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Key Points

•We have identified
hierarchal subtype
differences in myeloma
cells at diagnosis.

• The prognostic impact
supports an acquired
B-cell trait and pheno-
typic plasticity as a
pathogenetic hallmark
of MM.

Despite the recent progress in treatment of multiple myeloma (MM), it is still an incurable

malignant disease, and we are therefore in need of new risk stratification tools that can help

us to understand the disease and optimize therapy. Here we propose a new subtyping of

myeloma plasma cells (PCs) from diagnostic samples, assigned by normal B-cell subset

associated gene signatures (BAGS). For this purpose, we combined fluorescence-activated

cell sorting and gene expression profiles from normal bone marrow (BM) Pre-BI, Pre-BII,

immature, näıve, memory, and PC subsets to generate BAGS for assignment of normal

BM subtypes in diagnostic samples. The impact of the subtypes was analyzed in 8 available

data sets from 1772 patients’ myeloma PC samples. The resulting tumor assignments in

available clinical data sets exhibited similar BAGS subtype frequencies in 4 cohorts from

de novo MM patients across 1296 individual cases. The BAGS subtypes were significantly

associatedwith progression-free and overall survival in ameta-analysis of 916 patients from

3 prospective clinical trials. The major impact was observed within the Pre-BII and memory

subtypes, which had a significantly inferior prognosis compared with other subtypes.

A multiple Cox proportional hazard analysis documented that BAGS subtypes added

significant, independent prognostic information to the translocations and cyclin D

classification. BAGS subtype analysis of patient cases identified transcriptional differences,

including a number of differentially spliced genes. We identified subtype differences in

myeloma at diagnosis, with prognostic impact and predictive potential, supporting an

acquired B-cell trait and phenotypic plasticity as a pathogenetic hallmark of MM.

Introduction

Despite the extensive insight into multiple myeloma (MM) pathogenesis, as outlined in the World Health
Organization classification,1,2 a number of questions remain unanswered regarding the origin and
initiation of the developing myeloma cells, including its association with the normal B-cell hierarchy in
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the bone marrow (BM).3-6 We hypothesize that considering MM as
a disease of differentiation by identifying its cell of origin (COO)
could lead to novel biological insight and development of new
treatment options as described by Boise et al.7

MM develops from a premalignant monoclonal gammopathy of
unknown significance (MGUS), by a stepwise oncogenesis to
intramedullary early smoldering or evolving de novo myeloma because
of acquired genetic deregulation.8-10 The primary translocations
implicating the 14q32 locus involve a series of promiscuous target
genes, with CCND1 and FGFR3/MMSET being the most frequently
present at the MGUS stage.11 Furthermore, the larger part of break
points occurs in the switch regions, suggesting the early translocation
happens during immunoglobulin heavy chain class-switch recombi-
nation in the germinal center.12-14 The existence of early translocations
and the overexpression of CCND genes form the translocations and
cyclin D (TC) classification generated from early events.9,11 Later
incidences include a spectrum of mutations and dysregulations
occurring in advanced disease with poor prognosis.14-19

Myeloma plasma cells (PCs) are class switched, freezing the initiating
cell at the postgerminal B-cell maturation stage, refuting that the
disease is initiated in earlier B-cell subsets, as has been proposed
before.20 The earliest immunoglobulin heavy chain clonotypic cell we
have identified with a class-switched isotype is in the myeloma
memory B-cell compartment,21,22 but its clonogenic and malignant
potential is a controversial issue.23-26 Recent studies have concluded
that the clonotypic cells are remnants of a neoplastic cell with no
malignant potential,27,28 contrasting the myeloma PC compartments.

The myeloma stem cell concept has been reviewed in detail by us
and others.29,30 We proposed an operational definition of COO to
allow for acquisition of data supporting that a normal B cell, which
achieves the first myeloma initiating mutation, is not necessarily
linearly connected to the myeloma stem cell. These results underpin
the hypothesis that myeloma generating cells are present in the
malignant PC compartment, but the COO is a normal counterpart of a
germinal-center B cell that evolves via differentiation into a premalig-
nant PC compartment already present in MGUS populations.

The plasticity potential of myeloma cells, perhaps caused by
interaction with the tumor microenvironment, also plays an important
role in development and maintenance of MM.30

The present study takes a COO approach, where we refer to
an expanding compartment initiated by a differentiation specific
oncogene hit.31 The terms “COO” and “cancer stem cells” have
been used interchangeably. However, it is important to differentiate
between them as in contrast to our phenotypic COO studies, it is
our perception that cancer stem cell research depends on single
cell studies in the frame of the classical stem cell definition.29

The deregulated B-cell cells under influence by the microenviron-
ment may be key in the emergence of myeloma and its related
phenotypic changes. This phenomenon, coined “plasticity,” is defined
as a changed cellular phenotype or function during deregulated
differentiation.32 More specifically, this refers to malignant mature
PCs that share properties of different maturation steps, including
precursors. The phenomenon facilitates a new tool for providing
insight into the observed clonal plasticity33,34 associated with
oncogenesis.8-12,17,35-38 The mechanisms of deregulated differ-
entiation and myeloma-cell plasticity ought to be investigated and
their clinical significance assessed.

