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ABSTRACT  

A clinical oncolytic herpes simplex virus (HSV) encoding GM-CSF, talimogene 

laherparepvec, causes regression of injected and non-injected melanoma lesions in 

patients and is now licensed for clinical use in advanced melanoma. To date, limited 

data is available regarding the mechanisms of human anti-tumor immune priming, an 

improved understanding of which could inform the development of future 

combination strategies with improved efficacy.  This study addressed direct oncolysis 

and innate/adaptive human immune-mediated effects of a closely related HSV 

encoding GM-CSF (HSVGM-CSF), alone and in combination with histone deacetylase 

inhibition. We found that HSVGM-CSF supported activation of anti-melanoma immunity 

via monocyte-mediated type I interferon production, which activates NK cells, and 

viral maturation of immature dendritic cells (iDC) into potent antigen presenting cells 

for cytotoxic T lymphocyte (CTL) priming.  Addition of the histone deacetylase 

inhibitor, valproic acid (VPA), to HSVGM-CSF treatment of tumor cells, increased viral 

replication, viral GMCSF production and oncolysis, and augmented the development 

of anti-tumor immunity.  Mechanistically, VPA increased expression of activatory 

ligands for NK cell recognition, and induced expression of tumor-associated 

antigens, thus supporting innate NK cell killing and CTL priming.  These data support 

the clinical combination of talimogene laherparepvec with histone deacetylase 

inhibition to enhance oncolysis and anti-tumor immunity. 
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INTRODUCTION  

Oncolytic viruses (OVs) are naturally occurring or genetically-engineered viruses 

with specific anti-tumor effects, mediated both by direct oncolysis and the activation 

of innate and adaptive anti-tumor immunity.  A range of OVs have progressed to 

clinical studies, and some viruses (e.g. herpes simplex, vaccinia and reovirus) have 

reached evaluation in randomised clinical trials (1).  The most clinically advanced 

agent (approved for use in the US, Europe and Australasia) is a genetically-modified 

double-stranded DNA herpes simplex virus (HSV; JS-1 strain) called talimogene 

laherparepvec (T-Vec).  This virus has been rendered tumor selective through 

functional deletion of ICP34.5; further deletion of ICP47 enhances antigen 

presentation and brings the viral US11 gene under the control of the ICP47 

immediate-early promoter, enhancing tumor-selective replication (2).  In addition, the 

ICP34.5 gene has been replaced with a cassette encoding human GM-CSF to 

facilitate priming of an anti-tumor immune response (3), and an initial clinical report 

has confirmed that the virus can convert an immunologically suppressive, ‘cold’ 

tumor microenvironment (TME) into an immune-activating ‘hot’ milieu (4).  Hence, T-

Vec has a dual mode of action, causing direct tumor cell lysis and bystander 

activation of an anti-tumor immune response. 

Following a phase I study demonstrating acceptable toxicity (5), phase II testing of 

intratumoral T-Vec, in patients with advanced melanoma, resulted in a 26% 

response rate with durable responses observed in both injected and uninjected 

lesions (6).  Distant responses suggested generation of anti-tumor immunity, which 

was consistent with experiments showing an increase in melanoma-associated 

antigen-specific T cells and a decrease in regulatory/suppressive T cells in tumors 

after treatment (7).  This encouraging clinical trial data led to a randomised phase III 



4 
 

study in melanoma, comparing intratumoral injection against subcutaneous GM-CSF 

(8), which achieved its primary endpoint of durable response rate (9).  Early clinical 

trials also demonstrated that T-Vec was present in the blood and uninjected lymph 

nodes, as well as the injected tumor (5,10), suggesting that viral systemic immune 

activation, and priming instigated within the directly targeted TME, may play an 

additional role in bystander immune-mediated therapy.  Randomised trials, testing 

combination of T-Vec with immune checkpoint inhibitors in melanoma, have now 

been completed, with early results showing significant promise (4,11).   

Despite this clinical progress, pre-clinical data on the mechanisms responsible for 

the therapeutic potential of T-Vec is relatively limited, and further information would 

inform the development of future combination therapies.  One promising strategy is 

to combine OV with histone deacetylase (HDAC) inhibitors (HDACi) which regulate 

chromatin structure and gene transcription.  Histone acetylation is regulated by the 

opposing actions of histone acetyltransferases (HATs), which mediate the 

acetylation of histone residues allowing gene transcription, whilst HDACs remove 

acetyl groups, allowing the negatively charged DNA to bind the nucleosome, acting 

as transcriptional repressors.  HDACs are classified based on their sequence 

homology and structural similarity providing four different sub classes: class I HDACs 

(HDAC 1, 2, 3, and 8), class II HDACs (HDAC 4, 5, 7, 9, and 10), class III HDACs 

(sirtuins), and the class IV HDAC (HDAC11).  High expression of class I and II 

HDACs have been associated with poor patient outcomes and HDACi have been 

developed as anticancer agents. HDACi induce a diverse range of biological 

responses in tumors including apoptosis, suppressed proliferation of malignant cells, 

inhibition of angiogenesis, and immunomodulation (12-15).  Specifically, in terms of 

immunomodulation, HDACi have been reported to: increase antigen presentation 
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(through modulation of MHC molecules) to increase T cell recognition; increase NK 

cell activatory ligand expression and NK cell-mediated killing; increase ICAM-1 

expression to promote leukocyte infiltration; enhance immunological synapse 

formation between T cells and antigen presenting cells (APC); and decrease levels 

of regulatory T cells (Treg)(13).   

Clinically, HDACi have gained FDA approval for the treatment of cancer, including 

vorinostat and FK228 for the treatment of cutaneous T cell lymphoma (CTCL), 

belinostat for the treatment of peripheral T cell lymphoma (PTCL); and panobinostat, 

in combination with bortezomib and dexamethasone, for the treatment of multiple 

myeloma.  Whilst most HDACi have been approved for the treatment of 

hematological malignancies, numerous studies and clinical trials have examined 

their activity against solid malignancies such as ovarian and breast cancer (14).  

Valproic acid (VPA) - an anticonvulsant agent and more recently described HDACi 

with specificity towards class I and class IIa HDACs - has also been reported to 

display anticancer properties through the induction of cell differentiation, inhibition of 

cell proliferation and/or altered immunogenicity.  VPA acts by directly inhibiting 

HDACs but also induces proteasomal degradation of HDAC2, therefore exerting its 

anticancer properties by both transcription-dependent and transcription-independent 

mechanisms.  Currently, VPA is not FDA-approved for the treatment of cancer; 

however, it has been extensively studied in pre-clinical models, and has reached 

phase III clinical testing for cervical and ovarian cancer (15).  Pivotally, VPA is an 

approved treatment option for epilepsy, bipolar disorder, and migraine prevention, 

and has a well-established safety profile derived from decades of clinical use.  

Moreover, VPA is a cost-effective treatment option by comparison with newer HDAC 
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inhibitors making the re-purposing of this agent an attractive option for the treatment 

of cancer (15).  

