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ABSTRACT
◥

Purpose:Wepresent the results of a post hoc tumor tissue analysis
from the phase 3 MILO/ENGOT-ov11 study (NCT01849874).

Patients and Methods: Mutation/copy-number analysis was
performed on tissue obtained pre-randomization. The Kaplan–
Meier method was used to estimate progression-free survival (PFS).
Unbiased univariate analysis, Cox regression, and binary logistic
regressionwere used to test associations betweenmutation status and
outcomes, including PFS and binary response by local RECIST 1.1.

Results: MILO/ENGOT-ov11 enrolled 341 patients, ranging in
age from 22 to 79, from June, 2013 to April, 2016. Patients were
randomized 2:1 to binimetinib or physician’s choice of chemother-
apy (PCC). The most commonly altered gene was KRAS (33%). In
135 patients treated with binimetinib with response rate (RR) data,
other detectedMAPK pathway alterations included:NRAS (n¼ 11,
8.1%), BRAF V600E (n ¼ 8, 5.9%), RAF1 (n ¼ 2, 1.5%), and NF1

(n¼ 7, 5.2%). In thosewith andwithoutMAPKpathway alterations,
the RRs with binimetinib were 41% and 13%, respectively. PFS was
significantly longer in patients with, compared with those without,
MAPK pathway alterations treated with binimetinib [HR, 0.5; 95%
confidence interval (CI) 0.31–0.79]. There was a nonsignificant
trend toward PFS improvement in PCC-treated patients with
MAPK pathway alterations compared with those without (HR,
0.82; 95% CI, 0.43–1.59).

Conclusions: Although this hypothesis-generating analysis is
limited by multiple testing, higher RRs and longer PFS were seen in
patients with low-grade serous ovarian cancer (LGSOC) treated
with binimetinib, and to a lesser extent in those treated with PCC,
who harbored MAPK pathway alterations. Somatic tumor testing
should be routinely considered in patients with LGSOC and used as
a future stratification factor.
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Introduction
Low-grade serous ovarian cancers (LGSOC), which account for 5%

to 10% of all epithelial ovarian cancers, are characterized by a
protracted clinical course, p53 wild-type (WT) expression, and a high
prevalence of MAPK pathway alterations; in contrast, high-grade
serous ovarian cancers almost universally display aberrant p53 expres-
sion and rarely have identifiableMAPK pathway alterations (1, 2). The
MAPK pathway regulates cellular proliferation through a signal
transduction cascade mediated by Ras family members (KRAS, NRAS,
and HRAS), resulting in activation of downstream RAF/MEK/ERK
effectors, and can be inhibited by negative regulators of the path-
way (3). KRASmutations are found in 19% to 36% of LGSOC tumors,
and BRAFmutations are found in 2% to 16% (4–7). Low response rates
to chemotherapy, as reported in retrospective reports, as well as the
unique molecular profile of LGSOC, have led to considerable interest
in the use of MEK inhibitors for the treatment of patients with
recurrent LGSOC (8, 9).

Findings from a phase 2 study of the oralMEK inhibitor selumetinib
showed promising activity in a molecularly unselected population of
patients with recurrent LGSOC, with an objective response rate (ORR)
of 15.4% (10). The study showed no association between mutation
status and response to selumetinib; however, this finding was limited,
as only 65%of enrolled patients had sufficientDNA for genetic analysis
and the study was focused specifically on detection of codon 600
mutations in BRAF and codon 12 and 13 mutations in KRAS.
Subsequently, two large studies of MEK inhibitors for the treatment
of recurrent LGSOC were performed, and both studies enrolled
patients without molecular selection. A randomized phase 2/3
study of trametinib versus physician’s choice of chemotherapy (PCC)
or endocrine therapy showed a response rate of 26.2% with single-
agent trametinib in women with recurrent LGSOC (GOG-0281,
NCT02101788; ref. 11). The phase 3 MILO/ENGOT-ov11 study of
binimetinib versus PCC for the treatment of patients with recurrent
LGSOC closed prematurely after an interim analysis of the initial 303
patients (January, 2016 data cutoff date) found theHR for progression-
free survival (PFS) crossed the predefined futility boundary; at the time
of the interim analysis, the response rate to binimetinib was reported at
16% (12). Patientswere notified of the interim analysis results andwere
allowed to continue binimetinib treatment until discontinuation