Recently, we have documented a procedure to identify and study
gene expression of flow-sorted human B-cell subsets from normal
lymphoid tissue.39-42 These subsets can be profiled and by proper
statistical modeling defined specific B-cell associated gene signa-
tures (BAGS), recently introduced for diffuse large B-cell lymphoma
(DLBCL).43-45 Here we have applied BAGS from normal BM subsets
to assign individual MM subtypes and correlate them with prognosis
to delineate their pathogenetic impact.

Patients, material, and methods

The subtyping method based on normal BM has previously
been briefly outlined in Nørgaard et al46 and applied to chronic
lymphocytic leukemia patients. In this article, we will describe it in
more detail and provide more profound quality control of the normal
samples.

Ethical statement and tissue collection

All normal tissue samples were collected in accordance with the
research protocol (Myeloma Stem Cell Network, N-20080062MCH)
accepted by the North Denmark Regional Committee on Health
Research Ethics.

Normal BM was either harvested from the sternum (n5 7)41 during
cardiac surgery or taken as aspirates from the iliac crest of healthy
volunteers (n 5 14) during routine surgical procedures in
accordance with the Declaration of Helsinki. Normal BM aspirates
were cleared for red blood cells by 15 minutes lysis using 20-fold
excess of Easylyse (DAKO, Glostrup, Denmark). The sample was
centrifuged 10 minutes at 250g, the supernatant discarded, and
the pellet washed in phosphate-buffered saline. The centrifugation
step was repeated, and the pelleted cells dissolved in stain buffer
and processed directly for analysis using multiparametric flow
cytometry (MFC).

MFC, cell sorting, and gene expression profiling

The normal B-cell subsets were phenotyped by MFC and
fluorescence-activated cell sorting (FACS) into 6 distinct B-cell
subsets (Pre-BI, Pre-BII, immature [Im], naı̈ve [N], memory [M] B cells,
and PCs) using a monoclonal antibody panel,41,44 described in detail
in supplemental Text 1.

RNA was labeled for microarray analysis, hybridized to the
Affymetrix Human Exon 1.0 ST (HuEx-1.0-st) Array41,44 or to the
Affymetrix Human Genome U133 Plus 2.0 (HU-U133-2.0) Array
platform, and referred to as the “normal sternal BM data set”
(n 5 7) (GSE68878),47 the “normal iliac crest BM aspirate” data
set–HuEx-1.0-st (n 5 8) (GSE99635), and the “normal iliac
crest BM aspirate” data set–Hu-U133-2.0 (n 5 6) (GSE107843).
The CEL files have been deposited in the National Center for
Biotechnology Information Gene Expression Omnibus repository
with GSE numbers as indicated previously and comply with
minimum information about a microarray experiment (MIAME)
requirements.48

Clinical myeloma data sets

Clinical data originated from Affymetrix microarray analysis of
PC-enriched myeloma samples, from 4 prospective clinical
trials: University of Arkansas for Medical Sciences (UAMS),
Hematology Oncology Group-65/German-speaking Myeloma
Multicenter Group-HD4, Medical Research Council Myeloma IX
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Figure 1. Expression of membrane markers, transcription factors, and B-cell subset-specific genes in normal BM tissue. (A) B cells of the BM were defined by

flow cytometry as CD191, CD451, and CD32 and were additionally divided by surface marker expression of CD10, CD20, CD27, CD38, and CD34, published in detail

previously.44 The data quality of the differentiating B-cell subset compartments was validated as illustrated by normalized histograms of (A) the mean fluorescence intensities

(MFIs) CD markers based on merged MFC reanalysis of pure sorted populations resulting from 7 independent sorting procedures. Broken lines represent MFI values for each

sorted B-cell subset. (B) Principal component analysis of the MFI values for each sorted cell in all samples. The cells are coded with a color according to their original subset.
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(All HG-U133-2.0 arrays), and Acute Medically Ill Venous Thrombo-
embolism Prevention with Extended Duration Betrixaban (APEX)
(Affymetrix Human Genome U133A [HG-U133A] arrays),35,36,49-52

as well as a preclinical study, the Intergroupe Francophone du
Myelome and Dana-Farber Cancer Institute Project37,53 (HuEx-1.0-st
arrays).

The following 3 cohorts were used for BAGS assignment and
subtype association in the disease stages MGUS, smoldering
multiple myeloma, relapsed multiple myeloma, primary plasma
cell leukemia, and human myeloma cell lines: the Salamanca
cohort (Affymetrix Human Gene 1.0 ST arrays),54 the Milan
cohort (HG-U133A arrays),55 and the Mayo cohort (HG-U133A
arrays).56,57

The following 2 B-cell line data sets were used in the analysis:
Bcell20 (HuEx-1.0-st arrays) and Bcell26 (HG-U133-2.0 arrays).58

All data sets are retrieved from Gene Expression Omnibus with the
indicated GSE numbers and are described in detail in the “Materials
and methods” of supplemental Text 1.

