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Statement of translational relevance (119/150 words) 72 

Early identification of the AKT1E17K genomic biomarker, coupled with a novel targeted and 73 

non-myeloablative agent, could enhance treatment options in AKT1E17K-mutant ER+ 74 

metastatic breast cancer. In this first-in-human, multipart, Phase I expansion study, 75 

capivasertib alone or in combination with fulvestrant was well tolerated and showed 76 

promising anticancer activity in such a patient population, including those with prior disease 77 

progression on fulvestrant. Tolerability and efficacy appeared marginally better with 78 

combination therapy, suggesting that combination AKT and ER inhibition is an effective 79 

targeted therapy approach for AKT1E17K-mutant ER+ metastatic breast cancer. Furthermore, 80 

our data provide a rationale for incorporating potentially actionable alterations in breast 81 

cancer into diagnostic testing algorithms for the early identification of these alterations in the 82 

metastatic disease course.  83 
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Abstract (250/250 words) 84 

Purpose: The activating mutation AKT1E17K occurs in ~7% of ER+ metastatic breast cancer 85 

(MBC). We report, from a multipart, first-in-human, Phase I study (NCT01226316), tolerability 86 

and activity of capivasertib, an oral AKT inhibitor, as monotherapy or combined with fulvestrant 87 

in expansion cohorts of AKT1E17K-mutant ER+ MBC patients. 88 

 89 

Patients and Methods:  Patients with an AKT1E17K mutation, detected by local (NGS) or central 90 

(plasma-based BEAMing) testing, received capivasertib 480 mg bid, 4 days on, 3 days off, 91 

weekly or 400 mg bid combined with fulvestrant at the labeled dose. Study endpoints included 92 

safety, objective response rate (ORR; RECIST v1.1), progression-free survival (PFS) and 93 

clinical benefit rate at 24 weeks (CBR24). Biomarker analyses were conducted in the 94 

combination cohort. 95 

 96 

Results: From October 2013 to August 2018, 63 heavily pretreated patients received 97 

capivasertib (20 monotherapy, 43 combination). ORR was 20% with monotherapy, and within 98 

the combination cohort was 36% in fulvestrant-pretreated and 20% in fulvestrant-naïve patients, 99 

although this latter group may have had more aggressive disease at baseline. AKT1E17K 100 

mutations were detectable in plasma by BEAMing (95%, 41/43), ddPCR (80%, 33/41) and NGS 101 

(76%, 31/41). A ≥50% decrease in AKT1E17K at cycle 2 day 1 was associated with improved 102 

PFS. Combination therapy appeared more tolerable than monotherapy (most frequent grade ≥3 103 

adverse events: rash [9% vs 20%], hyperglycemia [5% vs 30%], diarrhea [5% vs 10%]). 104 

 105 

Conclusions: Capivasertib demonstrated clinically meaningful activity in heavily pretreated 106 

AKT1E17K-mutant ER+ MBC patients, including those with prior disease progression on 107 

fulvestrant. Tolerability and activity appeared improved by the combination.  108 



 

6 

 

Introduction 109 

Estrogen-receptor-positive (ER+), HER2-negative (HER2–) breast cancer is the most common 110 

subtype of metastatic breast cancer (MBC), accounting for >400,000 deaths worldwide every 111 

year (1, 2). The incorporation of inhibitors of mTOR and CDK4/6 into endocrine therapy has led 112 

to substantial improvements in patient outcomes (3-8). However, once endocrine-therapy-113 

refractory disease inevitably develops, chemotherapy remains the only approved option, and 114 

little progress has been made for this phase of illness. Given the successes of genomically 115 

selected therapy in other solid tumors harboring driver alterations (9, 10), widescale efforts to 116 

identify therapeutically actionable genomic subsets of breast cancer have been undertaken (11-117 

15). 118 

 119 

The PI3K pathway is one of the most commonly activated signaling pathways in ER+ breast 120 

cancer (16). The efficacy of an isoform-selective PI3K inhibitor in PIK3CA-mutant ER+ HER2– 121 

MBC was recently demonstrated in a Phase III study (17), providing proof of concept that this 122 

pathway is therapeutically targetable in this clinical context. While PIK3CA mutations represent 123 

the most common mechanism of PI3K pathway activation, in an estimated 7% of ER+ breast 124 

cancers, pathway activation can occur through mutation in AKT1 (15), predominantly AKT1E17K 125 

(~80%). In such cases, signaling is constitutively activated through pathologic localization of 126 

AKT1 to the plasma membrane (18-20). Although, in the largest comparative analysis of 127 

matched AKT1-mutant and wild-type ER+ MBC patients, there did not appear to be significant 128 

differences in terms of overall survival or duration on endocrine- and CDK4/6 inhibitor therapy, 129 

patients with AKT1-mutant disease were, however, noted to have significantly longer durations 130 

on MTOR inhibitor therapy (21), indicative of the potential therapeutic relevance of this alteration 131 

in breast cancer. Moreover, AKT1E17K-mutant tumors may not be amenable to PI3K inhibitors 132 

owing to their PI3K-independent mechanism of AKT activation (15, 22-27). As such, patients 133 
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harboring AKT1E17K mutations represent a genomic subset of ER+ MBC in need of unique 134 

therapeutic approaches. 135 

 136 

Capivasertib (AZD5363) is an oral, potent, selective ATP-competitive pan-AKT kinase inhibitor 137 

(28). We previously explored the efficacy of capivasertib monotherapy in patients with advanced 138 

solid tumors harboring an AKT1E17K mutation, including 20 patients with ER+ MBC, whereby the 139 

objective response rate (ORR) was 20% and median progression-free survival (PFS) was 5.5 140 

months (29). Consistent with this observation, similar capivasertib monotherapy efficacy was 141 

recently reported in the AKT1-mutant arm of the NCI-MATCH study in multiple solid tumors, 142 

including ER+ MBC (30).  143 

 144 

As observed with isoform-selective PI3K inhibitors, preclinical data with capivasertib suggests 145 

that efficacy in ER+ breast cancer may be limited in part by a compensatory increase in ER-146 

dependent gene transcription, suggesting that combination strategies may be required to 147 

maximize therapeutic efficacy in this subtype (31-33). Accordingly, preclinical models suggest 148 

synergistic efficacy when capivasertib is combined with fulvestrant, an ER antagonist and 149 

degrader approved for the treatment of ER+ MBC (32). Therefore, to clinically explore the 150 

hypothesis that simultaneous inhibition of AKT and ER would enhance antitumor efficacy in 151 