criteria were met. An updated analysis with a January, 2019 data
cutoff date using local RECIST 1.1 radiology reads showed a response
rate of 24% with single-agent binimetinib (12). Trametinib and
binimetinib are now category 2A and B National Comprehensive
Cancer Network compendium listed, respectively, as treatment
options for patients with recurrent LGSOC (13). Although these
studies showed promising response rates to single-agent MEK inhi-
bition in the general population ofwomenwith recurrent LGSOC, they
also prompted significant interest in identifying biomarkers to better
select patients most likely to benefit from treatment with a MEK
inhibitor. Here, we present the results of the tumor tissue genetic
testing performed in conjunction with the phase 3 MILO/ENGOT-
ov11 study.

Patients and Methods
Original study design

The MILO/ENGOT-ov11 study enrolled women with low-grade
serous cancer of the ovary or primary peritoneum. The median age of
patients treated with binimetinib was 51.6 years (range, 23–79 years),
and themedian age of patients treated with PCCwas 50.2 years (range,
22–78 years; ref. 12). In short, eligible patients had measurable
recurrent or persistent disease and had received ≥1 prior platinum-
based chemotherapy regimens but≤3 chemotherapy regimens in total,
with no limit to the number of lines of prior hormonal therapy.
Patients had an Eastern Cooperative Oncology Group performance
status of 0 or 1. Patients were excluded if they had received previous
treatment with a MEK or BRAF inhibitor. Patients were randomized
2:1 to receive binimetinib or physician’s choice of intravenous che-
motherapy (pegylated liposomal doxorubicin, paclitaxel, or topote-
can). Binimetinib was administered 45 mg orally twice daily contin-
uously starting on day 1.

The study was approved by the institutional review board of each
site. All clinical work was conducted in compliance with current Good
Clinical Practices as referenced in the International Conference on
Harmonization of Technical Requirements for Registration of Phar-
maceuticals forHumanUse. All patients enrolled in the study provided
written, informed consent to study-directed treatment and molecular
analysis of submitted tissue before their participation. The primary
endpoint was to assess PFS as determined by blinded independent
central review, with the local investigator assessments used as sup-
portive analyses, which was previously reported (12). Formalin-fixed,
paraffin-embedded (FFPE) tissue was collected from participants at
study entry for a predefined exploratory analysis to determine altera-
tions in cancer-associated genes based on the biomarker plan. The
biomarker plan entailed that following confirmation of a low-grade
serous carcinoma diagnosis, tumor tissue would be assessed for
mutations and copy-number variations in cancer-associated (includ-
ing MAPK pathway) genes by next-generation sequencing.

Molecular/biomarker analysis
Enrolled patients were required to submit archival tissue or undergo

fresh biopsy for central pathology review before randomization.
Following confirmation of diagnosis, if sufficient tumor tissue
remained, a next-generation sequencing assay was used to assess a
panel of 315 genes using FoundationOne (Supplementary Table S1).
This post hoc analysis is based on the results of patient outcomes as of
the final data cutoff date of August, 2021 and the molecular results
obtained from tissue submitted for central review at the time of study
entry. Unbiased univariate analysis was used to test the association
between altered genes (in >5% of cohorts) and outcomes when treated

Translational Relevance

To our knowledge, this is the largest randomized study of
patients with low-grade serous ovarian cancer (LGSOC). Although
the primary endpoint of this study was not met, the data generated
provide valuable information regarding how molecular alterations
can affect outcomes. We report a comprehensive analysis of the
association between MAPK pathway alterations and patient out-
comes. Higher response rates and significantly longer progression-
free survival were observed in patients with LGSOC treated with
binimetinib, and to a lesser extent in those treated with physician’s
choice of chemotherapy, who harbored MAPK pathway altera-
tions. The results of this analysis provide reliable evidence that
MAPK pathway alteration status has prognostic implications for
patients with LGSOC. Somatic tumor testing should be considered
for all patients with recurrent LGSOC to aid in clinical decision
making regarding the relative benefit of systemic therapy and used
as a stratification factor in future prospective studies of LGSOC.
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with binimetinib or PCC. Examined outcomes were PFS (estimated by
the Kaplan–Meier method) and binary response by RECIST 1.1
[complete response or partial response (CR/PR) vs. stable or progres-
sive disease (SD/PD)]. Cox regression was used to assess association
between mutated genes and PFS; Fisher exact tests were used to
examine univariate association between mutated genes and binary
response. An FDR was used to assess effect of multiple comparisons.
Multivariable genomic models were constructed for outcomes with
genes that had univariate P values of <0�25 and stayed independently
significant at a P value of <0�05 within a Cox regression model for PFS
and a binary logistic regression model for overall response. MAPK
pathway alterations of interest were determined on the basis of a review
of the literature (9, 11, 14, 15). Cox and binary logistic regressions were
used to examine the relationship between KRAS mutation status,
MAPK pathway alteration status, and outcomes. Interactions on the
multiplicative and additive scales between KRAS/MAPK pathway
alterations and treatment were assessed using interaction terms in
full cohort PFS and OR models (16). Survival estimates stratified by
KRAS mutation status and MAPK pathway alteration status were
calculated with the Kaplan–Meier method. All analyses were per-
formed in R Statistical Software (Version 4�1�3).