Statistical analysis

All statistical analyses were performed with R version 3.4.3 using
Bioconductor packages.59,60 Detailed session information is pro-
vided as a Knitr document61 in supplemental Text 2.

Array normalization. All gene expression data sets where
cohort-wise background corrected, normalized, and summa-
rized by robust multichip average (RMA)62 normalization using
the functions from the R-package affy v1.54.063 and summa-
rized at Ensemble Gene ID level with a custom CDF file from
brainarray version 20.0.0. The analyses are based on the online
gene expression profile (GEP) data sets listed previously and
summarized in supplemental Text 1.

Systematic evaluation of transcription factors, surface
markers, and B-cell differentiation genes. Transcription fac-
tors, surface markers, and B-cell differentiation genes as defined
in Biomart (http://www.biomart.org/) were listed and included in
hierarchical clustering of the BM data set. The most variable and
distinctive genes across subsets were selected and combined
with B-cell subset specific genes identified through literature
review to evaluate subset identity.

Multivariate statistical methods. Comparisons between
GEPs of molecular subsets were performed by principal compo-
nent analysis and heat maps. For this we used the prcomp
and heatmap.2 functions from the R-packages stats and
gplots, respectively. The hierarchical clusters alongside the
heat maps were made using Ward’s method with Pearson’s
correlation coefficient as dissimilarity measure via the R-function
hclust.

TC and risk classification. Methods for deriving the TC
expression pattern and the UAMS risk classification based on
Affymetrix gene expression microarray data are described in
Bergsagel et al and Zhan et al.9,35

BAGS classification. The BAGS classifier was trained on
median centered gene expression data from normal BM, using a
regularized multinomial regression model with 6 classes corre-
sponding to the respective B-cell subtypes. Regularization was
done using the elastic net penalty as implemented in the R-package
glmnet.64 The elastic net penalty depends on a model parameter a
varying between 0 and 1, which balances the ridge regression
penalty (a 5 0), allowing all genes in the model, and the Lasso
penalty (a 5 1), allowing a maximum number of genes equal to
the number of samples. The model also involves a regularization
parameter l that determines the weight of the penalty and thereby
the number of nonzero coefficients. The model parameter a was
varied between 0.01 and 1, and the regularization parameter l was
varied between 27.5 and 21 on a log scale. The adequacies of
the models were validated by choosing the minimum multino-
mial deviance determined by “leave 1 sample out” cross vali-
dation. The model with a 5 0.24 and log l 5 25.67 had the
smallest cross-validated multinomial deviance leaving us with 184
genes with nonzero coefficients (supplemental Figure 1). This
indicates, that by lowering log l below 25.67, a number of
alternative very gene rich models could have described the
data well. However, we found the above-mentioned choice a
suitable compromise between sparsity and robustness. Each
clinical data set was gene-set-wise adjusted to have zero
median and same variance as the normal BM data set. The
associated COO Pre-BI, Pre-BII, Im, N, M, or PC for each
patient in each data set was subtyped by the BAGS classifier
by assigning the class with the highest predicted probability
score above 0.40 and otherwise unclassified (supplemental
Figure 2).

The probability cutoff was thoroughly tested (supplemental Text 2,
section 11.1).

REGS classification. The samples were assigned resis-
tance probabilities for the drug melphalan by resistance gene
signature (REGS) classifiers.58,65-68

Survival analysis. Kaplan-Meier curves, log-rank tests, and
Cox proportional hazards models were used for survival analysis
and handled with the R-package survival.69 The cohorts involving
patients from 3 prospective clinical trials were amalgamated into
a meta–data set to increase the power of the study. BAGS
subtypes as an independent explanatory variable was investigated
in the meta–data set by a Cox proportional hazards regression
analysis with BAGS subtypes, TC classes, and cohort as potential
confounders. Harell’s C-statistic for overall survival (OS) was
calculated from predicted values from the multivariate Cox model
with and without inclusion of the BAGS classes to assess the
prognostic utility.