AKT1E17K-mutant ER+ breast cancer, we amended the prior Phase I study to include a 152 

multicohort expansion of the combination of capivasertib and fulvestrant. 153 

 154 

Here we present the safety, efficacy and biomarker analysis for the combination of capivasertib 155 

and fulvestrant in ER+, AKT1E17K-mutant MBC. To provide additional clinical context, final 156 

results for capivasertib monotherapy in ER+, AKT1E17K-mutant MBC are also presented.  157 
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Methods 158 

Study Design and Participants 159 

The protocol started as the first-in-human, multipart, Phase I, dose- and schedule-finding study 160 

of capivasertib. Following identification of a recommended Phase II dose, the safety and 161 

efficacy of capivasertib was further explored in multiple molecularly and histologically defined 162 

Phase I expansion cohorts recruited at study centers worldwide. Results of the initial dose 163 

escalation, pharmacodynamic cohort, and monotherapy efficacy in patients with advanced solid 164 

tumors, as well as those with activating PIK3CA or AKT1 mutations, have previously been 165 

reported (29, 34). The study start date was December 2010 and the estimated completion date 166 

is December 2019 (ClinicalTrials.gov, NCT01226316). 167 

 168 

Here we report the results of capivasertib plus fulvestrant in patients with advanced ER+ breast 169 

cancer with AKT1E17K mutations, including patients without prior fulvestrant therapy (fulvestrant-170 

naïve cohort) and those who received prior fulvestrant (fulvestrant-pretreated cohort; Figure 1). 171 

Updated and final efficacy data of capivasertib monotherapy in ER+ AKT1E17K-mutant breast 172 

cancer are also included.  173 

 174 

Eligible patients had histologically confirmed ER+, HER2– MBC with progressive measurable 175 

disease (according to Response Evaluation Criteria in Solid Tumors [RECIST] v1.1) that was 176 

refractory to standard therapies or for which no standard therapies exist, and they harbored an 177 

AKT1E17K tumor mutation. Qualifying AKT1E17K mutations were identified either through local 178 

testing, as routinely obtained at participating sites, or via a central plasma-based analysis using 179 

the OncoBEAM™ BEAMing (beads, emulsification, amplification, and magnetics) assay with 180 

previously described methods (11). Specifically, local testing employed various next-generation 181 

sequencing (NGS)-based assays, in accordance with local standard practice without any 182 

threshold for positivity mandated by AstraZeneca for enrollment. Central plasma-based 183 
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BEAMing analysis with the OncoBEAM™ assay used a 0.02% threshold of analyzed AKT1 184 

copies containing the E17K mutation for positivity (35). Further inclusion criteria included age 18 185 

years or older and an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 186 

1. Key exclusion criteria included active central nervous system metastases, prior treatment with 187 

catalytic AKT inhibitors (prior exposure to all other agents in the PI3K/AKT/mTOR pathway, 188 

including allosteric AKT inhibitors, was allowed), and clinically significant abnormalities of 189 

glucose metabolism, defined by any of the following criteria: i) diagnosis of diabetes mellitus 190 

type 1 or 2 (irrespective of management); ii) baseline fasting glucose value of ≥7 mmol/L 191 

(fasting is defined as no calorific intake for at least 8 hours); and iii) glycated hemoglobin 192 

(HbA1c) >8% (>64 mmol/mol). 193 

 194 

All patients provided written informed consent, and the study was performed in accordance with 195 

the Declaration of Helsinki, Good Clinical Practice, and the AstraZeneca policy on bioethics 196 

(36).  197 

 198 

Procedures 199 

Monotherapy patients were treated with capivasertib at the previously determined 200 

recommended Phase II monotherapy dose of 480 mg (34), administered orally, twice daily (bid) 201 

for 4 days on followed by 3 days off, repeated weekly. A treatment cycle was defined as 3 202 

weeks. In the combination cohorts, capivasertib was administered at the previously determined 203 

recommended Phase II combination therapy dose of 400 mg bid, 4 days on, 3 days off, 204 

repeated weekly, in addition to fulvestrant at the labeled dose (37).  205 

 206 

Response assessments were performed by computed tomography (CT) or magnetic resonance 207 

imaging (MRI) every two cycles for 24 weeks, then every 12 weeks until disease progression, 208 

death, or withdrawal. Safety was assessed throughout the study period and until day 28 after 209 
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discontinuation of study treatment according to the National Cancer Institute’s Common 210 

Terminology Criteria for Adverse Events (CTCAE) v4.0. Adverse events were coded with the 211 

Medical Dictionary for Regulatory Activities (MedDRA) v19.1.  212 

 213 

Blood was collected at every study visit for analysis of tumor-derived, cell-free DNA (cfDNA). 214 

AKT1E17K mutation status was assessed in tumor tissue by local testing and/or in cfDNA by 215 

central testing using BEAMing (OncoBEAM™, Sysmex Inostics, Baltimore, MD, USA) (38) and 216 

droplet digital polymerase chain reaction technology (ddPCR) with an allele-specific assay for 217 

both the mutant and the wild-type allele (39). Central NGS was performed retrospectively on 218 

tumor tissue when available, by FoundationOne (40), and on cfDNA using a hybrid capture-219 

based panel covering 300 genes (AZ300).  220 

 221 

Outcomes 222 

The primary study endpoint was safety and tolerability of capivasertib in combination with 223 

fulvestrant. Secondary endpoints included: ORR, defined as a confirmed partial response (PR) 224 

or complete response (CR); duration of response (DOR), defined as the time from confirmed 225 

objective response to disease progression or death; PFS, defined as the time from the first day 226 

of treatment to disease progression or death; and clinical benefit rate at 24 weeks (CBR24), 227 

defined as disease response (PR or CR) or stabilization for ≥24 weeks. Responses were 228 

investigator assessed according to RECIST v1.1 and required confirmation. Patients who 229 

discontinued prior to their first response assessment were considered non-evaluable for best 230 

overall response and non-responders by intent-to-treat analysis. 231 

 232 

Statistical Analysis 233 

All analyses were conducted according to the protocol and statistical analysis plan (and were as 234 

previously reported for the monotherapy cohort) (29). Although the primary endpoint throughout 235 
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this multipart Phase I study remained safety and tolerability, the sample size of the expansion 236 

cohort reported here was determined with the aim of detecting a signal of efficacy, should one 237 

exist, using CBR24. The capivasertib and fulvestrant combination cohorts underwent protocol-238 

specified analyses, conducted independently for each (fulvestrant-naïve and fulvestrant-239 

pretreated) cohort, when 12 patients (at interim analysis) and 24 (at final analysis) per cohort 240 

were evaluable for CBR24 (Figure 1). The sample size was determined based on pre-specified 241 

target values for CBR24 of 65% and 40% for fulvestrant-naïve and fulvestrant-pretreated 242 

patients, respectively (with 24 patients per cohort, there would be a 90% chance of at least 13 243 

and 7 clinical benefit responses, respectively). At interim analysis, enrollment to the fulvestrant-244 

naïve cohort halted, while the fulvestrant-pretreated cohort continued and completed accrual. 245 