HDACi, including VPA, have been successfully tested in combination with OVs 

(16,17) and a range of synergistic mechanisms have been identified, including: i) 

suppression of anti-viral IFN-responsive gene transcription, leading to increased viral 

replication, spread and oncolysis/apoptosis; ii) induction of nuclear factor kappa B 

(NF-κB) signaling, resulting in NF-κB-dependent autophagy; iii) increased viral entry 

receptor expression and viral entry; iv) abrogation of innate immune-mediated viral 

clearance; and v) enhancement of adaptive anti-tumor immune responses through 

enhanced  CD8 T cell and macrophage infiltration, and decreased Tregs, with 

appropriate combination scheduling (18-20).  To date, VPA has been reported to 

enhance HSV and parvovirus replication in cancer cells (21,22) but its efficacy in 

combination with HSV for melanoma has not been described; moreover, the effect of 

VPA in OV-induced human immunotherapy remains unknown.  Here, we describe 

the use of clinically relevant human models (23-27) to explore oncolytic HSVGM-CSF 

and VPA immune co-operation to support the development of anti-tumor immune 

responses against human melanoma.     
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RESULTS 

HSVGM-CSF induces innate and adaptive anti-tumor immunity 

We have previously developed in vitro, pre-clinical assays, to test the potential of 

OVs to support the activation of human innate (dendritic cells (DC) and natural killer 

(NK) cells) and adaptive (cytotoxic T lymphocytes; CTL) anti-tumor immunity (23,26-

28).  To initially address the immunogenicity of HSVGM-CSF, we pulsed the virus onto 

peripheral blood mononuclear cells (PBMC) taken from healthy donors and 

melanoma patients and examined activation of NK cells.  Addition of HSVGM-CSF 

induced NK cell degranulation (the release of cytotoxic granules) in both healthy 

donors (Fig 1A) and patient samples (Fig 1B) upon co-culture with melanoma cell 

targets, as determined by increased expression of CD107 on NK cells. Importantly, 

HSVGM-CSF-induced NK cell degranulation correlated with increased lysis of 

melanoma cell targets (Fig 1C).  To confirm that NK cells were responsible for 

melanoma target cell death, in the context of PBMC, we have shown that: i) 

depletion of NK cells from PBMC significantly reduced killing of MEL888 cells 

(Supplementary Fig S1A); and ii) that killing was mediated by perforin/granzyme 

(pivotal components of NK cell cytotoxic granules), as cell lysis was abrogated by 

EGTA, a calcium chelator that prevents the activity of calcium-dependent perforin 

(Supplementary Fig S1B).  

Having previously shown that OV can activate DC, pivotal APCs that bridge both 

the innate and adaptive arms of the immune system (23), we investigated the effect 

of HSVGM-CSF on DC antigen presenting machinery (MHC class I and II) and co-

stimulatory molecules (CD80 and CD86).  We found that HSVGM-CSF induced 
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maturation of immature DC (iDC), causing a significant upregulation of CD80 and 

CD86, and retention of MHC class I and II (Fig 1D) without significantly decreasing 

cell viability (data not shown).  Next, to determine whether iDC were infected with 

HSVGM-CSF, and if this was required to induce DC maturation, we treated iDC with 

GFP-expressing HSV (0.01 and 0.1pfu/cell) and examined CD86 expression in GFP-

positive (HSV-infected) and GFP-negative (non-infected) DC.  At the highest MOI, 

approximately 10% of DC were GFP-positive, and in accordance with this a 10% 

loss in viability was observed, demonstrating that DC were indeed permissive to 

HSV-infection and subsequent cell death (data not shown).  However, importantly, 

CD86 up-regulation was observed in GFP-negative DC suggesting an indirect 

mechanism of DC maturation, potentially mediated by cytokine release (data not 

shown).   

Furthermore, co-culture of HSVGM-CSF-infected tumor cells with iDC resulted in 

increased secretion of GM-CSF and TNF, together with decreased production of 

the immunosuppressive cytokine, IL-10 (Fig 1E); virus-infected melanoma cells 

secrete GM-CSF, as expected (Fig 3), therefore it is most likely that the GM-CSF 

production is derived from infected tumor cells; however, given that up to 10% of DC 

can be infected by HSV it is also possible that DC may contribute to GMCSF 

production.  Moreover, MEL888 cells secrete IL-10, which can be down-regulated by 

OV treatment (29), and iDC produce TNFα following OV treatment (30), therefore, 

whilst we have not specifically demonstrated that the changes in IL-10 and TNFα 

levels are due to effects on MEL888 cells and iDC, respectively, we postulate that 

this is the most likely explanation.   

Finally, to assess whether HSVGM-CSF-induced DC maturation and changes in the 

pro-inflammatory cytokine milieu supported adaptive CTL immune priming, we 
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loaded iDC with HSVGM-CSF-infected tumor cells and examined whether tumor-loaded 

DC could support the generation of tumor-specific CTL (23,27,28).  Figure 1F shows 

that virus-infected tumor cells supported the generation of melanoma-specific CTL, 

whilst non-infected tumor cells did not (Fig 1F).  Taken together, these data show 

that HSVGM-CSF has the potential to enhance both innate and adaptive anti-tumor 

immune responses.   

 

Activation of a human innate immune response by HSVGM-CSF is dependent on 

virus-induced type I interferon production  

To characterize the mechanisms responsible for innate NK cell activation following 

HSVGM-CSF treatment we first examined the ability of HSVGM-CSF to activate isolated 

NK cells.  NK cells isolated from PBMC, and subsequently treated with HSVGM-CSF 

directly, were unable to degranulate against melanoma targets and showed no 

upregulation of the early activation marker, CD69 (Fig 2A).  Furthermore, when 

PBMC were depleted of CD14+ monocytes (previously shown to be central to the 

immune response induced by an alternative OV, reovirus (28)) we found that HSVGM-

CSF treatment did not result in activation of NK cells, as assessed by surface CD69 

expression, relative to PBMC which included monocytes (Supplementary Fig S2A); 

additionally, NK cell-mediated killing was also significantly abrogated 

(Supplementary Fig S2B).  Therefore, these data support a role for monocytes within 

PBMC in mediating the activation of NK cells by HSVGM-CSF.   

Upon further examination, we demonstrated that PBMC treated with HSVGM-CSF 

secreted type I, II and III IFNs (Fig 2B) and that blockade of type I IFNα/β abrogated 

HSVGM-CSF-induced activation of NK cells, in terms of CD69 expression (Fig 2Ci), NK 

cell CD107 degranulation (Fig 2Cii), and cytotoxicity against melanoma cells (Fig 
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Ciii).  Furthermore, type I IFN production, like NK cell activation, was significantly 

abrogated when CD14+ monocytes were depleted from PBMC (Fig 2D).  Taken 

together, these data show that the innate response of NK cells following HSVGM-CSF 

treatment of PBMC was dependent on type I IFN production, and confirmed a role 

for CD14+ monocytes in mediating type I IFN secretion. 

 

HDACi enhances HSVGM-CSF replication, killing and GM-CSF production in 

melanoma cells  

Having shown that HSVGM-CSF induces innate and adaptive immune responses in our 

human model systems we subsequently examined the ability of HDACi to potentiate 

HSVGM-CSF efficacy in terms of direct cytotoxicity and HSVGM-CSF-induced anti-tumor 

immunity.  First, to investigate the direct cytopathic effects of HSVGM-CSF in the 

presence or absence of HDACi, MEL888 cells were pre-treated with a range of 

HDACi (VPA, tubastatin, vorinostat, droxinostat, givinostat and mocetinostat) for 

24hrs before the addition of HSVGM-CSF (at concentrations up to 2.5 pfu/cell) for a 

further 48hrs, and cell viability was determined by MTT (Supplementary Fig S3).  