Data availability statement
The raw sequencing data for this study were generated at Founda-

tion Medicine; requests for sequencing data can be sent to
clinicaltrials@foundationmedicine.com. Derived data supporting the
findings of this study are available from the corresponding author
upon request.

Results
The phase 3 MILO/ENGOT-ov11 study enrolled 341 patients

between June, 2013 and April, 2016. Among patients treated with
binimetinib who had sequencing data available, there were 144
patients with PFS data and 135 patients with RECIST 1.1 response
data. Among patients treated with PCC who had molecular analysis
data available, there were 71 patients with PFS data and 66 patients
with RECIST 1.1 response data (Fig. 1). Forty-seven genes among
those tested in the gene panel were altered in at least 5% of patients.
KRAS was the most common altered gene, occurring in 33% of
patients. The frequency of KRAS mutation was similar between the
two groups—46 patients (32%) treated with binimetinib and 24
patients (34%) treated with PCC (see Supplementary Table S2 for
the distribution of KRAS mutations and other MAPK pathway
alterations).

Univariate associations of altered genes with overall response and
PFS were performed and plotted volcano-style (Supplementary
Fig. S1A and S1B). Although none of the genes met the FDR threshold
of 0�05, KRAS emerged as the strongest predictor across both out-
comes in the binimetinib group; therefore, we chose to focus on its
effects. We also investigated multivariable genomic models for PFS
and overall response outcomes (Supplementary Table S3A and S3B).
Notably, NRAS was the only other predictor to be independently
associated with overall response in the model. As in previous reports,
NRAS was mutually exclusive with KRAS in the overall cohort of
215 patients (17). Taken together with existing reports of MAPK
signaling pathway mutations being associated with sensitivity to MEK

Figure 1.

Flow diagram representing numbers of patients with next-generation sequencing data available from archival tissue collected at the time of study entry, and
associated outcomes data.
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inhibitors, this led us to investigate the MAPK signaling pathway as
well. When defining best response by RECIST 1.1 in a binary fashion
as either CR/PR or SD/PD based on KRAS mutation status, among
patients treated with PCC, 33% (8/24) of patients with a KRAS
mutation achieved a CR/PR compared with 19% (8/42) of patients
who were KRAS WT. Among patients treated with binimetinib, 44%
(20/45) of patients with aKRASmutation achieved a CR/PR compared
with 19% (17/90) of patients who were KRAS WT. Patients who
harbored a KRAS mutation had 3.4 times the odds of responding to
treatment with binimetinib compared with patients without a KRAS
mutation [95% confidence interval (CI), 1.57–7.67; P ¼ 0.004].

In the binimetinib treatment group, patients harboring a KRAS
mutation had a 50% lower risk of a PFS event (progression or death)
compared with patients without a KRASmutation. Patients treated in
the PCC group showed a smaller effect size in the same direction.
Interaction between type of treatment/KRAS mutation was not sig-
nificant on either additive ormultiplicative scale for response (additive
P¼ 0.8, multiplicative P¼ 0.5) or PFS (additive P¼ 0.5, multiplicative
P ¼ 0.5) outcomes (Fig. 2A).