Eight subsequent patients who were being screened at the time of closing each cohort were 246 

permitted to enroll, leading to a total of 16 and 28 patients in the fulvestrant-naïve and 247 

fulvestrant-pretreated cohorts, respectively. Final analysis occurred on August 7, 2018, when all 248 

44 patients had had the opportunity to reach 24 weeks of treatment. All patients who received at 249 

least one dose of capivasertib (n=44) were evaluable for safety. Efficacy data are reported for 250 

43 AKT1E17K-mutant patients and exclude one patient enrolled with a non-E17K mutation 251 

(AKT1E40K). 252 

 253 

DOR and PFS were estimated using the Kaplan–Meier method. Patients without a progression 254 

event as of the analysis date were censored at the last known assessment. Post hoc analyses 255 

of endocrine-sensitive and -pretreated subpopulations and of patients treated with ≤2 or ≥3 prior 256 

lines of chemotherapy for MBC were performed. Patients were defined as sensitive to prior 257 

endocrine therapy if they had ≥24 months of endocrine therapy before recurrence in the 258 

adjuvant setting and/or a response or stabilization for ≥6 months of endocrine therapy for 259 

advanced disease. Exploratory biomarker analyses investigated the association between cfDNA 260 
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response, defined as >50% decrease in AKT1E17K-mutant copies/mL plasma from baseline to 261 

cycle 2 day 1, and radiographic response. All analyses were done with SAS v9.04.   262 
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Results 263 

Patient Characteristics 264 

Sixty-three AKT1E17K-mutant ER+ MBC patients received capivasertib either as monotherapy 265 

(n=20) or in combination with fulvestrant (n=43; Table 1). The majority of combination therapy 266 

patients were enrolled based on AKT1E17K mutation detection by local laboratory testing of tumor 267 

tissue (77%, 33/43), with the remaining (n=10) patients enrolled through central laboratory 268 

plasma testing. Among patients who received the combination, 28 were previously fulvestrant 269 

pretreated and 15 were fulvestrant naïve. Median age was 57 years (range: 38–76). Most 270 

patients had visceral disease at enrollment (87%) and were heavily pretreated. Overall, 91% of 271 

patients had received prior chemotherapy, 35% mTOR inhibitors, and 24% CDK4/6 inhibitors for 272 

metastatic disease. Only 54% of patients exhibited sensitivity to prior endocrine therapy, defined 273 

by at least 24 months of endocrine therapy before recurrence in the adjuvant setting and/or a 274 

response or stabilization for at least 6 months of endocrine therapy for advanced disease. 275 

However, caution should be exercised in interpreting this seemingly low rate of endocrine 276 

therapy sensitivity compared with rates of ~80% reported in pivotal Phase III trials conducted in 277 

ER+ MBC patients (5, 41), given the retrospective and exploratory nature of this analysis. In 278 

combining both monotherapy and combination therapy cohorts, certain differentiating baseline 279 

characteristics were apparent between the fulvestrant-naïve (n=21) and fulvestrant-pretreated 280 

(n=42) patients. Specifically, a high proportion of fulvestrant-naïve patients were treated with 281 

first-line chemotherapy in the metastatic setting (38% vs 12%, respectively) and had received 282 

fewer total lines of endocrine therapy (median 2 vs 4, respectively).  283 

 284 

Safety 285 

Adverse events (AEs) causally linked to study treatment by the investigator are shown in 286 

Table 2. The most common all-grade AEs for the monotherapy cohort were diarrhea (65%), 287 

nausea (50%), hyperglycemia (45%), and vomiting (45%). Similarly, for the combination cohort, 288 
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the most common AEs were diarrhea (59%), nausea (30%), maculopapular rash (21%), fatigue 289 

(18%), and hyperglycemia (18%). Grade ≥3 AEs attributed to study treatments were observed in 290 

50% of patients in the monotherapy cohort, most commonly hyperglycemia (30%) and 291 

maculopapular rash (20%), and 21% of patients in the combination cohort, most commonly 292 

maculopapular rash (9%). AEs irrespective of causality are shown in Supplementary Table 1. 293 

No new safety signals were identified with the combination of fulvestrant. 294 

 295 

Median duration of capivasertib exposure in the monotherapy cohort and combination cohort 296 

was 166 days (mean daily dose 870 mg) and 123 days (775 mg), respectively. In the 297 

monotherapy cohort, 13 (65%) patients required dose interruption, 7 (35%) dose reduction, and 298 

1 (5%) discontinuation as a result of a treatment-related AE (confusion). In the combination 299 

cohort, 19 (43%) patients required dose interruption, 4 (9%) dose reduction, and 5 (11%) 300 

discontinuation because of an AE (Supplementary Table 2), three of which were treatment 301 

related (eosinophilic pneumonia, fatigue, and rash). There were no treatment-related or AE-302 

attributable deaths in either cohort. 303 

 304 

Efficacy Analyses 305 

At the time of data cut-off, seven patients remained on therapy, the majority having discontinued 306 

because of disease progression (Supplementary Figure 1). Median follow-up (time to event) for 307 

all capivasertib-treated patients who were censored at the time of primary analysis was 8.1 308 

months (range: 0–27.5). Efficacy in the monotherapy cohort and combination cohorts (overall 309 

and by prior fulvestrant therapy exposure) is shown in Table 3 and Figures 2 and 3. Among 310 

patients receiving combination therapy, ORR was 36% (95% CI: 19–56) in fulvestrant-311 

pretreated patients and 20% (95% CI: 4–48) in fulvestrant-naïve patients. ORR in the 312 

monotherapy cohort was 20% (95% CI: 8–58). Across both monotherapy and combination 313 
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cohorts (n=63), ORR was 33% (95% CI: 20–50) in fulvestrant-pretreated patients and 14% 314 

(95% CI: 3–36) in fulvestrant-naïve patients. Despite the numerically higher ORRs observed in 315 

the fulvestrant-pretreated patients, CBR24 was broadly similar across groups. Specifically, in the 316 

combination cohort, CBR24 was 50% (95% CI: 31–69) in fulvestrant-pretreated and 47% (95% 317 

CI: 21–73) in fulvestrant-naïve patients. Across both monotherapy and combination cohorts, 318 

CBR24 was 50% (95% CI: 34–66) in fulvestrant-pretreated and 43% (95% CI: 22–66) in 319 

fulvestrant-naïve patients. 320 

 321 

To determine whether additional patient and treatment characteristics could further enrich for 322 

patients who experienced benefit from capivasertib, several exploratory post hoc subgroup 323 

analyses were conducted. Across monotherapy and combination therapy patients, ORR and 324 