These data demonstrated that all the HDACi tested were able to enhance HSVGM-CSF 

cytotoxicity, although, as expected, the results were variable and greatest 

potentiation was observed for VPA, givinostat and mocetinostat.  Given the long-

standing safety profile of VPA, and the cost effective nature of this agent, VPA was 

selected for further experimentation.  

Initially, the ability of VPA to potentiate HSVGM-CSF cytotoxicity against a larger 

panel of melanoma cell lines was examined; all cells lines were susceptible to 

HSVGM-CSF-induced cytotoxicity, with variable sensitivity, and VPA significantly 

increased the direct cytotoxic effect of HSVGM-CSF in all cell lines tested (Fig 3A, 
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Supplementary Fig S4A). Next, the ability of HSVGM-CSF to induce secretion of GM-

CSF and replicate in melanoma cells was determined. GM-CSF was produced upon 

infection of all cell lines (Fig 3B, Supplementary Fig S4B), although levels were lower 

in A375 cells compared to MEL888 (Fig 3A); significantly, VPA increased GM-CSF 

secretion in both the relatively resistant (A375) and sensitive (MEL888) cell lines (Fig 

3B).  Additionally, plaque assays confirmed the production of infectious progeny 

virus, and showed that VPA increased HSVGM-CSF replication (Fig 3C), with 

potentiation by VPA being most evident in the A375 cells that were inherently less 

permissive to viral replication. In terms of scheduling of the two reagents, and 

consistent with previous data (16), we also found that enhanced HSVGM-CSF 

replication was dependent on pre-treatment with VPA, otherwise no increase in viral 

replication was seen (Fig 3C).  Importantly, HSVGM-CSF cytotoxicity against non-

neoplastic human foreskin fibroblasts (HFF) was not enhanced upon combination 

with VPA (Supplementary Fig S5), suggesting that VPA would not increase off-target 

side effects caused by viraemia in non-malignant tissue.    Collectively, these data 

confirm that HSVGM-CSF directly infects, kills and replicates in human melanoma cells, 

resulting in secretion of GM-CSF, and that the addition of VPA potentiates these 

effects, particularly in cells which are otherwise relatively poorly permissive.  

 

HDACi augments HSVGM-CSF-induced innate anti-tumor immunity 

Having shown that VPA increases killing, replication and GM-CSF production upon 

HSVGM-CSF treatment of human melanoma cells, we next tested the effects of VPA on 

HSVGM-CSF-induced innate anti-tumor immunity.  To address this, we first tested 

whether VPA affected the expression of activatory NK ligands on human melanoma 

cells; VPA has previously been reported to up-regulate NK ligand expression on 
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acute myeloid leukemia cells, in vivo (31,32).  We observed an upregulation of the 

NKG2D ligands, MICA/B, on MEL888 cells, and MICA/B and ULBP-2/5/6 on less 

permissive A375 cells, upon treatment with VPA (Fig 4A); similar results were also 

observed using primary melanoma cells (Supplementary Fig S6A, and data not 

shown).  This suggested that the addition of VPA could directly support innate anti-

tumor immunity by increasing activatory NK cell:tumor target interactions; this was 

subsequently confirmed as VPA treatment of melanoma cells, prior to their co-culture 

with HSVGM-CSF-treated PBMC, caused increased NK cell-mediated tumor cell killing 

(Fig 4B).  Importantly, additional studies have confirmed that alternative HDACi also 

up-regulate the expression of NK cell activatory ligands on melanoma tumor cells 

(Supplementary Fig 6B), suggesting that the effects of VPA were due to HDAC 

inhibition and not an alternative, HDAC-independent, mechanism of action.   

Furthermore, in line with previously published data which showed that VPA was 

only toxic to NK cells at doses greater than 2.5mM (33), we confirmed that pre-

treatment of PBMC with VPA prior to HSVGM-CSF  stimulation (e.g. the schedule 

required for enhanced direct oncolysis) does not inhibit the production of type I IFNα 

from PBMC (Supplementary Fig S7A), which is necessary for NK cell activation, and 

accordingly pre-treatment with VPA does not abrogate NK cell CD107 degranulation 

against melanoma targets (Supplementary Fig S7B).  Collectively, these data 

demonstrate that virus-activated NK cell effector function, combined with HDACi-

induced upregulation of NK cell activatory ligands, could be used to potentiate the 

early, innate phase of OV-mediated anti-tumor immunity.   

 

HDACi enhances HSVGM-CSF-mediated CTL priming against human melanoma.   
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Having shown that HSVGM-CSF-treated melanoma cells can be used as an ‘antigen 

load’ for iDC to prime the generation of CTL (Fig 1F), we went on to examine the 

consequences of HDAC inhibition for CTL priming.  Moreover, to allow more 

complete characterisation of the CTL response, we developed an immune readout 

component to allow tracking of T cell responses against a range of tumor-associated 

antigens (TAA), without HLA restriction.  This adaptive immune readout involved 

pulsing autologous monocytes (capable of antigen processing and presentation) with 

15mer overlapping peptides of TAA (melanocyte protein PMEL, PMEL; tyrosinase, 

TYR; and melanoma antigen recognized by T-cells 1, MART-1/MELAN-A) and co-

culturing these with CTL. TAA peptide recall responses by CTL were then analysed 

by flow cytometry to quantify intracellular IFN- production.  As shown in Fig 5A, 

HSVGM-CSF infection of MEL888 cells enhanced the CD8 response against the 

MEL888-expressed TAA, PMEL, MART-1 and TYR, with a significant enhancement 

observed for MART-1 (p=0.0028).  Moreover, the quantity of TAA-specific responses 

measured against PMEL and TYR was significantly increased by co-treatment of 

MEL888 cells with 2mM VPA and HSVGM-CSF virus, compared to HSVGM-CSF alone.  

Interestingly, MEL888 cells treated with 2mM VPA prior to HSV infection then co-

cultured with iDC, had significantly reduced levels of IL-10 in cell culture 

supernatants compared to virus alone controls (Fig 5B), and higher concentrations of 

IFN were detected in CTL culture supernatants (Fig 5C);  thus, the cytokine 

changes resulting from combination treatment may favor the generation of TAA-

specific CTL.  

As well as addressing whether VPA could boost the CD8 response against TAA 

which were expressed by melanoma cells, we also considered whether HDACi might 

alter the expression TAA by melanoma cells, and potentially broaden the range of 
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antigens available for CTL priming. Initial studies demonstrated that VPA treatment 

of MEL888 cells did not increase PMEL, MART-1 or TYR expression at the protein 

level (data not shown). A375 cells do not express PMEL under normal growth 

conditions; however, following treatment with VPA, or alternative HDACi, significant 

increases in PMEL mRNA expression levels were detected (Fig 5D and 

Supplementary Fig S8) Moreover, using flow cytometry and immunofluorescence 

techniques, we could detect PMEL protein expression following VPA/HSVGM-CSF co-

treatment, but interestingly not following either treatment alone (Fig 5Ei and ii, 

respectively).  Following these observations, the ability of VPA to facilitate the 

generation of PMEL-specific CTL, using A375 cells as the antigen load, was 

investigated. Fig 5F shows that only A375 cells treated with VPA/HSVGM-CSF, but not 

virus alone, were capable of generating PMEL-specific CTL.  Taken together, we 

have shown that HSVGM-CSF infection supports human adaptive CTL priming against 

a range of melanoma-associated TAA, and that this priming is further increased by 

VPA, which can boost both the range and level of responses against targeted 

epitopes. 
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DISCUSSION 

Oncolytic viruses represent a promising class of novel cytotoxic and immunogenic 

cancer therapy.  Although T-Vec is the most clinically advanced agent, there is little 

pre-clinical data to inform its future development and optimal use, particularly in 

human systems.  Despite its current application as an intratumoral treatment for 

melanoma, initial melanoma studies were restricted to testing of a single cell line for 

cytotoxicity in vitro only, using an early form of the virus which did not encode GM-

CSF (34).  In the current study, we therefore sought to address the role of both direct 

oncolysis and anti-tumor immunity (both innate and adaptive) in T-Vec efficacy, 

using a closely related JS-1 strain of HSV-1 virus encoding GM-CSF, both alone and 

in combination with HDAC inhibition.   