To investigate whetherKRASG12Vmutations were associated with
more favorable outcomes comparedwith otherKRAS pointmutations,
a Cox regression was used to evaluate PFS for patients with a KRAS
G12V mutation versus those with other KRAS mutations. The Fisher
exact test was used to define any association betweenKRASG12V (n¼
19) versus other KRAS mutations (n ¼ 26) and radiographic best
response by RECIST 1.1. Among patients treated with binimetinib,
there was no difference detected in the effect of KRASG12V mutation
versus other KRAS mutations on PFS or best radiographic response
(PFS HR, 1.08; 95% CI, 0.45–2.59; P ¼ 0.9; Supplementary Table S4).

In the 135 patients treated with binimetinib who had RECIST 1.1
response data available, other identified MAPK pathway alterations
included the following: NRAS (n ¼ 11, 8.1%), BRAF V600E (n ¼ 8,

5.9%), RAF1 (n¼ 2, 1.5%), and NF1 (n¼ 7, 5.2%). In patients treated
with binimetinib, the response rate (best response of CR or PR) was
41% in patients with a MAPK pathway alteration and 13% in those
without aMAPKpathway alteration (Table 1). In patients treatedwith
PCC (n ¼ 66), the response rates were 29% and 19% in patients with

Figure 2.

A, Binimetinib and physician’s choice of chemotherapy treatment groups (n ¼ 215), Kaplan–Meier plot of progression-free survival by treatment arm and KRAS
mutation status (Mut vs. WT). B, Binimetinib and physician’s choice of chemotherapy treatment groups (n¼ 215), Kaplan–Meier plot of progression-free survival by
treatment arm andMAPK alteration status. (MEK162, binimetinib; Mut, mutant;WT, wild-type; ALT, alteration). The x-axis is percentage of patient’s progression-free
survival; the y-axis is time in months.

Table 1. Association between MAPK pathway-altered genes with
best response by RECIST v1.1 in binimetinib-treated patients.

Overall
(n ¼ 135)

CR/PR
(n ¼ 37; RR)

SD/PD
(n ¼ 98)

Alteration Identified n (% altered) n (%) n Pa

KRAS: 0.004
ALT 45 (33%) 20 (44%) 25
WT 90 (67%) 17 (19%) 73

NRAS: 0.2
ALT 11 (8%) 5 (46%) 6
WT 124 (92%) 32(26%) 92

BRAFV600E: >0.9
ALT 8 (6%) 2 (25%) 6
WT 127 (94%) 35(28%) 92

RAF1: 0.5
ALT 2 (1.5%) 1 (50%) 1
WT 133 (99%) 36 (27%) 97

NF1: >0.9
ALT 7 (5%) 2 (29%) 5
WT 128 (95%) 35 (27%) 93

MAPK Pathway: <0.001
ALT 68 (50%) 28 (41%) 40
WT 67 (50%) 9 (13%) 58

Abbreviations: ALT, altered; RECIST, Response Evaluation Criteria in Solid
Tumors; RR, response rate.
aP values calculated with the Fisher exact test.
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andwithout aMAPKpathway alteration, respectively. Among patients
treated with binimetinib (n ¼ 144), longer PFS was observed in
patients harboring MAPK pathway alterations compared with those
without aMAPKpathway alteration (HR, 0.50; 95%CI, 0.31–0.79; P¼
0.003). In patients treated with PCC (n¼ 71), there was a trend toward
longer PFS for patients with, compared with without, a MAPK
pathway alteration (HR, 0.82; 95% CI, 0.43–1.59; P ¼ 0.6). Tests for
interaction between treatment and MAPK pathway alteration were
not significant on additive or multiplicative scales for both response
(additive P ¼ 0.9, multiplicative P ¼ 0.2) and PFS (additive P ¼ 0.4,
multiplicative P ¼ 0.3) outcomes (Fig. 2B).

Figure 3 displays a swimmer plot with the treatment duration
and best response observed for the 144 patients treated with binime-
tinib. At the time of the August, 2021 data cutoff date, 5 patients
remained on treatment with binimetinib. The median time to best
response was 3.6months overall and 14.6months in the 5 patients who
achieved a CR.