CBR24 were numerically higher in patients who had received ≤2 prior lines of chemotherapy 325 

(35% and 62%, respectively) compared with those who had received ≥3 prior lines (22% and 326 

38%, respectively; Supplementary Table 3). Analyses classifying patients based on prior 327 

endocrine therapy sensitivity were also conducted but did not clearly predict benefit of 328 

capivasertib-based therapy. 329 

 330 

Exploratory Biomarker Analyses 331 

Central biomarker assessments in the combination cohort utilized a variety of assays. Central 332 

tissue NGS was performed in 42% (18/43) of patients. BEAMing was used for mutation 333 

detection in plasma cfDNA collected at screening and detected the AKT1E17K mutation in 95% 334 

(41/43) of patients. ddPCR and broader NGS profiling were performed on plasma cfDNA 335 

collected on the first day of treatment (cycle 1 day 1), detecting the AKT1E17K mutation in 80% 336 

(33/41) and 76% (31/41) of patients tested, respectively (Figure 3). These data demonstrate that 337 

plasma-based analyses offer an additional diagnostic opportunity for AKT1E17K mutation testing 338 
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(35). In this cohort, a ≥50% decrease from baseline at cycle 2 day 1 was associated with 339 

improved PFS (Supplementary Figure 2), similar to that previously demonstrated in the 340 

monotherapy cohort (29). 341 

 342 

In 41 patients tested, the broader genetic profiling of plasma samples by NGS identified co-343 

occurring alterations in ESR1 (n=10, almost all in fulvestrant-pretreated patients and all in those 344 

with a detectable AKT1 E17K mutation by plasma NGS), TP53 (n=8, predominantly in fulvestrant-345 

naïve patients), MAP3K1 (n=4), PIK3CA (n=4) and FGFR1 (n=2) (Figure 3). In one of the 346 

PIK3CA-mutant cases, despite an AKT1E17K mutation being detected by BEAMing at a very low 347 

mutant allele fraction (MAF), the AKT1E17K mutation was not in fact detectable by NGS, 348 

indicative of the subclonality of the alteration in this patient (Supplementary Figure 3). Evidence 349 

of a subclonal AKT1E17K mutation could also be found in another patient, in whom the AKT1E17K 350 

mutation was detected by BEAMing and ddPCR but not by the NGS analysis that detected other 351 

somatic mutations in this patient. While 8 (20%) patients did not shed sufficient circulating tumor 352 

DNA for mutation detection by NGS (ie low shedders), in all other (31; 94%) patients, the 353 

AKT1E17K mutation was detected at a level around or above the median MAF indicative of the 354 

predominantly clonal nature of this alteration (Figure 3 and Supplementary Figure 3). In this 355 

limited sample set, no obvious pattern in AKT1E17K clonality or co-incident tumor mutations was 356 

associated with clinical outcome, although, potentially of interest, 6 of the 8 (75%) cases 357 

identified as low shedders by NGS had an objective response, and none of the patients whose 358 

tumors harbored a TP53 mutation achieved an objective response. While the sample size was 359 

small, the observed higher frequency of TP53 mutations in the fulvestrant-naïve compared with 360 

the fulvestrant-pretreated cohort (33% vs 12%, respectively) potentially supports the 361 

observation that this group had more aggressive disease biology (42). Equally, the identified 362 

TP53 mutations could be related to the greater degree of cytotoxic chemotherapy exposure in 363 

this cohort (43, 44). An integrated analysis of efficacy and genomic data is shown in Figure 3.   364 
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Discussion 365 

In this multicohort Phase I study, we sequentially explored the safety and efficacy of the pan-366 

AKT inhibitor capivasertib, initially alone and later in combination with fulvestrant, in ER+ 367 

AKT1E17K-mutant MBC patients. The safety profile was similar to that in prior reports (29, 34, 45), 368 

although combination therapy appeared better tolerated, likely because of the lower dose of 369 

capivasertib (400 mg bid 4 days on, 3 days off) administered with fulvestrant compared with the 370 

monotherapy dose of capivasertib (480 mg bid 4 days on, 3 days off), as suggested by the 371 

dose–response relationship observed for key capivasertib-related toxicities such as 372 

hyperglycemia (46).  373 

 374 

Although the study was not designed to directly compare activity across groups, and noting that 375 

the fulvestrant-naïve (n=21) patients treated in this study may have had a more aggressive 376 

disease profile at baseline than those who were fulvestrant pretreated (n=42), optimal efficacy 377 

was nonetheless observed with combination therapy, specifically in fulvestrant-pretreated 378 

patients (ORR 36%; CBR24 50%). Taken together, these findings are encouraging, particularly 379 

given the heavily pretreated nature of the study population. There is also reason to believe that 380 

our data compare favorably with prior reports on molecular therapy in the clinic. For example, 381 

BELLE-3 evaluated fulvestrant, with or without the pan-PI3K inhibitor buparlisib, in mTOR-382 

inhibitor-exposed patients, reporting, respectively, an ORR of 8% versus 2% and CBR24 of 25% 383 

versus 15% (47). This provides a useful benchmark for fulvestrant monotherapy following 384 

mTOR inhibitor exposure in a notably less pretreated (no more than one line of chemotherapy 385 

and no prior fulvestrant were permitted) population. Similarly, our data compare favorably with 386 

expected chemotherapy outcomes in endocrine-resistant patients (48).  387 

 388 

The benefit of adding capivasertib to hormone therapy in AKT1E17K-mutant patients is consistent 389 

with preclinical data (32). More broadly, the role for co-targeting ER and PI3K pathway 390 
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alterations has been demonstrated in multiple randomized, Phase III studies of PI3K inhibitors 391 

(17, 49). Furthermore, in the recently reported randomized Phase II FAKTION study, the 392 

addition of capivasertib to fulvestrant showed a significant improvement in PFS in a molecularly 393 

unselected, aromatase-inhibitor-pretreated but fulvestrant-naïve ER+ MBC population (50). 394 

