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Abstract

Network models are widely used to describe complex signaling systems. Cellular wiring var-

ies in different cellular contexts and numerous inference techniques have been developed

to infer the structure of a network from experimental data of the network’s behavior. To

objectively identify which inference strategy is best suited to a specific network, a gold stan-

dard network and dataset are required. However, suitable datasets for benchmarking are

difficult to find. Numerous tools exist that can simulate data for transcriptional networks, but

these are of limited use for the study of signaling networks. Here, we describe SiGNet (Sig-

nal Generator for Networks): a Cytoscape app that simulates experimental data for a signal-

ing network of known structure. SiGNet has been developed and tested against published

experimental data, incorporating information on network architecture, and the directionality

and strength of interactions to create biological data in silico. SiGNet is the first tool to simu-

late biological signaling data, enabling an accurate and systematic assessment of inference

strategies. SiGNet can also be used to produce preliminary models of key biological path-

ways following perturbation.

Introduction

The application of networks and graph theory to biological systems is becoming increasingly

important, particularly for understanding disease biology and drug action, and for selecting

appropriate biomarkers or therapeutic interventions [1]. Since the human interactome is not

fully mapped and cellular wiring varies in different cellular contexts, the structure of cellular

networks should ideally be inferred from experimental data [2]. Inference techniques can be

used to identify causal links between the levels of different biological entities, for example

whether protein X activates protein Y [3, 4], or to identify the structures of gene regulatory net-

works [5, 6]. There are a plethora of inference strategies available, including those based on

mutual information [7, 8], Bayesian [9] and information-theoretic approaches [10]. Therefore,

some means of objectively determining the best-performing inference strategy is needed to

optimize the utility of the inferred network and enable its application in translational research.

To develop the best inference approaches, the research community needs data from a net-

work of known structure. This would enable quantitative validation of alternative methods.

Unfortunately, real, large-scale and times series biological data for such ‘gold standard’
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networks is extremely difficult to find. Numerous datasets have been made public to facilitate

machine learning in other areas [11], but these are of limited relevance to biological signaling

networks. Traditionally, perturbations in the levels of signaling proteins resulting from the

application of targeted drugs or siRNA are demonstrated by Western blotting. However, this

technique provides only semi-quantitative data unless appropriate calibration procedures have

been used and described [12]. Although journals are placing increasing emphasis on the quan-

tification of Western blots [13], it is still rare to find quantitative protein data for a complete

signaling network of known structure, especially for time series. In addition to this, Western

blotting only indicates the abundance of the protein of interest, which does not necessarily cor-

relate with protein activity. Almost no public, longitudinal experimental data exist for signal-

ing networks: rare exceptions include the LINCS Project [14] which has yielded unpublished,

downloadable data of ERK protein dynamics in a single cell line in response to four small mol-

ecule inhibitors of ErbB kinase. In contrast, the task of developing inference techniques for

transcriptional networks is made easier by the fact that transcript levels are often quantified

using microarrays, raw data from which are freely available through repositories such as

ArrayExpress [15] and GEO [16]. As a result, several tools exist for generating transcriptional

networks and datasets in silico, for example GeneNetWeaver [17] and GRENDEL [18]. No

such tools exist for protein signaling networks.

Transcriptional networks and signaling networks are, by definition, different in structure

and timescale. Signaling networks must respond to stimuli rapidly [19], whereas transcrip-

tional networks may need to produce sustained patterns of activity over time [20]. In addi-

tion, transcription is often controlled by a relatively small number of transcription factors

acting on many targets, whereas signaling cascades and pathways typically form a more lin-

ear network with additional feedback loops etc. This means that a transcriptional network

will have a different architecture to that of a signaling network. For these reasons, data gener-

ated from simulations of transcriptional networks is unsuitable for benchmarking a protein

signaling study.