In our first experiments, we extended our previous studies using the dsRNA OV 

reovirus (23,26-28), to test the potential of the DNA virus HSVGM-CSF to stimulate 

innate and adaptive anti-melanoma immunity (Fig 1).  We found that: i) addition of 

HSVGM-CSF to human PBMC activated perforin/granzyme-mediated NK killing of 

melanoma targets; ii) HSVGM-CSF-induced maturation of iDC, and iii) HSVGM-CSF 

infection supported the generation of melanoma-specific CTL.  This ability of HSVGM-

CSF to activate innate, and subsequent adaptive anti-tumor immunity, supports its 

designation as an immunotherapeutic agent in humans.  At present, the 
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consequences of innate immune activation following administration of OV remain 

controversial.  For example, murine models suggest that innate anti-viral NK cell 

response limits therapy by restricting direct tumor oncolysis (20,33,35,36), by 

restricting viral replication and spread.  Alternatively, NK cells have been shown to 

be essential for the success of a number of OVs across a range of pre-clinical 

models (37-41), suggesting the innate response to the virus is critical for therapy.  

Furthermore, for other HSV, experimental models have demonstrated the 

dependence of intratumoral HSV-1-induced melanoma therapy on NK cells (42), and 

studies have described the effectiveness of UV-inactivated HSV in the stimulation of 

PBMC to kill acute myeloid leukemia tumor cells in the absence of direct oncolysis 

(43).  These lines of evidence support a positive role for the innate response in HSV 

therapy. 

Currently, the clinical use of T-Vec is restricted to intratumoral delivery; however, 

we know that the virus is subsequently released systemically as it can be detected in 

the circulation and within lymph nodes (5,10).  This viraemia, which is consistent with 

transient flu-like symptoms and the induction of an anti-viral antibody response, 

means the virus has the potential to activate anti-tumor immunity systemically, as 

well as locally within the tumor.  Therefore, our study of the human innate effects of 

HSVGM-CSF on PBMC, as well as on infected melanoma cells as the antigen load in a 

CTL priming assay, remains clinically relevant.  However, it is also important to note 

that HSV will initially engage an immunologically suppressive TME comprising Tregs, 

myeloid derived suppressor cells (MDSC) and M2-polarised macrophages; however, 

despite this, HSV has the capacity to modulate the TME (4) to enrich levels of 

melanoma-specific effector T cells, and decrease levels of Treg at the site of tumor 

viral injection (7).  Interestingly, HSV has been reported to inactivate MDSC (44) and 
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it is possible that HSV injection could increase NK cell infiltration at the tumor site, as 

described for alternative OVs (45), but remains undescribed for T-vec. 

The work illustrated is especially important as the effects described here cannot 

be reliably modelled in murine systems.  In particular, we tried testing of HSVGM-CSF 

alone, or in combination with VPA, in murine in vitro and in vivo systems, but found 

that mouse tumor cells (e.g. B16 melanoma) were far more resistant to HSVGM-CSF 

than human melanoma cells, and VPA was unable to increase NK cell activatory 

ligands on murine melanoma cells.  However, despite no meaningful comparative 

results being obtained in murine models, we believe this was due to major inherent 

differences between human melanoma models and murine immunocompetent 

models (in particular, only humans are the natural hosts for type I HSV) rather than 

any lack of potential combination therapeutic benefit to patients.   

In terms of the mechanisms by which HSV activates a human immune response 

we found, as with reovirus (25), that the production of type I interferons, mediated by 

monocytes, was required (Fig 2).  However, these innate responses are not identical 

for all OVs; for example, monocytes are not required for IFN production induced by 

ssRNA coxsackievirus (unpublished data), and the IFN- and IL-29 secretion we 

observed in response to HSVGM-CSF (Fig 2C), was not seen with reovirus (23,46).  

The detailed mechanisms by which viral detector cells respond to ssRNA, dsRNA 

and DNA viruses, and how these shape the ensuing adaptive immune response, are 

worthy of further study, and are likely to inform the development of optimally 

immunogenic virotherapy, particularly as part of combination strategies.  However, 

despite the clear role for monocytes in type I IFN production and subsequent NK cell 

activation, NK cells were still activated (albeit to a lesser extent) in the absence of 

monocytes, and low level IFNα production was still observed. Therefore, it is 
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possible that alternative mechanisms may also be involved in the detection of HSV; 

for example, plasmacytoid DC have also been reported to play a role in regulating 

anti-HSV immune responses (47-49).     

Amongst the various immunomodulatory strategies to have been tested in 

combination with OV, HDACi have been explored as a means to enhance virus-

mediated oncolysis, via suppression of the tumor cells anti-viral IFN response, 

following infection (16,33).  However, HDAC inhibition has a wide range of 

consequences, and a recent study demonstrated, using cDNA arrays, that the 

expression of 10–20% of genes were altered following treatment with HDACi (50).  

We found that pre-treatment of human melanoma cell lines with VPA increased 

cytotoxicity, GM-CSF secretion and viral replication upon infection with HSVGM-CSF 

(Fig 3), although no effect of HDACi on IFN production, or the expression of 

interferon-stimulated genes, by tumor cells was observed following virus infection 

(data not shown).  In fact, we were unable to detect IFNα, IFNβ, IL-28a or IL28b/IL-

29 by ELISA following HSVGM-CSF and gene expression results confirmed that viral 

treatment did not induce an IFN signalling cascade (data not shown).  Moreover, we 

also explored the possibility that VPA could alter the surface expression of HSV 

receptors, HVEM and Nectin 1, or alter NFkB signalling (51); no changes were 

observed following VPA treatment (data not shown).  Currently the mechanisms 

responsible for enhanced HSVGM-CSF-induced direct oncolysis following VPA 

treatment remain to be fully elucidated; however, an alternative mechanism could be 

that VPA alteration of chromatin structure prevents HSVGM-CSF from “hiding” within 

DNA, thus making it more accessible for viral replication (52).   