Given the increasing genomic complexity of breast cancer as it advances through multiple lines 395 

of therapy, this recent trial report supports our observation and hypothesis, and others’, that 396 

earlier introduction of targeted therapies to a less clonally diverse disease is likely to be 397 

necessary to garner significant improvements in outcome in patients harboring these driver 398 

oncogenic alterations (14).  399 

 400 

Acknowledging that only 24% of enrolled patients in this study received prior CDK4/6 inhibitors, 401 

agents that are now standard of care in combination with an aromatase inhibitor or fulvestrant in 402 

the first- or second-line setting, these data remain of interest. Outcomes of targeted therapy 403 

following CDK4/6 inhibitor exposure in ER+ MBC are largely unknown. However, preclinical 404 

models with acquired resistance to CDK4/6 inhibitors do indicate retained sensitivity to PI3K 405 

pathway inhibition combined with endocrine therapy (51, 52). Indeed, in SOLAR-1, the small 406 

subset of patients with prior CDK4/6 inhibitor exposure did still appear to derive benefit from the 407 

addition of apelisib to fulvestrant (17). Additionally, of interest, recent preclinical data have 408 

implicated PTEN loss, as a potential mechanism of resistance to CDK4/6 inhibitors, via 409 

increased AKT activation in vitro and in vivo (53), a hypothesis since observed in the clinic 410 

where enrichment of PTEN loss-of-function alterations has been described in tumor samples 411 

obtained after CDK4/6 inhibitor therapy (54). Intriguingly, in this context (PTEN-null models 412 

resistant to CDK4/6 inhibitors), AKT inhibition may in fact be superior to PI3K inhibition (53). It is 413 

also clear from preclinical work that constitutively active AKT induces resistance to PI3K 414 

inhibition in breast cancer cell lines, and, interestingly, increased AKT1 expression was 415 

identified in a very small cohort of biopsies collected post-treatment with alpelisib (55). Clinical 416 
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data demonstrating a role for AKT1 mutations mediating resistance to anti-estrogens or CDK4/6 417 

inhibitors are limited. A recent clinical series (n=57) noted an over-representation of PI3K 418 

pathway mutations (PIK3CA, AKT1, TSC2, and/or loss or truncation mutations of PTEN) among 419 

patients with a poor response to neoadjuvant letrozole (Pre-operative Endocrine Prognostic 420 

Index [PEPI] >4 and/or recurrence), although this was unlikely to be driven by AKT1, as none of 421 

the three AKT1-mutant cases in this report experienced a recurrence and two of the three were 422 

actually categorized in the responder group (PEPI <4 and no recurrence) (56). Additionally, an 423 

endocrine-therapy-exposed ER+ breast cancer dataset did not identify AKT1 mutations in 424 

tumors intrinsically resistant to letrozole; rather, AKT1 mutations were detected in those 425 

sensitive to the therapy (57, 58). In agreement with this, genomic profiling of a large (n=1501) 426 

cohort of endocrine-therapy-naïve versus endocrine-therapy-exposed ER+ breast cancers did 427 

not show any evidence of AKT1 mutations being associated with resistance to hormonal therapy 428 

(15). Finally, findings from a recent institutional dataset (n=58) have proposed activating events 429 

in AKT1 as a possible mechanism of resistance to therapy containing CDK4/6 inhibitors, along 430 

with in vitro data showing overexpression of AKT1 as conferring resistance to CDK4/6 inhibitors 431 

(50), although, thus far, this has not been observed in genomic analysis from the registration 432 

studies of these agents (59, 60). Moreover, genomic analysis of 348 ER+ breast cancers 433 

treated with CDK4/6 inhibitors, as well as comparative analysis of tumors before (n=838) versus 434 

after (n=221) CDK4/6 inhibitor therapy, along with paired analysis of tumors before versus after 435 

CDK4/6 inhibitor therapy (n=210), has not identified an association between AKT1 mutations 436 

and therapeutic resistance to CDK4/6 inhibitors (54, 61). 437 

 438 

Our study has several important limitations. Firstly, this trial was not formally powered to 439 

compare efficacy across treatment groups. Secondly, although efficacy appeared most robust in 440 

fulvestrant-pretreated patients, it is noteworthy that the fulvestrant-naïve patients enrolled here 441 

appeared to be a subgroup with poorer prognosis. Given this, we cannot rule out the role that 442 
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demographic imbalance between the groups driven by adverse patient selection factors may 443 

have played in the apparent difference in treatment outcomes. Thirdly, we do not know the 444 

extent to which the presence of an AKT1E17K mutation may influence the natural history or 445 

response to standard therapy for MBC. Despite this, recent analyses suggest that prognoses of 446 

AKT1E17K-mutant and wild-type MBC patients appear largely comparable, somewhat mitigating 447 

this concern (21). Finally, despite opening this study at 16 sites internationally, the rarity of this 448 

biomarker led to slow accrual (22 months to enroll 44 patients in the combination cohort), 449 

despite having central screening by BEAMing in plasma implemented, in addition to local 450 

testing.  451 

 452 

In conclusion, this study demonstrates that AKT1E17K is a clinically relevant, valid target in ER+ 453 

breast cancer and that the AKT inhibitor capivasertib is tolerable and active as both 454 

monotherapy and in combination with fulvestrant, including in patients with prior fulvestrant 455 

resistance. We confirm that the majority of enrolled patients had detectable AKT1E17K in plasma 456 

at baseline and demonstrate the feasibility of enrollment based on centralized plasma screening 457 

for this rare genomic biomarker (35). With other genomic biomarkers such as PIK3CA mutations 458 

expected to become part of routine management paradigms over the coming years in breast 459 

cancer, these data have the prospect of becoming part of a rationale to incorporate other 460 

potentially actionable alterations in breast cancer, including ERBB2 and AKT1, into diagnostic 461 

testing algorithms and for the early identification of these alterations in the metastatic disease 462 

course (62, 63). Finally, data from this study, along with the FAKTION study, have provided the 463 

basis for a confirmatory Phase III study that will take into account populations with and without 464 

prior use of CDK4/6 inhibitors.  465 

 466 

 467 
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Table 1. Baseline Characteristics in Patients With ER+ HER2– AKT1E17K-Mutant Metastatic Breast Cancer  

 Capivasertib 

Monotherapy 

Breast-Specific 

Cohort (N=20) 

Capivasertib + Fulvestrant 

(N=43)
a
 

All Capivasertib-Treated Patients  

(N=63)
a
 

 Fulvestrant 

Naïve (n=15) 

Fulvestrant Pretreated 

(n=28) 

Fulvestrant  

Naïve (n=21) 

Fulvestrant Pretreated 

(n=42) 

Total 

(n=63)
a
 

Median age, years (range) 57 (38–71) 58 (42–76) 56 (40–73) 57 (39–76) 57 (38–73) 57 (38–76) 

Female gender, n (%) 20 (100) 15 (100)  28 (100) 21 (100) 42 (100) 63 (100) 

Race, n (%) 

White 

Asian 

Black 

Other/missing 

 

16 (80) 

1 (5) 

2 (10) 

1 (5) 

 

9 (60) 

6 (40) 

0 

0 

 

18 (64) 

5 (18) 

1 (4) 

4 (14) 

 

12 (57%) 

7 (33%) 

1 (5%) 