To align simulations with real biological systems, networks may need to be constructed

with a significant bias towards a particular structure or motif (e.g. a signaling cascade such as

the MAPK pathway, or a pathway with a high degree of cross-talk, such as the PI3K/mTOR

pathway). Therefore, there is a need for a bespoke tool that can generate simulated experimen-

tal data for a signaling network defined by the user. The lack of suitable benchmarks has been

a challenge since inference strategies were first applied to signaling networks. In 2005, the

structure of a small network of 11 proteins was inferred from experimental protein phosphory-

lation data [21]. The models generated were scored according to whether their inferred edges

(interactions between proteins/nodes that had been computationally inferred) matched the

edges seen in a ‘conventionally accepted’ synopsis of signaling interactions between the pro-

teins. This benchmarking strategy has two major issues. Firstly, there is no universally-

accepted definition of a biological signaling pathway, and the human interactome has yet to be

fully mapped [22]. Secondly, the ‘gold standard’ used in this study is an amalgamation of mam-

malian interactions, yet the authors inferred from it a human primary T cell network. This

highlights the need for a tool to simulate bespoke benchmarking data for the signaling network

being studied.

Here, we describe SiGNet (Signal Generator for Networks), a Cytoscape App [23] for gener-

ating in silico biological signaling data for the benchmarking of network inference approaches.

A comparison of SiGNet with existing tools for generating transcriptional networks and simu-

lated transcriptional datasets is shown in Table 1. Fig 1 presents an overview of how SiGNet is

used. We have tested SiGNet using published experimental data, achieving an overall correla-

tion between real and simulated data of 0.81, and we have used it to model key cancer-related
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pathways. The app is freely available for download in the Cytoscape App Store, and a typical

use case is available at signet.icr.ac.uk.

SiGNet is the only tool designed to simulate signalling data. In contrast to apps developed

for simulating transcriptional network data, SiGNet allows the user to design the network for

simulation, or import it into Cytoscape from an external source (Table 1).

Results

SiGNet incorporates user inputs to create bespoke simulated data

In order to use SiGNet, a user must import or define a network structure, including variables

dictating the nature and strength of interactions between nodes (Fig 2A). The number of

‘experimental repeats’ required and the level of noise (stochasticity) in the system must also be

specified. The nature and strength of an interaction is supplied in controlled vocabulary: ‘acti-

vates’, ‘weakly activates’, ‘strongly activates’, ‘inhibits’, ‘weakly inhibits’, ‘strongly inhibits’, or

‘binds’ (for interactions where nodes do not affect each other’s activity). Example input files

are included in the S1 File. If an interaction is described using a term not in this controlled

vocabulary, SiGNet will replace the term with ‘activates’ and this will be reported to the user.

Using this information, SiGNet generates graded responses to the specified interactions (Fig

2B). Users are also able to identify which, if any, network nodes they wish to be subject to

‘external’ inhibition or activation (e.g. to mimic targeting by a drug) (Fig 2C) and then assess

the effect of this on signaling output (Fig 2D).

SiGNet assigns each node in the network a value between 0 and 100%, reflecting the per-

centage activity of the protein: this is a biologically appropriate assumption as data from labo-

ratory experiments are normalized to baseline levels [26]. Unless a node has been selected as

inhibited or activated, nodes will initially be assigned an initial baseline level of activity of

approximately 50%, reflecting the homeostatic, steady state of a cell. Users also have the option

to use their own data to inform the baseline protein levels—a tutorial for this is available at

http://signet.icr.ac.uk. Different forms of the same protein (splice variants, phosphorylated

proteins etc.) should be represented as separate nodes within the network.

Table 1. Comparing SiGNet to tools that simulate transcriptional network datasets.

Application

name

Format Type of network

simulated

Network structure Individual node dynamics Can simulate knock-

out/inhibition

experiments?