Detection of alternative splice variants in BAGS subclasses.
Alternative splice variants in the BAGS subtypes were investigated
using the analysis of splice variation (ANOSVA) method.70 The
method consists of a linear model with interaction effects to detect

Figure 1. (continued) The dots represent mean values for each sorted B-cell subset. (C) The most variable probe sets were used in unsupervised hierarchical clustering

analysis of the surface markers (MME 5 CD10, CD34, CD38, CD27; PTPRC 5 CD45; MS4A 5 CD20, CD19) used for FACS. (D) B-cell differentiation–specific genes

(n 5 45), summarized from a literature review of transcriptional regulation of B lymphopoiesis. The colors at the top of panel D indicate the relative gene expression for each

sample, with blue representing high and brown representing low.
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alternative exon usage between 1 class and the rest within a gene.
The linear model is given by: yijk5m1 ai1 bj1 gij1 eijk, where yijk is
the log2 RMA normalized gene expression for class i, exon j, and
sample k; m is the mean expression for the gene; ai is the class effect;
bj is the exon effect; gij is the interaction between group i and exon
j (ie, the alternative exon usage); and the eijk’s are independent,
identically distributed Gaussian residuals. The analysis was per-
formed genewise for all genes of interest, and the result for each
gene was reported as the effect size and P value for the most
significant interaction effect. When fitting a linear model in R, the
interaction effects are by default given as treatment effects (ie, 1 level
is set as a reference with an effect of zero and other effects are
estimated as deviations from this). This makes the estimation
dependent on the choice of reference. As we are interested in
deviations from the group effect, an internal loop over exons was
initially run for each gene, where the expressions were groupwise
median centered and the reference exon was chosen as the
exon giving the highest P value in a 2-sided Student t test of the
group means (ie, the exon where the difference between groups
was closest to the median difference). For the analysis of
differential exon usage, the uncentered data were used.

Data for the analysis were obtained by RMA normalizing the 170
samples with HuEx-1.0-st array data from the IFM-DFCI data set
using the just.rma function from the R-package affy v1.54.063 and
summarizing at exon level with a custom CDF file from brainarray
version 20.0.0. All genes included in the training set for the BAGS

classifier were investigated for differential exon usage for Pre-BII vs
rest, and memory vs rest. Genes with evidence of differential exon
usage were defined as genes with an adjusted P , .01 and an
absolute interaction effect .1. Significant genes for the analysis of
memory subtype cases vs rest are shown in supplemental Table 1B,
and significant genes for the analysis of Pre-BII vs rest are shown in
supplemental Table 2A.

An enrichment analysis for biological process gene ontology (GO)
terms of significant genes was done using the R-package topGO
v2.28.0. Results for memory vs rest are shown in supplemental
Table 3B, and results for Pre-BII vs rest are shown in supplemental
Table 3A. Updates in the GO.db database might cause changes in
the enrichment analysis; accordingly, all tables and interpretations
of GO terms in this document are at version 3.4.1 of the GO.db.71

The significance level was set throughout to 0.05, and effect
estimates were provided with 95% confidence intervals. P values
for the differential gene expression and alternative splice analyses
were adjusted by Holm’s method.72

Results

BAGS classifier generation and clinical

sample assignment

The data quality of the differentiating B-cell subset compartments of
the sternal BM was individually validated as illustrated by density

Table 1. BAGS defined subtype analysis

Group Pre-BI (%) Pre-BII (%) Im (%) N (%) M (%) PC (%) UC (%) Sum

Frequencies across data sets (P 5 .90)

UAMS 3 (1) 29 (5) 58 (10) 143 (26) 219 (39) 23 (4) 84 (15) 559

Hovon 65 2 (1) 19 (6) 45 (14) 61 (19) 134 (42) 11 48 (15) 320

Myeloma IX 1 (0) 14 (6) 23 (9) 59 (24) 105 (43) 8 (3) 37 (15) 247

IFM-DFCI 2 (1) 11 (6) 21 (12) 38 (22) 68 (40) 4 (2) 26 (15) 170

Sum* 8 (1) 75 (6) 147 (11) 302 (23) 528 (41) 46 (4) 196 (15) 1296

Association with the TC classification (P < .001)

4p16 1 (1) 21 (12) 7 (4) 45 (25) 78 (44) 3 (2) 22 (12) 177

MAF 2 (2) 4 (5) 12 (15) 25 (30) 31 (38) 1 (1) 7 (9) 82

6p21 1 (1) 2 (2) 12 (14) 19 (22) 36 (42) 2 (2) 14 (16) 86

11q13 0 (0) 3 (2) 11 (7) 46 (29) 81 (51) 4 (2) 15 (9) 160

D1 2 (0) 11 (3) 63 (15) 89 (21) 157 (37) 19 (5) 81 (19) 422

D1plusD2 0 (0) 4 (20) 2 (10) 2 (10) 9 (45) 0 (0) 3 (15) 20

D2 1 (1) 16 (13) 12 (10) 15 (12) 53 (44) 7 (6) 17 (14) 121

Unclassified 1 (0) 12 (5) 28 (12) 60 (26) 81 (36) 10 (4) 36 (16) 228

Sum 8 (1) 73 (6) 147 (11) 301 (23) 526 (41) 46 (4) 195 (15) 1296

ISS stage III with increased frequencies in the Pre-BII and M subtypes (P 5 .032)