1 (5%) 

 

31 (74) 

5 (12) 

2 (5) 

4 (10) 

 

43 (68) 

12 (19) 

3 (5) 

5 (8) 

WHO/ECOG performance status, n (%) 

0 

1 

 

10 (50) 

10 (50) 

 

4 (27) 

11 (73)  

 

10 (36) 

18 (64)  

 

8 (38) 

13 (62) 

 

16 (38) 

26 (62) 

 

24 (38) 

39 (62)  

Hormone receptor status
b
 

ER+ and PR+, n (%)
 

ER+ and PR–, n (%) 

HER2–, n (%) 

 

14 (70) 

5 (25) 

20 (100) 

 

11 (73) 

4 (27) 

15 (100) 

 

23 (82) 

5 (18) 

28 (100) 

 

15 (71) 

5 (24) 

21 (100) 

 

33 (79) 

9 (21) 

42 (100) 

 

48 (76) 

14 (22) 

63 (100) 

Visceral disease, n (%) 20 (100)  12 (80) 23 (82)  18 (86) 37 (88) 55 (87)  
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Median number of prior anticancer regimens, 

n (range)
c
 

Total 

Chemotherapy 

Endocrine therapy 

 

 

7 (3–14) 

4 (0–6) 

4 (0–7) 

 

 

4 (1–7) 

2 (0–5) 

1 (0–4) 

 

 

6 (2–12) 

2 (0–6) 

4 (2–6) 

 

 

5 (1–7) 

3 (0–5) 

2 (0–4) 

 

 

7 (2–14) 

3 (0–6) 

4 (1–7) 

 

 

6 (1–14) 

3 (0–6) 

3 (0–7) 

Number of prior endocrine therapies, n (%)
c
 

1 

2 

≥3 

 

1 (5) 

4 (20) 

14 (70) 

 

6 (40) 

5 (33) 

2 (13) 

 

0 

5 (18) 

23 (82) 

 

6 (29) 

8 (38) 

4 (19) 

 

1 (2) 

6 (14) 

35 (83) 

 

7 (11) 

14 (22) 

39 (62) 

Prior endocrine therapy
c
 

Aromatase inhibitor 

Tamoxifen 

Aromatase inhibitor and tamoxifen 

 

0 

0 

18 (90)  

 

6 (40) 

3 (20) 

4 (27)  

 

8 (29) 

0 

20 (71)  

 

6 (29) 

3 (14) 

9 (43) 

 

8 (19) 

0 

33 (79) 

 

14 (22) 

3 (5) 

42 (67)  

Prior sensitivity to endocrine therapy, n (%)
d
 11 (55) 7 (47) 16 (57) 10 (48) 24 (57) 34 (54) 

Prior chemotherapy for metastatic disease, 

n (%) 

19 (95) 12 (80) 26 (93) 17 (81) 40 (95) 57 (91) 

Chemotherapy as first-line therapy in the 

metastatic setting, n (%) 

5 (25) 6 (40) 2 (7) 8 (38) 5 (12) 13 (21) 

Prior CDK4/6 inhibitor, n (%) 3 (15) 1 (7) 11 (39) 2 (10) 13 (31) 15 (24) 

Prior mTOR inhibitor, n (%) 11 (55) 2 (13) 9 (32) 4 (19) 18 (43) 22 (35) 

Prior P13K inhibitor, n (%) 1 (5) 1 (7) 4 (14) 1 (5) 5 (12)  6 (10) 
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Percentage calculated based on total N in each treatment group. In the monotherapy group, 6 patients were fulvestrant naïve and 14 fulvestrant 

pretreated. 
a
Excludes one non-AKT1

E17K
 patient, who was enrolled based on an AKT1

E40K
 mutation detected by local NGS; 

b
Includes both primary 

and metastatic biopsy; 
c
Inclusive of adjuvant or metastatic therapies; 

d
Defined by at least 24 months of endocrine therapy before recurrence in the 

adjuvant setting and/or a response or stabilization for at least 6 months of endocrine therapy for advanced disease. ECOG, Eastern Cooperative 

Oncology Group; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; PR, progesterone receptor; WHO, World Health 

Organization. 
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Table 2. AEs Causally Linked to Study Treatment (>10% of Patients) and Grade ≥3 AEs 

(>2 Patients)  

AE by Preferred 

Term 

Capivasertib 

Monotherapy 

Breast-Specific 

Cohort (N=20) 

Capivasertib + 

Fulvestrant 

Combination  

(N=44)
a
 

Total 

(N=64)
a
 

 All grades Grade ≥3 All grades Grade ≥3 All grades Grade ≥3 

Any AE (causally 

related to 

capivasertib), n (%) 

19 (95) 10 (50) 38 (86) 9 (21) 57 (89) 19 (30) 

Diarrhea 13 (65) 2 (10) 26 (59) 2 (5) 39 (61) 4 (6) 

Nausea 10 (50) 0 13 (30) 1 (2) 23 (36) 1 (2) 

Hyperglycemia 9 (45) 6 (30) 8 (18) 2 (5) 17 (27) 8 (13) 

Vomiting 9 (45) 0 7 (16) 0 16 (25) 0 

Fatigue 8 (40) 0 8 (18) 1 (2) 16 (25) 1 (2) 

Rash maculopapular 6 (30) 4 (20) 9 (21) 4 (9) 15 (23) 8 (13) 

Decreased appetite 3 (15) 0 7 (16) 1 (2) 10 (16) 1 (2) 

Stomatitis 4 (20) 0 6 (14) 0 10 (16) 0 

Dry skin 4 (20) 0 3 (7) 0 7 (11) 0 

Abdominal pain 4 (20) 0 2 (5) 0 6 (9) 0 

Dizziness 4 (20) 0 2 (5) 0 6 (9) 0 

Pruritus 3 (15) 0 3 (7) 0 6 (9) 0 

Dry mouth 4 (20) 0 0 0 4 (6) 0 

Includes AEs with an onset date on or after the date of first dose and up to and including 28 days 

following the date of last dose of study. A patient is only counted once for each preferred term. 
a
Includes 

one non-AKT1
E17K

 patient excluded from the efficacy analyses, who was enrolled based on an AKT1
E40K

 

mutation detected by local NGS. AE, adverse event; NGS, next-generation sequencing. 
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Table 3. Treatment Efficacy for Patients With ER+ HER2– AKT1E17K-Mutant Metastatic Breast Cancer  

 Capivasertib 

Monotherapy 

Breast-Specific 

Cohort  

(N=20) 

Capivasertib + Fulvestrant 

Combination (N=43) 

All Capivasertib-Treated Patients 

(N=63) 

 Fulvestrant 

Naïve 

(n=15) 