Perhaps more importantly, from an immune perspective we found that HDACi 

upregulated expression of NKG2D ligands on melanoma cells, leading to increased 
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NK cell killing by HSVGM-CSF-activated PBMC (Fig 4).  Furthermore, in a novel assay, 

which quantified non-HLA-restricted anti-TAA CTL priming, the addition of HDACi to 

HSVGM-CSF treatment of melanoma cells enhanced both the magnitude and range of 

TAA expressed by tumor cells as targets for CD8 T-cell recognition (Fig 5).  While it 

was unexpected that PMEL expression was only observed at the protein level upon 

co-treatment of VPA and HSVGM-CSF, since HSV infection is usually associated with 

“shut-off” of host protein translation to limit viral detection and allow propagation 

(53,54), the balance between histone acetylation/deacetylation is important for HSV 

propagation (55).  Therefore, it is possible that HDAC inhibition by VPA allows 

transcription of PMEL mRNA for subsequent processing in HSV-infected cells, where 

HSV will employ a range of strategies to stimulate viral protein synthesis, including 

enhancement of translation initiation and prevention of translation shutdown 

following cell stress (54).  We are currently investigating whether the expanded 

range of antigens recognised by primed CTL on combination HDACi/HSVGM-CSF 

treatment extends to neoantigens as well as the shared, non-mutated TAA, that we 

have tracked here, and whether this is reflected in the T cell receptor repertoire 

which develops over time.    Importantly, in terms of clinical application of VPA with 

HSVGM-CSF, the doses of VPA used to potentiate direct oncolysis and anti-tumor 

immunity would be clinically achievable with current therapeutic ranges for epilepsy 

and mania ranging between 20-125mg/L (0.15-0.87mM), only marginally lower than 

the doses utilized in this study; higher serum concentration are clinically achievable 

with appropriate monitoring of additional toxicities (56,57).   

In summary, we have shown, using clinically relevant human pre-clinical models 

of innate and adaptive anti-tumor immune priming, that HSVGM-CSF is capable of 

activating an anti-melanoma immune response, and that the cytotoxicity and 
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replication, as well as immunogenicity, of the currently most clinically advanced class 

of OV, is further boosted by combination treatment with HDAC inhibition.  This data 

provides a platform to explore further OV/immunotherapy combination strategies in 

human pre-clinical systems, and supports the incorporation of clinical HDACi into 

future HSV-based OV clinical trials.   
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MATERIALS AND METHODS 

Cell culture and reagents   

A375, MeWo and Vero cell lines were purchased from ATCC and authenticated 

using STR profiling and comparison with the DSMZ database.  MEL888 (58), and 

MM96 (59) were obtained from the Cancer Research UK cell bank and MCF-7 were 

kindly provided by M Muthana (Department of Oncology and Metabolism, University 

of Sheffield). In the absence of a reference profile within the DSMZ database, cell 

lines were shown to have an original STR profile which was distinct from all other cell 

lines within the database.  HFF were also purchased from ATCC. All cell lines, and 

HFFs, were grown in glutamine-containing DMEM (Sigma-Aldrich Ltd), 

supplemented with 10% FCS (v/v) (Biosera). All cell lines were routinely checked for 

mycoplasma and were free from contamination.   

 

PBMC were isolated from healthy donor volunteers or melanoma patients after 

written, informed consent was obtained in accordance with local institutional ethics 

and review approval (06/Q1206/106). PBMC were isolated from whole blood by 

density gradient centrifugation on Lymphoprep (Aldere) and cultured at 2x106cells/ml 

in glutamine-containing RPMI (Sigma-Aldrich Ltd), supplemented with 10% FCS 

(v/v).  Where indicated, NK cells were freshly isolated, or CD14+ cells 

removed/isolated from PBMC using MACS isolation procedures, following the 

manufacturer’s protocols (Miltenyi Biotec). Immature DC (iDC) were generated by 

culturing CD14+ cells in glutamine-containing RPMI supplemented with 10% FCS 

(v/v), recombinant human IL-4 500 IU/ml and GM-CSF 800 IU/ml (both R&D 

systems) at a cell density of 1-2 x10^6 cells/ml for 5 days. Cytotoxic T lymphocytes 

(CTL) were cultured at 4x10^6 cells/ml in glutamine-containing RPMI supplemented 
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with 7.5% (v/v) human AB serum, 1 mM sodium pyruvate, 1 mM HEPES; 1% (v/v) 

non-essential amino acids, 20 µM 2β-mercaptoethanol (all Sigma-Aldrich Ltd) and 

recombinant human IL-7 (5 ng/ml) (Miltenyi Biotec). Valproic acid (VPA) (Sigma-

Aldrich Ltd) was added to cell cultures at 0,1 or 2 mM for indicated durations. 

 

Viruses 

JS1 34.5-hGM-CSF 47-pA+ (HSVGM-CSF) was kindly provided by Amgen and virus 

titre determined by standard plaque assay on Vero cells. The JS1 34.5-hGM-CSF 

47-pA+ used in these studies differs from the clinical agent, tamilogene 

laherparepvec, in that the US11 gene is not under the control of the ICP47 

intermediate-early promoter, due to the addition of a poly-A sequence between the 

promotor and US11 coding sequence.  

 

HSVGM-CSF replication 

Cells were treated with HSVGM-CSF alone, HSVGM-CSF following 24hr pre-treatment 

with VPA or HSVGM-CSF/VPA simultaneously.  Cells and supernatants were harvested 

and subjected to three rounds of freeze/thaw using a 37°C water bath and 

methanol/dry ice.  HSVGM-CSF concentration was determined by standard plaque 

assay on Vero cells and fold increase in virus titre was determined by comparison 

with input virus. 

 

MTT Cell Viability  

Melanoma cell lines were seeded at 8x103 cell/well into 96-well plates and left to 

adhere overnight.  Cells were treated with HSVGM-CSF at indicated doses for 48 hrs (± 

pre-treatment with VPA for 24 hrs). 20µl MTT (5mg/ml; Sigma-Aldrich Ltd) was 
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added to cells 4 hrs prior to the end of the incubation period before tissue culture 

supernatant was removed and cells were solubilised using 150µL DMSO (Sigma-

Aldrich Ltd).  Optical density absorbance readings were determined using a Thermo 

Multiskan EX plate reader (Thermo Fisher Scientific), at 540 nm absorbance. 

 

ELISA 

The production of human GM-CSF, IFNα (both Mabtech), IFNβ (PBL Interferon 

Source), IL-10, TNF  IFNγ (all BD Pharmingen) and IL-29, (R & D Systems) in cell 

free supernatant was determined using matched-paired antibodies according to the 

manufacturers’ instructions. Optical density absorbance readings were determined 

using a Thermo Multiskan EX plate reader (Thermo Fisher Scientific), at 405 nm 

absorbance. 

 

Cell Surface Phenotyping  

Cell surface expression of indicated markers were quantified by flow cytometry. 

Briefly, cells were harvested, washed in FACS buffer (PBS; 1% (v/v) FCS; 0.1% 

(w/v) sodium azide), incubated for 30 mins at 4˚C with specific antibodies or 

matching isotype controls. Cells were washed with FACS buffer and then fixed with 

1% PFA (1% (w/v) paraformaldhyde in PBS) and stored at 4˚C prior to acquisition. 

Flow cytometry analysis was performed either using a FACSCaliber (and analysis 

carried out using Cell Quest Pro software (BD Biosciences), an Attune flow 

cytometer (Life Technologies, with analysis performed on its accompanying 

software) or a CytoFLEX S (Beckman Coulter) and analysis carried out using 

CytExpert software.  
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Intra-Cellular Staining 

Cells were cell-surfaced stained and fixed overnight with 1% PFA prior to 

permeabilisation with 0.3% Saponin (Sigma-Aldrich Ltd) for 15mins at 4˚C. Cells 

were washed with 0.1% Saponin, incubated with specific antibodies or matched 

isotype controls for 30 mins at 4˚C. If the primary antibody was fluorescently-

unconjugated, cells were then incubated with a matched fluorescently-conjugated 

antibody for 30 mins a 4˚C. Cells were washed with PBS and flow cytometry analysis 

was performed immediately using a CytoFLEX S. 