Stage I 2 (0) 8 (2) 51 (12) 115 (28) 149 (36) 18 (4) 72 (17) 415

Stage II 1 (0) 18 (7) 25 (9) 65 (24) 105 (39) 15 (6) 39 (15) 268

Stage III 2 (1) 19 (10) 22 (11) 33 (17) 89 (46) 5 (3) 23 (12) 193

NA 1 (0) 17 (7) 28 (11) 50 (20) 115 (46) 4 (2) 35 (14) 250

Sum 6 (1) 62 (6) 126 (11) 263 (23) 458 (41) 42 (4) 169 (15) 1126

The BAGS-defined subtype analysis was performed across 4 different clinical cohorts (N 5 1296 cases) following assignment of the data sets according to the restricted multinomial
classifier.
ISS, International Staging System; UC, unclassified.
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plots from MFC analysis (Figure 1A) and principal component
analysis (Figure 1B) of the MFIs of the CD markers used for FACS;
unsupervised cluster analysis was also conducted for the gene
expression values of the membrane CD markers used for FACS
(Figure 1C; previously shown in Nørgaard et al46) and 45 classical
B-cell markers summarized from a literature search (Figure 1D).
Subset-specific segregation was further documented by principal
component analysis (supplemental Figure 3).

The BAGS classifiers with the smallest deviance determined
by cross validation consisted of 184 genes (for details, see
supplemental Text 1 and supplemental Figure 1). Each B-cell
subset signature contained 27 to 54 genes, ensuring compa-
rable gene representation for all subsets in the BAGS classi-
fier. The selected genes and associated coefficients for the
BAGS signatures are shown in supplemental Table 4 (previously
shown in Nørgaard et al46). The expressed signatures included
51 genes associated with specific B-cell functions, 79 spe-
cific genes with more fundamental biological associations,
and 24 probes with unknown gene functions (supplemental
Table 5A-F).

We subsequently validated the BAGS classifier, which was trained
using GEP data from Human Exon 1.0 ST Arrays, on independent
normal B-cell subsets from BM aspirates from the iliac crest
profiled using either HuEx-1.0-st or HG-U133-2.0 arrays, and found
concordant assignments for both platforms (supplemental Table 2).
This documented the cross-platform validity of the classifier,
allowing its use in clinical data with GEP originating from other
platforms.

Microarray data from 4 independent cohorts (n 5 1296) of de
novo MM patients were assigned for BAGS subtypes. Table 1
shows the resulting assignment of the tumors and exhibited

BAGS subtype frequencies and average percentage for Pre-BI5 1%,
Pre-BII 5 6%, Im 5 11%, N 5 23%, M 5 41%, and PC 5 4%,
with no significant variation between the cohorts from different
geographic regions, time periods, or sampling methods (P 5 .9).
We allow 15% of cases within each cohort to be unclassified,
resulting in a probability cutoff of ;0.40. The distribution of the
TC classes within the BAGS subtypes is given in Table 1, with
significant association identified (P , .001). There was also
significant correlation with ISS staging (P 5 .032), with increased
numbers of the Pre-BII and M subtypes associated with ISS stage
III, as shown in Table 1. BAGS, proliferation index, and melphalan
resistance assignments for all samples used in the analyses are
provided in supplemental Table 6A-H.

Prognostic impact of assigned BAGS subtypes

Figure 2 illustrates the results from a meta-analysis of the 916
patients included in the 3 prospective trial cohorts with high-dose
melphalan as first-line therapy (UAMS, HOVON65/GMMG-HD4, and
MRC Myeloma IX) with the HG-U133-2.0 microarray data available,
documenting that the assigned BAGS subtypes were significantly
associated with PFS and OS (PFS, log-rank test, P , .001; OS,
log-rank test, P , .001). Major impact was observed within patient
cohorts with the Pre-BII and M subtypes, which had a significantly
inferior prognosis compared with the patients with Im, N, and PC
subtypes.

The robustness of the BAGS association with outcome was
successfully evaluated for a wide range of probability cutoffs for the
percentage of unclassified cases (supplemental Text 2, section
11.1). The BAGS-assigned MM subtypes in the individual pro-
spective clinical trial data sets UAMS/TT2&3, HOVON/GMMG-
HD4, and MRCIX, all including high-dose melphalan and a variety of
new drugs, were also separately analyzed for outcome following
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Figure 2. Meta-analysis of the prognostic impact of assigned BAGS subtypes. Progression-free survival (PFS) (A) and OS (B) were compared between BAGS

subtypes for high-dose melphalan–treated patients in published prospective clinical trials. P values are results from log-rank tests. The subtype numbers given as n are the

numbers of events/number of assigned patients with the subtypes in the meta–data set. The BAGS subtypes are color coded as in Figure 1.
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treatment as illustrated in supplemental Figure 4. Results from the
individual data sets were in accordance with the above-described
meta-analysis illustrated in Figure 2.