Representative CT scan images from a patient with a KRAS G12D
mutation who experienced a sustained CR while on treatment with
binimetinib are shown in Fig. 4. The patient was initially diagnosed
with stage IIIA serous borderline tumor with non-invasive implants in
2005, at which time she underwent a total abdominal hysterectomy,
bilateral salpingectomy, and surgical staging. She was diagnosed with
recurrent disease with progression to LGSOC in 2013. Following
exploratory laparotomy and tumor debulking, she was found to have
residual disease with multiple implants on the small and large bowel
mesentery. Postoperatively, she was treated with intravenous car-
boplatin and weekly paclitaxel plus bevacizumab, followed by 14
cycles of bevacizumab maintenance until a PET scan revealed
multifocal progression of disease. A biopsy performed at the time
of progression revealed a KRAS G12D mutation. In 2015, the
patient was enrolled onto the MILO/ENGOT-ov11 study and
initiated treatment with binimetinib. After 16 months on treatment,
she achieved a CR. In 2018, she experienced a reduction in cardiac
ejection fraction (EF) to 45%. Binimetinib was withheld until
recovery to normal EF, at which time, the patient resumed bini-
metinib at a reduced dose. She had sustained CR at the time of the
August, 2021 data cutoff date.

Discussion
Most patients with LGSOC present with advanced disease, and

70% ultimately developed recurrent or persistent disease (18).
Historically, LGSOC has been both difficult to treat and challeng-
ing to study in a prospective fashion. Patients with LGSOC have
clinically, histologically, and molecularly distinct disease charac-
teristics compared with patients with high-grade disease, with a
younger median age at diagnosis, lower response rates to chemo-
therapy, and absence of TP53mutations (19–21). For these reasons,
patients with LGSOC are generally excluded from most clinical
trials evaluating novel therapies for ovarian cancer. Moreover,
prospective therapeutic trials limited to patients with LGSOC have
been hampered by the rarity of the disease, requiring additional
time, expense, and collaboration between multiple centers for the
timely accrual of patients.

The MILO/ENGOT-ov11 study has been the largest prospective
phase 3 clinical trial performed in patients with histologically con-
firmed LGSOC, with 341 enrolled patients across 102 sites. The data
presented here represent a post hoc analysis that examined the
relationship between tumor mutation profile performed on FFPE
tissue collected at the time of study entry as part of a pre-planned

exploratory analysis and patient outcomes based on the updated
August, 2021 data cutoff date.

This analysis confirms that MAPK pathway alterations, most
commonly in KRAS, are frequently identified in patients with recur-
rent LGSOC, which is consistent with prior reports of alterations in
KRAS (19%–41%),NRAS (9%–26%), and BRAF (2%–16%) in patients
with LGSOC (4, 6, 22–24).

Patients who harbored a KRASmutation were 3.4 times more likely
to respond (CR or PR) to treatment with binimetinib compared with
patients without a KRAS mutation (95% CI, 1.57–7.67). Among

Figure 3.

Swimmer plot representing the duration of treatment for patients treated
with binimetinib (n ¼ 144). Best response by RECIST v1.1 criteria, reason for
treatment discontinuation, and MAPK pathway alteration status are detailed
in the legend.
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patients treated with binimetinib, 44% (20/45) of patients with aKRAS
mutation achieved a CR/PR compared with 19% (17/90) of patients
who wereKRASWT. Among patients treated with PCC, 33% (8/24) of
patients with a KRAS mutation and 19% (8/42) of patients who were
KRAS WT achieved a best response of CR or PR. Among patients
treated with binimetinib, those harboring MAPK pathway alterations
compared with those without such alterations had longer PFS (HR,
0.50; 95% CI, 0.31–0.79). A similar trend toward improved PFS was
observed among patients harboring a MAPK pathway alteration
treated with PCC (HR, 0.82; 95% CI, 0.43–1.59). Limited in vitro
and in vivo data indicate that patients harboring the KRAS G12V
mutation may be more sensitive to MEK inhibition compared with
other KRAS variants (25–28). In our study, there was no difference
in the impact of KRAS G12V mutation versus other KRAS muta-
tions on PFS or best radiographic response. To further evaluate for
any relationship between the presence of MAPK pathway altera-
tions and clinical outcome, we examined the group of patients
displaying any MAPK pathway alteration compared with those
without and found that in the binimetinib-treated patients, the
presence of MAPK pathway alterations was associated with longer
PFS (HR, 0.50; 95% CI, 0.31–0.79). Of note, the median time to best
response for the five binimetinib-treated patients who achieved a
CR was 14.6 months, indicating that prolonged follow-up may be
needed to ascertain patients’ true best response. This is important
when considering interim analysis designs for future studies and in
the clinical management of patients.