 

Flow Cytometry Antibodies 

CD11c APC-Vio770 (MJ4-27G12, Miltenyi Biotec), CD14-PerCP (TUK4, Miltenyi 

Biotec) CD86-PE-Cy7 (2331, BD biosciences), CD80-PE (L307.4, BD biosciences) 

HLA-ABC-VioBlue (REA230, Miltenyi Biotec), HLA-DR/DP/DQ-FITC (Tu39, BD 

biosciences), CD3-PerCP (SK7, BD biosciences), CD56-PE (B159, BD biosciences), 

CD8-APC (RPA-T8, BD biosciences) CD107a-FITC (H4A3, BD biosciences), 

CD107b-FITC (H4B4, BD biosciences), CD69-FITC (FN50, BD biosciences), 

MICA/B-PE (6D4, BD Biosciences), ULBP2/5/6 (FAB1298p, R&D Systems), IFN-

BV421 (4S.B3, BD biosciences). Mouse IgG1, κ Isotype Control 

(PE/FITC/PerCP/PE-Cy7/APC) (MOPC-21, BD biosciences), Mouse IgG2a, κ 

Isotype Control (FITC/PE) (G155-178, BD biosciences) and REA Control-

VioBlue (REA293, Miltenyi Biotec). 

 

CD107a/b NK cell degranulation assay 

Healthy donor or melanoma patient PBMC were treated with HSVGM-CSF overnight 

and co-cultured with melanoma cell targets at a 10:1 ratio for 1 hour at 37˚C.  10 

https://www.miltenyibiotec.com/GB-en/products/macs-flow-cytometry/antibodies/isotype-control-antibodies/rea-control-antibodies-rea293-1-50.html#vioblue:30-ug-in-200-ul
https://www.miltenyibiotec.com/GB-en/products/macs-flow-cytometry/antibodies/isotype-control-antibodies/rea-control-antibodies-rea293-1-50.html#vioblue:30-ug-in-200-ul
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µg/mL Brefeldin A (BioLegend), anti-CD107a/b, anti-CD3 and anti-CD56 were added 

for a further 4 hrs at 37˚C before cells were washed with FACS buffer and fixed 

using 1% PFA.  Flow cytometry analysis was performed using either the Attune or 

CytoFLEX S flow cytometers.  

 

Flow Cytometry Killing Assay 

Healthy donor PBMC were activated with HSVGM-CSF overnight at the indicated 

concentrations and their ability to kill melanoma cell targets (± VPA/ HSVGM-CSF pre-

treatment) stained with cell tracker green (Molecular Probes) was determined using 

a standard 5 hr co-culture. Co-cultures were washed and stained for viability using 

Live/dead fixable dead cell stain (Thermo Fisher Scientific) before analysis using an 

Attune flow cytometer.  

 

Neutralisation of type I IFNs  

PBMC were treated with HSVGM-CSF overnight in the presence or absence of 

neutralising antibodies (IFN Block; PBL Interferon Source) or isotype control (IFN 

Isotype; R & D Systems). IFN block consisted of sheep polyclonal anti-human IFN-α, 

sheep polyclonal anti-human IFN-β (both used at 1.5%) and mouse monoclonal anti-

human IFN-α/β receptor chain 2 (used at 2.5%), as previously described (23).  

Isotype control consisted of sheep serum (Sigma Aldrich Ltd) used at 3% and mouse 

IgG2a used at 2.5%. PBMC were then washed and used in CD107 degranulation 

assays, 51Cr cytotoxicity assays or stained for cell-surface expression of CD69, as 

described above. 

 

Quantitative real time PCR (qRT-PCR)  
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Total RNA from cells was isolated using TRiZol (Invitogen™) and 1ug of RNA was 

used to synthesise cDNA using Maxima Reverse Transcriptase (Thermo Fisher 

Scientific) according to the manufacturer's instructions. qRT-PCR was carried out 

with SYBR green mix (Applied Biosciences) using a QuantStudio5 Real-time PCR 

system (Thermo Fisher Scientific). Primer sequences were: PMEL-F: 5’-

TATCATGCCTGTGCCTGGGA-3’, PMEL-R:5’- GGGGTACGGAGAAGTCTTGC-3’ 

for  PMEL, and EIF-F: 5’-GATTACAGGGACATCTCAAGGCG-3’, EIF-R 5’- 

TATCTCTTCTGGCTGTAGGGTGG-3’) for the EIF housekeeping control.  

    

Immunofluorescence  

Cells were fixed with 4% PFA and permeabilised with 0.1% Triton X-100 (Sigma-

Aldrich Ltd). Samples were incubated with anti-melanoma PMEL antibody (gp100) at 

a dilution of 1/250 (EP4863 (2)) (Abcam), followed by goat anti-rabbit IgG (Alexa 

Fluor ® 488) (Abcam) secondary antibody, following manufacturer’s instructions. 

Cells were then imaged using EVOS imaging system (ThermoFisher Scientific). 

 

Cytotoxic T cell priming assay 

Melanoma cells were treated ±VPA 24 hrs prior to the addition of HSVGM-CSF and 

iDC. Non-adherent cells (iDC loaded with TAA) were removed 24 hrs after the 

addition of HSVGM-CSF and cultured with autologous PBMC for 7 days. CTL were re-

stimulated (as previously) and cultured for a further 7 days. Primed CTL were then 

harvested and used in 4 hr 51Cr release assay or peptide recall assays. 

 

51Cr release assay 



27 
 

HSVGM-CSF treated PBMC (± NK depletion) or CTL were co-cultured with 51Cr 

(Perkin-Elmer)-labelled MEL888, A375, MeWo or MCF-7 cells at different 

effector:target (E:T) ratios for 4 hrs (±2mM EGTA were indicated). Cells were then 

pelleted by centrifugation and 50µL of supernatant was transferred to scintillation 

plates (Perkin-Elmer) prior to analysis using a Wallac Jet 1459 Microbeta scintillation 

counter and Microbeta Windows software (Perkin-Elmer). Tumor cell % lysis was 

determined using the following calculation: 

% lysis= (Sample CPM - Spontaneous CPM) / (Maximum CPM - Spontaneous CPM) x 100 

 

Peptide Recall assay 

To measure peptide specific CTL responses, autologous CD14+ cells were 

incubated with either melanocyte protein PMEL (PMEL), Tyrosinase (TYR) or 

Melanoma antigen recognized by T-cells 1 (Mart-1/MLANA) PepTivator peptide 

pools (15-mer peptide sequences with 11 amino acids overlap, Miltenyi Biotec) for 

60 min at 37°C, according to the manufacturers’ instructions. Autologous CD14+ 

cells, with or without peptide labelling, were then co-cultured with CTL for 60 min at 

37°C before addition of Brefeldin A (1:1000, BioLegend) and an anti-CD8-APC 

antibody for identification of CTL.  CTL were then incubated for a further 4 hrs at 

37˚C and cells were fixed prior to intra-cellular IFN staining and acquisition/analysis 

by flow cytometry.  