Cox proportional hazard meta-analysis results, as shown in Table 2,
and Harell’s C-statistic, giving the concordance between observed
survival and predicted risk scores from the a multivariate cox model
with (C 5 0.65) and without (C 5 0.59) BAGS classes,
demonstrated that the BAGS subtypes added significant and
independent prognostic information to the already well-established
TC classification. In addition, we found significant correlation
between the BAGS subtypes and the proliferation index (PI) risk

profiling (P , .001), melphalan resistance probability (P , .001),
and b-2 microglobulin plasma level (P , .001) as illustrated in
Figure 3, respectively. Results in these figures are for a combined
data set adjusted for differences in individual data sets, while results
for individual data sets may be found in supplemental Text 1 and
supplemental Figure 5.

BAGS assignment of MGUS, smoldering myeloma,

MM, extramedullary MM, and myeloma cell lines

Available data sets were used for BAGS assignment of associated
myeloma diseases, as shown in supplemental Table 7A. Of interest,

Table 2. Cox proportional hazards regression analysis

Univariate Multivariate

Hazard ratio 95% CI P Hazard ratio 95% CI P

Combined PFS, n5 642, number of events5 311

Pre-BII 1 — — 1 — —

Im 0.45 0.26-0.76 .0032 0.48 0.28-0.83 00085

N 0.41 0.25-0.66 ,.001 0.39 0.24-0.63 ,.001

M 0.61 0.39-0.95 .027 0.58 0.37-0.92 .02

PC 0.28 0.13-0.6 ,.001 0.3 0.14-0.64 .0018

4p16 1 — — 1 — —

MAF 0.47 0.29-0.77 .0026 0.53 0.32-0.86 .011

6p21 0.23 0.07-0.73 .013 0.17 0.05-0.54 .0027

11q13 0.36 0.26-0.52 ,.001 0.31 0.22-0.45 ,.001

D1 0.35 0.26-0.47 ,.001 0.3 0.22-0.41 ,.001

D1plusD2 0.27 0.12-0.63 .0024 0.27 0.12-0.62 .0021

D2 0.38 0.25-0.57 ,.001 0.25 0.16-0.39 ,.001

Hovon65 1 — — 1 — —

MyelomaIX 1.16 0.84-1.6 .38 1.15 0.83-1.59 .41

UAMS 0.37 0.29-0.48 ,.001 0.33 0.26-0.42 ,.001

Combined OS, n 5 642, number of events 5 236

Pre-BII 1 — — 1 — —

Im 0.31 0.18-0.51 ,.001 0.36 0.21-0.62 ,.001

N 0.19 0.12-0.3 ,.001 0.19 0.12-0.31 ,.001

M 0.33 0.22-0.5 ,.001 0.34 0.23-0.52 ,.001

PC 0.1 0.03-0.28 ,.001 0.11 0.04-0.32 ,.001

4p16 1 — — 1 — —

MAF 0.53 0.3-0.93 .027 0.59 0.34-1.05 .072

6p21 0.43 0.13-1.36 .15 0.51 0.16-1.65 .26

11q13 0.48 0.33-0.71 ,.001 0.51 0.35-0.76 ,.001

D1 0.37 0.26-0.51 ,.001 0.39 0.28-0.55 ,.001

D1plusD2 0.41 0.17-1.02 .056 0.31 0.12-0.78 .013

D2 0.53 0.34-0.83 .0056 0.47 0.3-0.75 .0014

Hovon65 1 — — 1 — —

MyelomaIX 1.23 0.81-1.85 .33 1.24 0.82-1.88 .31

UAMS 0.91 0.68-1.21 .5 0.87 0.65-1.17 .35

Cox proportional hazards regression analysis in the meta–data set for BAGS subtypes based on PFS and OS, demonstrating added independent significance to the TC classification
staging system. Columns on the left show results for a univariate analysis with each of the covariates, whereas columns on the right show results from the multivariate model. The Pre-BI
class was dropped from the analysis because of too few observations in this group.
CI, confidence interval.
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5 of 6 PC leukemia cases were M subtypes, indicating a subtype
evolution or selection for advanced disease. In contrast, MGUS
cases had a significantly high frequency (.50%) of N subtypes,
which was different from smoldering myeloma and newly
diagnosed and relapsed MM. The distribution of M component
isotypes showed no significant differences across BAGS sub-
types, except for a tendency for light chain disease to be overrep-
resented in the postgerminal subtypes as shown in supplemental
Table 7B. Frequencies of BAGS subtypes in relapsed MM
patients from the APEX data set (supplemental Table 7C)
were similar to the frequencies in first-line patients shown in
Table 1. Finally, we observed that 9 out of 12 human myeloma
cancer cell lines were classified as PC subtypes (supplemental
Table 8).

Characterization of BAGS subtypes

Differential expression analysis of BAGS subtypes with poor prognosis
(Pre-BII or memory vs rest) identified hundreds of genes with a highly
significant differential expression as given in supplemental Table 9A-B
for the Pre-BII and memory subtypes, respectively. GO enrichment of
significant genes showed that the Pre-BII subtype myelomas are
enriched for the categories mitotic cell cycle, nuclear division, and
DNA-dependent DNA replication (supplemental Table 10A), and
memory subtype myelomas are enriched for the categories cell-cell
signaling, synaptic transmission, and multicellular organismal pro-
cess (supplemental Table 10B). For more details, see supplemental
Text 1.