In GOG-0281, sequencing data were available for 134 patients, 44
(33%) of whom had tumors harboring activating MAPK pathway
mutations in KRAS, BRAF, or NRAS. Mutations were detected in 22
(31%) of the 70 patients in the trametinib-treated group and 22
(34%) of 64 patients in the standard-of-care group (11). In the
study, PFS and ORR were both markedly better in the patients
treated with trametinib harboring a MAPK pathway mutation
[median PFS, 13.2 months (95% CI, 9.4–20.8) vs. 7.3 months
(95% CI, 5.6–12.7), respectively; ORR, 50% (95% CI, 30.2–69.8)
vs. 8.3% (95% CI, 2.9–18.6), respectively]. The analysis did not find
that mutation status was predictive of PFS (multiple comparison
adjusted P ¼ 0.72, test for interaction). Similar to the results
presented here, in the GOG-0281 study, the ORR was more
favorable with trametinib than standard-of-care therapy in patients
with MAPK pathway mutations [11 (50%) of 22 vs. 2 (9%) of 22]

compared with those without such mutations [4 (8%) of 45 vs. 3
(7%) of 42], although this did not reach statistical significance
(multiple comparison adjusted P ¼ 0.11, test for interaction;
ref. 11).

Prior retrospective data indicate that in patients with LGSOC,
the presence of a MAPK pathway alteration is associated with
platinum sensitivity and prolonged survival, supporting the trend
toward improved outcomes observed in patients treated with PCC
in our study (14, 29). However, in patients treated with a MEK
inhibitor, the presence of a MAPK pathway alteration (including
KRAS) was associated with a marked difference in response, both in
GOG-0281 and in the MILO/ENGOT-ov11 study. The response
rate (CR/PR) for patients treated with binimetinib harboring a
MAPK pathway alteration was 41% compared with 13% in patients
without a MAPK pathway alteration. A lesser trend toward
improved response rate was observed in patients treated with PCC
(29% and 19%, respectively).

This study has several limitations. The analysis reported here is
a post hoc analysis based upon sequencing of selected genes, as
opposed to whole-exome or whole-genome sequencing. The
low incidence of mutations and post hoc nature of the analysis
limits the power to look for statistically significant associations. This
analysis is primarily hypothesis generating and is limited by mul-
tiple testing. In addition, biopsy samples from patients with LGSOC
frequently have low tumor content and psammomatous calcifica-
tions (14), limiting the ability to perform genetic profiling in a
subset of submitted FFPE tissue specimens.

Taken together, these data show that MEK inhibitors have
activity in women with LGSOC, and that mutation status should
be considered when counseling patients regarding expectations of
clinical benefit. Patients with recurrent LGSOC with a MAPK
alteration, most commonly KRAS, were found to have higher
response rates to both PCC and binimetinib treatment, with the
highest response rates seen in patients who harbored a MAPK
alteration and were treated with binimetinib. Given the potential
for toxicity with MEK inhibitors, which can include risk of
ocular adverse events, rash, edema, and congestive heart failure,
a patient’s molecular status may be helpful in determining
sequencing of therapies and individual risk/benefit analysis.
Novel therapeutics targeting the MAPK pathway are currently in
development for patients with LGSOC, with new opportunities

Figure 4.

CT scan images from a patient with a KRASG12Dmutation and a sustained complete responsewhile on treatment with binimetinib.A, CT scan at study enrollment in
2015. B, CT scan in 2020 displaying sustained complete response with resolution of perihepatic adenopathy.
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for therapeutic precision on the horizon. Future prospective
studies performed in patients with LGSOC should collect data
regarding patients’ somatic mutation status and consider strati-
fication for this variable.

Conclusions
Higher response rates and longer PFS were seen in patients who

harbored MAPK pathway alterations, with the highest response
rates observed in patients with MAPK pathway alterations treated
with binimetinib. Although interactions between treatment and
KRAS/MAPK alteration status were not significant, effects were
stronger and associations more significant in the binimetinib group,
though the physician’s choice group in particular was small in
numbers. Evidence to support the hypothesis that MAPK pathway
alteration is predictive of response to binimetinib would require a
more adequately powered study. However, the results of this
analysis provide reliable evidence that MAPK pathway alteration
status has prognostic implications for patients with LGSOC. Somat-
ic tumor testing should be routinely considered in patients with
recurrent LGSOC to aid in clinical decision making, and should be
accounted for in future clinical trials.
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