GeneNetWeaver

[17]

Stand-alone

Java

application

Gene

regulatory

Based on known gene

regulatory networks of model

organisms

Based on transcriptional regulatory

dynamics incorporating protein

and mRNA dynamics

✓

GRENDEL[18] Stand-alone

Java

application

Gene

regulatory

Randomly generated based

on preferential attachment

model[18]

Based on transcriptional regulatory

dynamics of random gene in S.

cerevisiae, incorporating protein

and mRNA dynamics

✓

NetSim[24] R package Gene

regulatory

Built from structural

‘modules’ enriched in E.coli

and S.cerevisiae

transcriptional networks

Modeled as an ordinary differential

equation incorporating a sigmoidal

activation function

✗

SynTReN[25] Stand-alone

Java

application

Gene

regulatory

Based on known gene

regulatory networks of model

organisms

Based on Michaelis-Menten and Hill

enzyme kinetic equations

✗

SiGNet Cytoscape

app

Intracellular

signaling

network

Drawn out by user to their

exact requirements or

imported into Cytoscape from

external source

Modeled as a sigmoidal stimulus-

response curve, as observed in

numerous cellular signaling

systems

✓

https://doi.org/10.1371/journal.pone.0177701.t001
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Fig 1. Using the SiGNet plugin to simulate experimental data for a biological network. (A to D) Screen snapshots showing how

SiGNet is used. After a network is imported into or drawn out in Cytoscape (A), the user determines the number of ‘replicates’, ‘time

points’, the amount of noise and whether nodes are inhibited or activated (B). SiGNet then generates simulated data for each replicate

and time point. Here (C), nodes are colored according to their average value at time point 1. The data are exported and used for network

inference (D). The accuracy of predicted edges can be benchmarked against the structure of the network used in A and scores of

SiGNet: A signaling network data simulator
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SiGNet signals simulate real biological behaviour

Many of the reactions underlying cellular signaling networks are non-linear. For example,

enzymatic reactions are frequently modeled using the non-linear Michaelis-Menten equation

[27], whilst the reversible covalent modification of proteins (e.g. phosphorylation) is often

modeled using the non-linear Goldbeter-Koshland kinetic model [28]. Graded and reversible

signaling responses can often be represented by sigmoidal stimulus-response curves. For

example, sigmoidal stimulus-response curves can describe multistep signaling, zero-order

ultra sensitivity (covalent modification) and positive feedback [29]. For these reasons, we

chose a sigmoidal signal-response curve as the general case for SiGNet:

y ¼
100

1þ e� 0:15x

� �

� 50

where x = net input into the node (‘signal’) and y = change in node activity (‘response’).

A similar formula is applied in SiGNet to model the loss of protein activity (decay) over

time:

y ¼
100

1þ e0:15x

� �

� 50

where x = a randomly generated number between 0 and 5, and y = change in protein activity

(‘response’). The optional decay function applies to all nodes in the network and is an implicit

decay that is not regulated by other proteins present. This represents the natural turnover and

degradation of proteins within the cell and enables the system to eventually return to homeo-

stasis after stimulation. x is chosen randomly to ensure that different proteins will decay at dif-

ferent rates—a realistic assumption as protein degradation is a stochastic process. The decay

function can only be used for simulations with time series of two or more time points, and is

applied only for the second half of the overall time series. The value of the exponent in both

the signal-response and decay functions is set at 0.15 by default—if desired, the user may

change this value in the SiGNet interface.

Due to the sigmoidal signal-response curve used in the SiGNet algorithm, it is assumed that

all node responses are continuous and do not form a one-way switch or ‘point of no return’

such as a cell cycle checkpoint. For this reason, it is also assumed that the nodes in the network

are not spatially restrained and are evenly distributed throughout the cell, at saturation.

SiGNet simulates stochasticity in the signaling network

Noise due to stochastic fluctuations in concentration has been observed in both transcriptional

[30] and signaling networks [31]. In signaling networks, this noise may be due to a number of

processes, including protein promiscuity and transient nonspecific protein-protein interac-

tions. SiGNet allows stochasticity to be incorporated into the data simulation: the term ‘sto-

chasticity’ in this context refers to the level of noise in the relationship between node input and

the change in node activation, and can be specified by the user (default noise level is 0%). This

enables benchmarking at multiple noise levels to test the robustness of the performance of the

inferred network. S1 Fig demonstrates the relationship between input (i.e. activating or inhibi-

tory signal going into a node) and output (the change in activity of the node).

