity scores 

Pain intensity scored from 0-10 via patient self-assessment questionnaires (median 

calculated from difference in pain score pre- and post-H2O2 injection for each patient 

throughout treatment course (4-6 injections in total for each patient)); RT acute skin toxicity 

scored from 0-5 using CTCAE V4.02 by clinicians 

*patient with needle phobia; 
¶
patient had significant breast pain prior to H2O2 injection and 

poor compliance with analgesia; ¥ patient with significant breast pain and was taking opiate 

analgesia prior to RT, explaining the pain score of 0. ADL – Activities of daily living.  

 



 

 

 

Patient Age Sex 

PS* 

(ECOG) 

 

Baseline 

TNM 

stage 

Tumour 

Phenotype 

Prior treatment 

(no. of lines of 

therapy) 

RT target 

volume 

1 77 F 1 T2N1M1 ER
+
/HER2

-
 

Endocrine(3) 

 

Breast + axillary 

LN levels I-IV 

2 69 F 0 T4N0M1 ER
+
/HER2

-
 Endocrine(2) Breast 

3 79 F 3 T4N0M0 ER
+
/HER2

-
 Endocrine(3) Breast 

4 80 M 2 T4N0M0 ER
+
/HER2

-
 Endocrine(2) Breast 

5 89 F 3 T2N0M0 ER
+
/HER2

-
 Endocrine(1) Breast 

6 78 F 2 T4N1M1 ER
+
/HER2

-
 

Endocrine(2) 

Chemotherapy(1) 

Breast + axillary 

LN levels I-IV 

8 53 M 0 T2N0M1 ER
-
/HER2

-
 

Surgery 

Endocrine(3) 

Chemotherapy(4) 

RT (contralateral) 

Breast 

9 53 F 2 T2N1M1 ER
+
/HER2

-
 

Surgery 

Endocrine(3) 

Chemotherapy(2) 

RT (contralateral) 

Breast + axillary 

LN levels I-IV 

10 45 F 0 T4N1M1 ER
+
/HER2

-
 

Chemotherapy(1) 

 

Breast + axillary 

LN levels I-IV 

11 75 F 3 T4N1M1 ER
+
/HER2

-
 

Surgery 

Endocrine(3) 

 

Breast 

12 45 F 1 T4N1M1 ER
-
/HER2

-
 Chemotherapy(2) 

Breast + axillary 

LN levels I-IV 

13 93 F 3 T2N0M0 ER
+
/HER2

-
 None Breast 

 
 

Table 1.  Summary of patient demographics, tumour characteristics, previous lines of 

treatment and RT treatment volumes. Patients 1, 3, 4, 5, 11 and 13 received 36Gy/6 fractions, 

and 2, 6, 8, 9, 10 and 12 received 49.5Gy/18 fractions. *Performance status (Eastern 

Cooperative Oncology Group). 



 

 

 

Patient 

number 

Maximum pain 

intensity Extra 

analgesia 

required 

Median 

difference in 

pain score 

(pre- and post 

RT) 

Effect of pain 

on ADLs 

Maximum 

RT acute 

skin toxicity 

score 

Bolus 

during 

RT Score Period 

1 4 2 hrs N 3 
Y- housework, 

shopping 
3 Y 

2 0 0 mins N 0 N 3 Y 

3 3 30 mins N 2.5 N 2 N 

4 4 30 mins Y 0.5 N 2 N 

5 0 0 mins N 0 N 0 N 

 6* 10 6 hrs Y 5 N 1 N 

 8
†
 10 6 hrs Y 6 Y-driving 2 N 

9 6 5 hrs N 4 N 2 N 

10 8 2 hrs Y 7 Y-housework 3 Y 

11 0 0 mins N 0 N 3 Y 

 12
‡
 0 0 mins Y 0 N 3 Y 

13 6 1 hr Y 5 N 0 N 

 

 

 

Table 2.  Summary of pain scores and RT acute skin toxicity scores 

Pain intensity scored from 0-10 via patient self-assessment questionnaires (median calculated 

from difference in pain score pre- and post-H2O2 injection for each patient throughout 

treatment course (4-6 injections in total for each patient)); RT acute skin toxicity scored from 

0-5 using CTCAE V4.02 by clinicians 

*patient with needle phobia; †patient had significant breast pain prior to H2O2 injection and 

poor compliance with analgesia; ‡patient with significant breast pain and was taking opiate 

analgesia prior to RT, explaining the pain score of 0. ADL – Activities of daily living.  



Patients consented  

(n=13)

Before Radiotherapy

Baseline US tumour measurement

Biochemistry (Serum potassium, calcium, uric acid)

Blood for research (optional)

Withdrew due to 

clinical deterioration

(n=1) Treatment

H
2
O

2
 + Radiotherapy

(n=12)

49.5 Gy / 18# daily + twice weekly

H
2
O

2
 injections starting week 2 (n=6)

Blood test: end of 1st and last week of RT

Pre- and post-injection pain questionnaires

36 Gy / 6# twice weekly + twice weekly 

H
2
O

2
 injections starting week 2 (n=6)

Blood test: end of 1st and last week of RT

Pre- and post-injection pain questionnaires

Follow up

Skin toxicity weekly during RT and for 4 weeks post-RT

Tumour control: Clinical assessments 3-monthly x 24 months

US 3, 6, 12, 18 and 24 months

Figure 1
