  

Statistical Significance 

Statistical analysis was carried out with the Graphpad Prism software. Statistical 

differences among groups were determined using student's t-test, one-way ANOVA 
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or two-way ANOVA analysis. The criterion for statistical significance was p value less 

than 0.05.   
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Figure Legends 

Figure 1.  HSVGM-CSF induces innate and adaptive anti-tumor immunity. A. 

Healthy donor PBMC (±HSVGM-CSF treatment) were co-cultured with melanoma 

targets and NK cell (CD56+/CD3-) CD107 degranulation was determined by flow 

cytometry. The mean percentage of NK cells degranulating after co-culture with 

MEL888, A375 and MeWo tumor cell targets +SEM is shown (at least n=4). B. 

PBMC from melanoma patients with metastatic disease (± HSVGM-CSF treatment) 

were co-cultured with melanoma targets (MEL888) and NK cell (CD56+/CD3-) CD107 

degranulation was determined by flow cytometry. The mean percentage of NK cells 

expressing CD107, +SEM, is shown (n=4). C. Healthy donor PBMC (±HSVGM-CSF) 

were co-cultured with MEL888, A375 and MeWo cell targets and the % of tumor cell 

lysis was determined by 51Cr release.  Graph shows the mean of at least three 

experiments ±SEM. D. Immature dendritic cells were treated with ±HSVGM-CSF for 

48h, cell surface expression of CD86, CD80, HLA-ABC and HLA-DR/DP/DQ was 

determined by flow cytometry. Representative histograms (top panel) and the mean 

fold increase in expression compared to isotype controls +SEM (bottom panel) are 

shown (n=4). E. Supernatants from melanoma cells treated with ±HSVGM-CSF and co-

cultured with iDC were collected and concentrations of GM-CSF, IL-10 and TNF 

were determined by ELISA. Graph shows the mean +SEM (n=3). F. MEL888 cells 

were either left untreated (Mel888-primed CTL) or treated with 0.1 pfu/cell HSVGM-CSF 

(Mel888+HSV-GMCSF-primed CTL) and cultured with iDC for 24h before non-

adherent cells were removed and cultured with autologous PBMC. CTL were re-

stimulated once (as appropriate) and then used in 4h 51Cr release assays against 
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MEL888 (relevant) or MCF-7 (irrelevant) targets. The graph shows the mean 

percentage of tumor cell death ±SEM (n=3). Statistical significance is denoted by 

*p<0.05, **p<0.01, p***< 0.005. 

 

Figure 2.  Innate activation is dependent on type I IFNs and CD14+ monocytes.  

A. Healthy donor PBMC or isolated NK cells (±HSVGM-CSF treatment) were co-

cultured with melanoma targets and NK cell (CD56+/CD3-): (i) CD69 expression and 

(ii) CD107 degranulation were determined by flow cytometry (n=4). B. Healthy donor 

PBMC were treated with HSVGM-CSF for 48hrs and the production of IFNγ, IFNα, 

IFNβ, and IL-29 was determined by ELISA. Graph shows the mean of at least four 

independent experiments ±SEM.  C. Healthy donor PBMC were treated overnight 

with HSVGM-CSF either alone or in the presence of IFNα/β blocking antibodies/isotype 

controls before: (i) CD69 upregulation on CD56+/CD3- NK cells was determined by 

flow cytometry. Graph shows the average percentage of NK cells expressing CD69, 

+ SEM (n=3); (ii) PBMC (±IFN blockade and ± HSVGM-CSF) were co-cultured with 

MEL888 cells and NK cell CD107 degranulation was determined by flow cytometry. 

Graph shows the mean percentage of NK cells expressing CD107a/b, +SEM (n=3); 

and (iii) PBMC (±IFN blockade and ± HSVGM-CSF) were co-cultured with MEL888 at 

indicated E:T ratios and % tumor cell lysis determined by 51Cr release. Graph shows 

the mean percentage lysis, ±SEM (n=3). D. IFNα/β production from whole PBMC, or 

CD14+ monocyte-depleted PBMC was determined by ELISA.  Graph shows the 

mean, +SEM (n=5). Statistical significance is denoted by *p<0.05, **p<0.01, p***< 

0.005. 

Figure 3. VPA enhances HSVGM-CSF-induced cytotoxicity, viral replication and 

transgene expression.  A. Melanoma cell lines were seeded and treated with VPA 
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(0, 1 and 2 mM) for 24hrs prior to the addition of HSVGM-CSF at concentrations 

ranging from 0 to 1pfu/cell. Cells were left for a further 48hrs and cell viability was 

determined by MTT assay. Graph shows the average cell viability for at least five 

independent experiments ±SEM. B. VPA-treated melanoma cells were treated with 

HSVGM-CSF for 24hrs and GM-CSF production was determined by ELISA. Graph 

shows the mean, +SEM (n=6). C. MEL888 or A375 cells were treated with 

0.05pfu/cell HSVGM-CSF alone, 1mM VPA for 24hrs prior to 0.05pfu/cell HSVGM-CSF or 

1mM VPA/0.05pfu/cell HSVGM-CSF simultaneously. Cells were left for 24hrs and fold 

increase in HSVGM-CSF replication was determined by plaque assay.  Graph shows 

the mean, +SEM (n=4). Statistical significance is denoted by *p<0.05, **p<0.01, 

p***< 0.005, ****p<0.0001. 

Figure 4.  VPA augments HSVGM-CSF innate anti-tumor immunity. A. Expression 

of NK ligands (MICA/B and ULBP2/5/6) on the surface of melanoma cells was 

determined by flow cytometry. Cells were treated with VPA at indicated doses for 

48hr. Mean fluorescence intensity is shown, +SEM (n=3). B. Healthy donor PBMC 

(untreated (0 pfu) or activated with HSVGM-CSF (0.001 or 0.01 pfu) overnight) were co-

cultured with melanoma cells ±VPA for 5hrs and the % target cell death was 

determined by flow cytometry. The graph shows the mean, +SEM, for at least four 

independent experiments. Statistical significance is denoted by *p<0.05, **p<0.01, 

p***< 0.005. 

Figure 5: VPA enhances HSVGM-CSF CTL responses against Melanoma. (A-C) 

MEL888 cells were treated with indicated doses of VPA for 24h followed by HSVGM-

CSF (0.1 pfu/cell) and co-cultured with iDC for 24h, non-adherent cells (containing 

tumor-loaded APC) were removed and cultured with autologous PBMC for 7 days. 