Fulvestrant 

Pretreated 

(n=28) 

Fulvestrant  

Naïve 

(n=21) 

Fulvestrant 

Pretreated 

(n=42) 

Total 

(n=63) 

 

Objective response
a
 

ORR, % (95% CI) 

Complete response, n (%) 

Partial response, n (%) 

DOR ≥6 months, n (%) 

 

20 (8–58) 

0 

4 (20) 

2 (10) 

5 (25) 

 

20 (4–48) 

0 

3 (20) 

3 (20) 

 

36 (19–56) 

0 

10 (36) 

8 (29) 

 

14 (3–36) 

0 

3 (14) 

3 (14) 

 

33 (20–50) 

0 

14 (33) 

10 (24) 

 

27 (17–40) 

0 

17 (27) 

13 (21) 

13 (21) Stable disease 24 weeks, n (%) 4 (27) 4 (14) 6 (29) 7 (17) 

Clinical benefit rate at 24 weeks, 

% (95% CI)
b
 

45 (23–69) 

 

47 (21–73) 50 (31–69) 43 (22–66) 50 (34–66) 48 (35–61) 

 

Median PFS, months (95% CI) 5.4 (3–7) 5.6 (2–14) 5.0 (3–8) 5.4 (3–10) 5.0 (4–7) 5.4 (4–7) 

Response is based on investigator tumor assessments in accordance with RECIST v1.1 in patients with measurable disease. 
a
Confirmed no fewer 

than 4 weeks after the criteria for response were initially met; 
b
Clinical benefit defined as confirmed best overall response of complete response, 

partial response, or stable disease for at least 24 weeks. CI, confidence interval; DOR, duration of response; ER, estrogen receptor; HER2, human 

epidermal growth factor receptor 2; ORR, objective response ratio; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid 

Tumors. 
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Figure 1. Study Design of the ER+ AKT1-Mutant Breast Cancer Patient Cohorts  

The breast cancer cohorts were part of a larger open-label, multipart, Phase I study of the first-in-human 

evaluation of oral capivasertib in patients with advanced solid malignancies. These Phase I expansion 

cohorts were non-randomized; the monotherapy cohort enrolled first, followed by the combination therapy 

cohort. Protocol-specified analyses planned for each study part: For monotherapy, analyses were 

planned after 20 patients were followed up for 12 weeks/withdrawn from the study. For combination 

therapy, interim analysis was planned after 12 patients in each cohort were followed up for 24 

weeks/withdrawn from the study, and final analysis was planned after up to 24 patients in total in each 

cohort were followed up for 24 weeks/withdrawn from the study. 
a
Up to 120. CBR24, clinical benefit rate at 

24 weeks; ER, estrogen receptor; ORR, objective response rate; PFS, progression-free survival. 

 

Figure 2. Efficacy of Capivasertib Monotherapy in ER+ AKT1E17K-Mutant MBC (n=20) 

Plot based on patients with available RECIST data at baseline and at least one follow-up assessment. 

Investigator-assessed best percentage change from baseline was the change in the sum of longest 

diameters of target lesions. BoR, best objective response; ER, estrogen receptor; MBC, metastatic breast 

cancer; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors. 

 

Figure 3. Combined Efficacy and Biomarker Data From the Combination Therapy 

(Capivasertib + Fulvestrant) Cohort in ER+ AKT1E17K-Mutant MBC (n=43) 

Best RECIST response and associated PFS integrated with genomic analyses for all 43 patients enrolled 

in the combination cohorts. Top to bottom: prior exposure to a CDK4/6 inhibitor; best objective response; 

best change from baseline in target lesion diameter according to RECIST v1.1; PFS in months; AKT1
E17K

 

mutation detection at baseline by various testing platforms (BEAMing, ddPCR, NGS) in tissue and/or 

ctDNA, and at C2D1 by ddPCR in ctDNA; and percentage change (≥50% decrease) in AKT1
E17K

-mutant 

copies in ctDNA by ddPCR measured on C2D1 of study treatment compared with baseline (C1D1). For 

33 patients with somatic mutations detected in ctDNA by NGS, the AKT1
E17K

 MAF, as well as the MAF 

from other key alterations, is presented together with the median MAF of all somatic mutations detected 

in each sample. Two patients lacked genomic data (not tested), and eight patients had no somatic 
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mutations detected in their ctDNA samples by NGS, although they did by the more sensitive 

OncoBEAM™ and/or ddPCR assays and were deemed low shedders. Key co-occurring gene mutations 

detected by NGS analysis in ctDNA samples are indicated in the genomic heat map at the bottom of the 

figure. AF, allele frequency; C1D1, cycle 1 day 1; C2D1, cycle 2 day 1; ctDNA, circulating tumor DNA; 

ddPCR, droplet digital polymerase chain reaction; ER, estrogen receptor; FMI, Foundation Medicine, Inc; 

MAF, mutant allele fraction; MBC, metastatic breast cancer; NGS, next-generation sequencing; PFS, 

progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors. 
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64 patients identified with AKT mutations
• 63 AKT1E17K mutant 
• 1 non-AKT1E17K mutanta

1 patient ongoing 
treatment at data cut-off

1 patient ongoing 
treatment at data cut-off

20 received treatment (FAS)

19 patients discontinued 
treatment:
• 11 progressive 

disease
• 2 adverse events
• 3 patient decision
• 3 other

Capivasertib monotherapy Capivasertib and fulvestrant combination

44 received treatmenta

aThe non-AKT1E17K-mutant patient was enrolled based on an AKT1E40K mutation detected by local NGS; this patient was 
excluded from the efficacy analyses. FAS, full analysis set; NGS, next-generation sequencing.

23 patients discontinued 
treatment
• 14 progressive 

disease
• 4 adverse events
• 1 patient decision
• 4 other

16 fulvestrant-naïvea

(FAS)
28 fulvestrant-pretreated

(FAS)

5 patients ongoing 
treatment at data cut-off

15 patients discontinued 
treatment:
• 11 progressive 

disease
• 1 adverse events
• 1 patient decision
• 2 other

Supplementary Figure 1. Participant Flow Diagram



A ≥50% decrease in circulating AKT1E17K at cycle 2 day 1 compared with baseline (cycle 1 day 1), as measured by ddPCR, was 
associated with improved PFS on treatment. ctDNA, circulating tumor DNA; ddPCR, droplet digital polymerase chain reaction; 
PFS, progression-free survival.