sensitivity, precision and recall can be calculated. A more detailed walkthrough example of how SiGNet can be used to aid benchmarking

of inference techniques is available at signet.icr.ac.uk.

https://doi.org/10.1371/journal.pone.0177701.g001
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Fig 2. SiGNet simulates node responses to signaling interactions of different strengths and types. (A) Schematic

showing the structure of a small network where node A weakly inhibits node B, inhibits node C, strongly inhibits node D,

weakly activates node E, activates node F and strongly activates node G. (B) Graph showing the signaling output from each

of the nodes shown in (A) over time, as predicted by SiGNet. Data are mean values calculated from ten ‘experimental

replicates’ produced using SiGNet. (C) Schematic showing two networks, ABC and DEF, with identical network structures.

The ABC network is perturbed by the experimental inhibition of A. (D) Graphs showing the signaling output of nodes A, B

and C (upper) and nodes D, E and F (lower). The inhibition of node A is removed at time point 1.

https://doi.org/10.1371/journal.pone.0177701.g002
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SiGNet simulations can replicate real protein dynamics

A widely-cited example of a quantitative phosphoproteomics study [32] shows the effect of

EGF treatment on the dynamic behavior of small protein networks in HeLa cells. We have

used SiGNet to simulate these data and achieved a Pearson correlation with the real data of

up to 0.97 (Fig 3). The network depicted in Fig 3A shows the interactions between EGFR and

a number of downstream proteins, as described in [32]. The strengths of the interactions in

the simulation of this network were based on experimental data of the protein dynamics,

shown in Fig 3. For example, the EGFR-STAM2 interaction was assigned a ‘weakly activates’

strength as STAM2 activity increases slowly following EGF treatment, compared to Shc1,

which increases its activity rapidly following EGF treatment (the EGFR-Shc1 interaction is

assigned a strength of “strongly activates”). Data from this network were simulated in SiGNet

and benchmarking (not shown) indicated that the best fit between simulated and real data

was achieved when one SiGNet time-step equated to 0.5 minutes. When our simulated data

was compared to the real data, we found that incorporating the decay function into the SiG-

Net model increased the correlation between the simulated and real data for all proteins, but

not at all time points (Fig 3B). Overall, the SiGNet data generated with the decay function

correlated with the real data with a Pearson correlation of 0.81, and that generated without

the decay function had a Pearson correlation of 0.67. Further simulations of this network

incorporating simple feedback mechanisms are illustrated in S2, S3 and S4 Figs: these simu-

lations produce results that are consistent with (although not identical to) experimental data.

Reassuringly, the strength of the inhibitory feedback loop is reflected in the response of Cyto-

chrome C. In S3 Fig, inhibition of EGFR by the feedback loop partially relieves the inhibition

of EGFR on Cytochrome C, resulting in Cytochrome C’s activity falling in response to EGFR

inhibition, followed by a gradual increase in activity over time steps 5–20 as inhibition of the

inhibition occurs. In S4 Fig, where the feedback loop applies a strong inhibitory response to

EGFR, Cytochrome C maintains high activity throughout the simulation, corresponding to

almost complete relief of the inhibitory activity of EGFR on Cytochrome C. However, addi-

tion of the feedback loops may increase the accuracy of simulations of one protein, whilst

decreasing the accuracy of simulation of other parts of the network. By adding feedback

loops or additional control motifs to the network to be simulated, the user can investigate

the effect of these elements on the activity of the network as a whole. If addition of a feedback

loop decreases the accuracy of a simulation, this suggests that a feedback loop as modeled in

SiGNet will not be responsible for the experimental data for the observed network. This

demonstrates how SiGNet can be used to identify gaps in published signaling networks and

highlight potential interactions for further experimental characterization.

We have also used SiGNet to reconstruct key signaling networks based on KEGG (Kyoto

Encyclopedia of Genes and Genomes) pathways [33], namely PI3K, mTOR and Ras. The input

files and simulated data for these networks can be found at signet.icr.ac.uk. For each of the

three pathways modeled there are Readme files detailing how the networks were constructed,

with hyperlinks to the relevant KEGG pathway, information on the files supplied, and details

of the SiGNet parameters used to simulate the data supplied. All interactions are described

using either ‘inhibits’ or ‘activates’ (no ‘strongly’/‘weakly’) as the KEGG pathway figures used

to construct the networks do not quantify the strength of interactions.