Finally, in order to detect whether the Pre-BII and memory
subtypes showed alternative splicing patterns associated with

oncogenesis, we investigated alternative exon usage in the
IFM-DFCI data set. Results suggested Pre-BII-specific alternative
exon usage for 16 genes (supplemental Table 1A), which were
especially associated with biological processes involved in cell
cycle regulation (supplemental Table 3A). In memory subtype
cases, we only identified 2 candidate genes with potential alternative
exon usage (supplemental Table 1B) associated with basic cell
functions including regulation of programmed cell death, metabolism,
and signaling transduction (supplemental Table 3B). Comparison
with alternative exon usage patterns detected in nonmalignant
samples (supplemental Table 11) indicated that the majority of
events were specific to malignant samples, suggesting association
to oncogenesis.

Discussion

We have phenotyped distinct cellular subsets of B-cells in the
normal BM to generate a BAGS classifier and have documented
that the assigned subtypes have prognostic impact.

A probability estimate for each sample to be assigned to each
of the 6 BAGS subtypes was provided. Samples with very
low classification probabilities were labeled as unclassified. The
frequency of unclassified samples in other gene expression–
based COO classifications is ;15%.17 A pragmatic probability
cutoff of 0.40 was used, which is well above the random
assignment probability of 1 out of 6, to ensure that 85% of the
samples would be BAGS subtypes. The robustness of the BAGS
association with outcome was successfully assessed for a wide
series of probability cutoffs.
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Figure 3. BAGS subtype boxplots with correlation to proliferation, melphalan resistance, and b-2 microglobulin. The individual adjusted PI risk profiling (A),

melphalan drug resistance probability (index) (B), and b-2 microglobulin plasma level (C), respectively, per BAGS subtype cases from analysis of the meta–data set. The BAGS

subtypes are color coded as in Figure 1.
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The present study was whenever possible conducted according
to guidelines of –omics-directed medicine (eg, McShane
et al,73 REMARK,74 and MIAME48). However, it is worth noting
that the BAGS classifier used cohort-based normalization,
which implies that it cannot practically be used in a clinical
setup where patients show up 1 at a time. Remedies to this
problem have been proposed elsewhere75 and were not further
pursued here.

The assignment of BAGS subtypes to MM may explain an
interindividual disease heterogeneity, which could reflect the asso-
ciation between cellular differentiation and oncogenesis.27,76-78

A standardized flow cytometry immunophenotyping of hematological
malignancies illustrates the potential clinical application of surface
expressed markers to identify diagnostic tumor clones.79 Such a
strategy has allowed new studies of normal PC heterogeneity by
differentiation.6,10,80

MM is an example of a malignant disease that has been studied
intensively with microarrays. Many peer-reviewed papers have
documented new classification systems based on gene expression
profiles to correlate with biology and prognosis.1,8-12 The present
work addresses a need to study a new diagnostic platform defined
by the molecular classification of BAGS in MM, as for DLBCL.43,81

In accordance with our studies in DLBCL, where we applied the
whole lymphoid differentiation compartment from tonsils or normal
lymph nodes, we prospectively analyzed the lymphoid subset–
defined compartments from normal BM to generate 6 BAGS for
MM assignment. The idea was that the COO concept would hold
true also for MM and assign subtypes from the postgerminal
differentiation pathway. To our surprise, a major fraction of patient
tissues were assigned a Pre-BII, Im, or N subtype, disproving the
subtyping to be true reminiscence of the origin from a germinal or
postgerminal phenotype. Given the phenotypic variation among
MGUS, smoldering myeloma, MM, MM relapse, extramedullary MM,
PC leukemia, and human myeloma cancer cell lines, it is more likely
that BAGS assignment does classify MM cases based on reversible
phenotypic plasticity.33

The BAGS classification is correlated to the well-established
TC classification; however, we found that the poor prognosis for
Pre-BII and memory subtypes correlated with the myeloma cell PI
and the b-2 microglobulin plasma, but not gene expression level.
PI and b-2 microglobulin is historically the most important and
persistent biomarker in different trials, independent of the evolving
therapy. The mechanisms behind these prognostically useful markers
are unknown but should now be studied to understand their
pathogenetic impact.

Our detection of alternative exon usage suggested subtype
specific patterns, supporting that the BAGS phenotyping is
based on biological processes. Alternatively spliced candidate
genes detected in the Pre-BII subtype revealed an overrepre-
sentation of genes involved in cell cycle regulation and in-
creased proliferation, such as GTSE1, PKMYT1, BIRC5, and
AURKB, suggesting an association with altered cell cycle regula-
tion and proliferation. However, detected alternative exon usage
of candidate genes needs to be experimentally validated and
confirmed.