CTL cultures were re-stimulated appropriately then used in TAA peptide recall 
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assays. A. Graph shows the mean (%) of IFN+ CD8+ T cells following indicated 

peptide recall (n=4). B. Cell-free supernatants from VPA-treated, HSVGM-CSF-infected 

MEL888 cells following co-cultured with iDC were collected and concentrations of IL-

10 were determined by ELISA. Graph shows the mean, +SEM (n=3). C. Cell-free 

supernatants from CTL cultures were collected at day 14 and concentrations of IFN 

were determined by ELISA. Graph shows the mean, +SEM (n=4). (D-F) A375 cells 

were treated with indicated doses of VPA for 24h alone (D) or VPA followed by 

HSVGM-CSF at indicated doses (E-F).  D. PMEL mRNA expression levels were 

quantified by qRT-PCR relative to EF1 housekeeping control following treatment 

with VPA for 24hrs (n=6).   E. Intracellular protein expression of PMEL was 

quantified by: (i) flow cytometry (±VPA and/or ± HSVGM-CSF); graph shows the mean 

fluorescence intensity +SEM, (n=3), or (ii) immunofluorescence (±VPA and 

0.1pfu/cell HSVGM-CSF). F. A375 cells were treated with indicated doses of VPA for 

24h followed by HSVGM-CSF (0.1 pfu/cell) and co-cultured with iDC for 24h, non-

adherent cells (containing tumor-loaded APC) were removed and cultured with 

autologous PBMC for 7 days. CTL cultures were re-stimulated appropriately then 

used in a PMEL peptide recall assay. Graph shows the mean (%) IFN+ CD8+ T 

cells, +SEM (n=2). Statistical significance is denoted by *p<0.05, **p<0.01. 
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Figure 3 
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Figure 4 
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Figure 5 
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Supplementary Figures 
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A B

Supplementary Figure 1. NK cells are responsible for lysis of MEL888 target 

cells.  A. PBMC were either left untreated (0 pfu/cell) or treated with 0.01pfu/cell 

HSVGM-CSF overnight, before PBMC were then either left intact (0.01pfu) or NK cells 

were depleted using CD56+ MACS selection (0.01pfu CD56-depleted) prior to 51Cr 

release assays.  The mean percentage lysis of 51Cr-labelled MEL888 tumor cell 

targets is shown (n=3; ±SEM).  B. PBMC were either left untreated (0 pfu/cell) or 

treated with 0.01pfu/cell HSVGM-CSF overnight. Percentage lysis of 51Cr-labelled 

MEL888 targets was determined in the presence or absence of 2mM EGTA (n=2, 

±SEM).  
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Supplementary Figure 2. Depletion of CD14+monocytes from PBMC decreases 

NK cell activation.  A. Heathy donor PBMC (±CD14+ monocyte depletion) were 

treated with HSVGM-CSF overnight and the expression of CD69 on NK cells was 

determined by flow cytometry. Data shows the average mean fluorescence intensity 

of CD69 expression on NK cells (n=4, +SEM). B.  Heathy donor PBMC (±CD14+ 

monocyte depletion) were treated with HSVGM-CSF overnight, co-cultured with 

MEL888 cells for 4hrs, and target cell lysis was determined by 51Cr release. Data 

shows the average percentage tumor cell lysis (n=4, ±SEM). 
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Supplementary Figure 3. Multiple HDACi enhance HSVGM-CSF-induced 

cytotoxicity.  Melanoma cell lines were seeded and treated with a range of HDACi 

at sub toxic doses for 24hrs, prior to the addition of HSVGM-CSF at concentrations 

ranging from 0 to 2.5pfu/cell. Cells were left for a further 48hrs and cell viability was 

determined by MTT assay. Data shown is the average of at least three independent 

experiments, ±SEM.  
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Supplementary Figure 4: VPA enhances HSVGMCSF cytotoxicity and transgene 

expression. A. Melanoma cell lines (MeWo and MM96) were seeded and treated 

with VPA for 24hrs prior to the addition of HSVGM-CSF at concentrations ranging from 

0 to 1pfu/cell. Cells were left for a further 48hrs and cell viability was determined by 

MTT assay.  Data shown is the average of at least four independent experiments 

±SEM. B. VPA-treated cells were treated with HSVGM-CSF for 24hrs and GM-CSF 

production was determined by ELISA. Data shows the mean of at least five 

independent experiments +SEM. Statistical significance is denoted by *p<0.05, 

**p<0.01, p***< 0.005, ****p<0.0001. 
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Supplementary Figure 5. VPA does not enhance HSVGM-CSF cytotoxicity in 

normal HFF.  HFF were seeded and treated with 0, 1 or 2mM VPA for 24hrs, prior to 

the addition of HSVGM-CSF at concentrations ranging from 0 to 1pfu/cell. Cells were 

left for a further 48hrs and cell viability was determined by MTT assay (n=3, ±SEM).  

 

 

 

 

 

 

 



53 
 

0 1 2

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

V P A  [m M ]

M
e

a
n

 F
lu

o
r
e

s
e

n
c

e
 I

n
te

n
s

it
y

O H R I1 2

M IC a /b

U L B P -2 /5 /6
*

*

* * *

*

S u p p le m e n ta ry   F ig u re  6

C
O

N
T

R
O

L

V
O

R
IN

O
S

T
A

T
 

M
O

C
E

T
IN

O
S

T
A

T
 

G
IV

IN
O

S
T

S
T

 

0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

M E L 8 8 8  -  M IC A /B

M
e

a
n

 F
lu

o
re

s
e

n
c

e
 I

n
te

n
s

it
y

* * * *

C
O

N
T

R
O

L

V
O

R
IN

O
S

T
A

T
 

M
O

C
E

T
IN

O
S

T
A

T
 

G
IV

IN
O

S
T

S
T

 

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

A 3 7 5  M IC A /B

M
e

a
n

 F
lu

o
re

s
e

n
c

e
 I

n
te

n
s

it
y

* * * *

C
O

N
T

R
O

L

V
O

R
IN

O
S

T
A

T
 

M
O

C
E

T
IN

O
S

T
A

T
 

G
IV

IN
O

S
T

A
T

 

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

A 3 7 5  U L B P  2 /5 /6

M
e

a
n

 F
lu

o
re

s
e

n
c

e
 I

n
te

n
s

it
y

*

* * *

* *

 

Supplementary Figure 6: VPA up-regulates NK cell activatory ligands on 

primary melanoma cells and alternative HDACi modulate MICA/B and 

ULBP2/5/6 expression. A. Expression of NK ligands (MICA/B and ULBP2/5/6) on 

the surface of primary melanoma cells (OHRI12) was determined by flow cytometry. 

Cells were treated with VPA at indicated doses for 48hr (n=3, +SEM). B. MEL888 

and A375 cells were treated with 2mM VPA, 2µM vorinostat, 1µM mocetinostat and 

0.2µM givinostat for 48hrs and the expression of MICA/B and ULBP2/5/6 was 

determined by flow cytometry (n=3, +SEM). 
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Supplementary Figure 7. Pre-treatment of PBMC with VPA does not prevent 

IFNα production or NK cell activation.  A. IFNα production from PBMC pre-treated 

±VPA for 4 hrs followed by HSVGM-CSF treatment (0, 0.01 and 0.001pfu/cell) overnight 

was determined by ELISA (n=3, +SEM); un-bound VPA was removed prior to 

addition of HSVGM-CSF. B. Healthy donor PBMC were treated ±VPA for 4 hours 

followed by HSVGM-CSF treatment (0.01 and 0.001pfu/cell) overnight.  PBMC were co-

cultured with melanoma targets and NK cell (CD56+/CD3-) CD107 degranulation was 

determined by flow cytometry. Data shows the mean percentage of NK cells 

expressing CD107 after co-culture with MEL888 and A375 cell targets (n=3, +SEM).  
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Supplementary Figure 8. Alternative HDACi up-regulate PMEL TAA expression. 

PMEL mRNA expression levels in A375 cells were quantified by qRT-PCR relative to 

EF1 housekeeping control following treatment with 2mM VPA (n=6, +SEM), 2µM 

vorinostat, 1µM mocetinostat and 0.1µM givinostat for 48hrs (n=3, +SEM). 

 

 