Supplementary Figure 2. PFS Association With ≥50% Decrease from Baseline in 
AKT1E17K at Cycle 2 Day 1 in ctDNA
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Supplementary Table 1. Adverse Events Irrespective of Causality Occurring in >10% of 

Patients 

n (%) Capivasertib 

Monotherapy 

Breast-Specific 

Cohort  

(N=20) 

Capivasertib + 

Fulvestrant 

Combination  

(N=44) 

All  

Capivasertib-Treated 

Patients (N=64) 

Any AE (irrespective 

of causality) 

20 (100) 43 (97.7) 63 (98.4) 

AE by preferred 

term (irrespective 

of causality) 

All 

grades 

Grade ≥3 All 

grades 

Grade ≥3 All 

grades 

Grade ≥3 

Diarrhea 13 (65) 2 (10) 28 (64) 2 (5) 41 (64) 4 (6) 

Nausea 11 (55) 0 23 (52) 2 (5) 34 (53) 2 (3) 

Vomiting 9 (45) 0 11 (25) 1 (2) 20 (31) 1 (2) 

Hyperglycemia 10 (50) 7 (35) 9 (21) 3 (7) 19 (30) 11 (17) 

Fatigue 8 (40) 0 10 (23) 1 (2) 19 (28) 1 (2) 

Decreased appetite 4 (20) 0 14 (32) 1 (2) 18 (28) 1 (2) 

Rash 

maculopapular 

7 (35) 4 (20) 10 (23) 5 (11) 17 (27) 9 (14) 

Back pain 6 (30) 0 9 (21) 2 (5) 15 (23) 2 (3) 

Abdominal pain 7 (35) 1 (5) 7 (16) 0 14 (22) 1 (2) 

Stomatitis 4 (20) 0 9 (21) 0 13 (20) 0 
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Aspartate 

aminotransferase   

increased 

3 (15) 2 (10) 8 (18) 2 (5) 11 (17) 4 (6) 

Dizziness 5 (25) 0 5 (11) 0 10 (16) 0 

Anemia 2 (10) 0 7 (16) 1 (2) 9 (14) 2 (3) 

Alanine 

aminotransferase 

increased 

3 (15) 3 (15) 6 (14) 3 (7) 9 (14) 6 (9) 

Pruritus 3 (15) 0 6 (14) 0 9 (14) 0 

Pyrexia 3 (15) 0 6 (14) 0 9 (14) 0 

Asthenia 1 (5) 0 7 (16) 0 8 (13) 0 

Cough 3 (15) 0 5 (11) 0 8 (13) 0 

Headache 4 (20) 1 (5) 4 (9) 1 (2) 8 (13) 2 (3) 

Dry skin 4 (20) 0 4 (9) 0 8 (13) 0 

Arthralgia 1 (5) 0 6 (14) 0 7 (11) 0 

Nasal congestion 3 (15) 0 4 (9) 0 7 (11) 0 

Blood alkaline 

phosphatase 

increased 

1 (5) 1 (5) 5 (11) 0 6 (9) 1 (2) 

Dry mouth 5 (25) 0 1 (2) 0 6 (9) 0 

Constipation 3 (15) 0 3 (7) 0 6 (9) 0 

Neutrophil count 

decreased 

0 0 5 (11) 1 (2) 5 (8) 1 (2) 

Weight decreased 0 0 5 (11) 0 5 (8) 0 
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Hypertension 2 (10) 0 3 (7) 1 (2) 5 (8) 1 (2) 

Myalgia 4 (20) 0 1 (2) 0 5 (8) 0 

Includes AEs with an onset date on or after the date of first dose and up to and including 28 days following 

the date of last dose of study. A patient is only counted once for each preferred term. AE, adverse event. 
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Supplementary Table 2. Treatment Exposure, Dose Modifications and Dose Discontinuation of Capivasertib for the 

Combination Therapy Cohort (Any Grade, Safety Analysis Set)a 

 Capivasertib 

Monotherapy 

Breast-Specific 

Cohort  

(N=20) 

Capivasertib + Fulvestrant Combination 

(N=44) 

Fulvestrant Naïve 

(n=16) 

Fulvestrant-Pretreated  

(n=28) 

All  

(N=44) 

Mean capivasertib relative dose 

intensity (SD)b 

93 (29) 92 (11) 96 (23) 94 (20) 

Mean daily dose, mgc 870 762 783 775 

Median daily capivasertib dose, mg 

(range) 

945 

(535–960) 

791 

(619–800) 

800 

(659–800) 

799 

(619–800) 

Median total capivasertib treatment 

duration, days (range)d 

166  

(22–584) 

116  

(15–709) 

123  

(4–838) 

123 

(4–838) 

Median actual capivasertib 

treatment duration, days (range)e 

96  

(13–332) 

67  

(4–401) 

72  

(4–476) 

72 

(4–476) 

Patients with a dose interruption 

and/or modification, n (%) 

13 (65) 11 (69) 

 

11 (39) 22 (50) 
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Any AE leading to dose interruption 

of capivasertib (irrespective of 

causality), n (%) 

11 (55) 9 (56) 10 (36) 19 (43) 

Any AE leading to dose reduction of 

capivasertib (irrespective of 

causality), n (%) 

7 (35) 2 (13) 2 (7)  4 (9) 

Any AE leading to discontinuation 

of capivasertib (irrespective 

of causality), n (%) 

1 (5) 1 (6) 4 (14) 5 (11) 

aAE data for Part D have been reported previously (1); bRelative dose intensity is actual dose intensity delivered relative to intended dose intensity 

up to progression or actual last dosing day; cMean daily dose = total dose/actual treatment duration; dTotal treatment duration = last dose date on 

which dose >0 mg – first dose date + 1; eActual treatment duration = total treatment duration, excluding dose interruptions and planned ‘no dose’ 

periods for intermittent dosing (‘4 days on, 3 days off’ schedule). SD, standard deviation. 
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Supplementary Table 3. Exploratory Subgroup Analysis of Treatment Efficacy for Patients 

With ER+ HER2– AKT1E17K-Mutant Metastatic Breast Cancer by Number of Prior Lines of 

Chemotherapy for Metastatic Breast Cancer 

 All Capivasertib-Treated Patients  

(Monotherapy Breast-Specific Cohort + 

Combination Therapy Cohort)  

 ≤2 Prior Lines 

(n=26) 

≥3 Prior Lines 

(n=37) 

ORR, % (95% CI)a 35 (17–56) 22 (10–38) 

CBR, % (95% CI)b 62 (41–80) 38 (23–55) 

Median PFS, months (95% CI) 9 (4–15) 4 (3–6) 

aConfirmed no fewer than 4 weeks after the criteria for response were initially met; bClinical benefit defined 

as confirmed best overall response of complete response, partial response, or stable disease for at least 

24 weeks. CBR, clinical benefit rate; CI, confidence interval; ER, estrogen receptor; HER2, human 

epidermal growth factor receptor 2; ORR, objective response rate; PFS, progression-free survival.  
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