High-dose melphalan forms the basis of MM treatment.82

However, patients with refractory or relapsed diseases represent

a large unmet need for drug-specific predictive tests and precise
companion diagnostics.58,65-68 This need can be exemplified by
REGS and BAGS classification with predictive information to
guide therapy. The current analyses indicate that such information
is available at diagnosis (Figure 3B; supplemental Figure 5B) and
could be used for identification of candidates for more precise
strategies. Collectively, this result indicates BAGS subtypes
experience different clinical tracks and drug resistant mecha-
nisms, and maybe even different molecular pathogenesis. We
believe our results support the future inclusion of gene expres-
sion profiling in randomized prospective clinical trials aimed at
improving MM treatment.

BAGS classification divided de novo MM patients into so-far-
unrecognized, differentiation-dependent prognostic groups. These
prognostic analyses and observations support the idea that BAGS
classification in MM may contribute with pathogenetic information,
especially in attempts to understand the biology behind the classi-
cal and still meaningful biomarkers PI and b-2 microglobulin.
Most importantly, the classification included pregerminal sub-
types, pointing at a reversible phenotypic plasticity in myeloma
PCs. Prospective future studies are needed to prove the concept
using clinical end points, including prediction of therapeutic
outcome.
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54. López-Corral L, Corchete LA, Sarasquete ME, et al. Transcriptome analysis reveals molecular profiles associated with evolving steps of monoclonal
gammopathies. Haematologica. 2014;99(8):1365-1372.

55. Mattioli M, Agnelli L, Fabris S, et al. Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH
translocations in multiple myeloma. Oncogene. 2005;24(15):2461-2473.

56. Chng WJ, Kumar S, Vanwier S, et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res. 2007;67(7):
2982-2989.

57. Tiedemann RE, Zhu YX, Schmidt J, et al. Kinome-wide RNAi studies in human multiple myeloma identify vulnerable kinase targets, including a lymphoid-
restricted kinase, GRK6. Blood. 2010;115(8):1594-1604.

58. Falgreen S, Dybkær K, Young KH, et al. Predicting response to multidrug regimens in cancer patients using cell line experiments and regularised
regression models. BMC Cancer. 2015;15:235.

59. Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics.Genome Biol. 2004;
5(10):R80.

60. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria, Austria: R Foundation for Statistical Computing; 2017.

2410 BØDKER et al 25 SEPTEMBER 2018 x VOLUME 2, NUMBER 18



61. Xie Y. knitr: A General-Purpose Package for Dynamic Report Generation in R. Available at: https://cran.r-project.org/web/packages/knitr/index.html.
Accessed 17 August 2018.

62. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;
4(2):249-264.

63. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307-315.

64. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1-22.

65. Boegsted M, Holst JM, Fogd K, et al. Generation of a predictive melphalan resistance index by drug screen of B-cell cancer cell lines. PLoS One. 2011;
6(4):e19322.

66. Bøgsted M, Bilgrau AE, Wardell CP, et al. Proof of the concept to use a malignant B cell line drug screen strategy for identification and weight of
melphalan resistance genes in multiple myeloma. PLoS One. 2013;8(12):e83252.

67. Laursen MB, Falgreen S, Bødker JS, et al; Myeloma Stem Cell Network. Human B-cell cancer cell lines as a preclinical model for studies of drug effect in
diffuse large B-cell lymphoma and multiple myeloma. Exp Hematol. 2014;42(11):927-938.

68. Falgreen S, Laursen MB, Bødker JS, et al. Exposure time independent summary statistics for assessment of drug dependent cell line growth inhibition.
BMC Bioinformatics. 2014;15:168.

69. Therneau TM. A Package for Survival Analysis in S. Available at: https://cran.r-project.org/web/packages/survival/index.html. Accessed 17 August 2018.

70. Cline MS, Blume J, Cawley S, et al. ANOSVA: a statistical method for detecting splice variation from expression data. Bioinformatics. 2005;21(suppl 1):
i107-i115.

71. Carlson M. GO.db: A set of annotation maps describing the entire Gene Ontology. Available at: https://bioconductor.org/packages/release/data/
annotation/html/GO.db.html. Accessed 17 August 2018.

72. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6(2):65-70.

73. McShane LM, Cavenagh MM, Lively TG, et al. Criteria for the use of omics-based predictors in clinical trials: explanation and elaboration. BMC Med.
2013;11:220.

74. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM; Statistics Subcommittee of the NCI-EORTC Working Group on Cancer
Diagnostics. Reporting recommendations for tumor marker prognostic studies. J Clin Oncol. 2005;23(36):9067-9072.

75. Falgreen S, Ellern Bilgrau A, Brøndum RF, et al. hemaClass.org: online one-by-one microarray normalization and classification of hematological cancers
for precision medicine. PLoS One. 2016;11(10):e0163711.

76. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306-313.

77. Corre J, Munshi N, Avet-Loiseau H. Genetics of multiple myeloma: another heterogeneity level? Blood. 2015;125(12):1870-1876.

78. Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer. 2002;2(3):175-187.
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