As discussed regarding the strengths of interactions used to generate the simulated data in

Fig 3, small amounts of experimental data, when available, can be used to help design the ini-

tial network used as input for SiGNet. We would encourage the user to adjust the various

parameters in SiGNet according to any other prior knowledge they have of the system, for

example by loading a baseline activation profile for the proteins in the network. We would also

SiGNet: A signaling network data simulator
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Fig 3. Simulating the effect of experimental perturbation on a real biological signaling network in SiGNet. SiGNet was used to

simulate the effect of EGF treatment on EGFR and its downstream proteins, and the simulated data tested against published

experimental data [32]. (A) Schematic showing the network structure, which was based on interactions reported by Blagoev et al. The

network was drawn in Cytoscape and used as an input for SiGNet. (B) Data simulated for the network in (A) using SiGNet, with and

without the optional decay function. Data shown are mean values calculated from ten ‘experimental replicates’. Pearson correlations

between simulated and real data are shown. Additional simulations of this network incorporating simple feedback mechanisms are

illustrated in S2, S3 and S4 Figs.

https://doi.org/10.1371/journal.pone.0177701.g003
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recommend generating multiple simulations, for example simulating multiple data sets with

various noise percentages, to enable more robust assessment of the quality of inference tech-

niques. We believe that SiGNet enables the rapid generation of large amounts of bespoke simu-

lated data, and as such enables detailed and reliable assessment of network inference strategies.

For a detailed discussion of the data sources available for assessing the accuracy of SiGNet sim-

ulations, including the simulations of data from [34], see S1 File.

Discussion

SiGNet enables researchers to create realistic, bespoke benchmarking datasets for the evalua-

tion of signaling network inference, and an example of how SiGNet can be used in this way is

presented on the SiGNet website. The SiGNet algorithm is based on our understanding of pro-

tein behavior, in contrast to similar tools developed for transcriptional networks which are

designed to mimic the dynamics of transcription factors and their target genes. SiGNet users

can specify the type and strength of interactions within a signaling network of their own

design. The app also includes options for inhibiting or activating nodes, mimicking experi-

mental peturbation. When we used SiGNet to reproduce data from real experiments its simu-

lations were highly accurate, with correlations between real and simulated data of up to 0.97,

although identifying datasets suitable for this validation represented a major challenge.

It is difficult to assess the accuracy of a data simulator such as SiGNet due to a Catch-22 sit-

uation: if experimental datasets existed that were suitable for the task then there would be no

need to create the simulator in the first place. However, we have validated our simulations

against the best available datasets and found our simulations to be accurate. There are three

main issues in identifying suitable datasets. Firstly, the lack of quantitative proteomics mea-

surements reflects biologists’ widespread reliance on non-quantitative techniques. Secondly,

the lack of data for a complete protein network is, at least in part, due to the relative scarcity of

large-scale, proteomics studies. The larger the number of proteins studied, the more likely

there is to be a complete protein-protein interaction network present within the data. Thirdly,

a lack of dynamic, time-source data reflects the challenge of obtaining large numbers of experi-

mental data points. Until such datasets become available, SiGNet provides a valuable resource

which demonstrates strong concordance with available published data. We have used SiGNet

to model important cancer-related pathways and provide the simulated data as a public

resource. In addition to its use in benchmarking inference strategies, SiGNet could be used to

develop initial models and hypotheses regarding the behavior of signaling networks following

genetic or pharmacological perturbation.

Materials and methods

SiGNet is a Java-based Cytoscape [23] plugin. It is compatible with Cytoscape Version 3.2.0+

and is available for download in the Cytoscape App Store (http://apps.cytoscape.org). Detailed

documentation including example data and a walkthrough is available at signet.icr.ac.uk.

Code is available at https://github.com/eac54/SiGNet and supporting data and documenta-

tion is available at https://figshare.com/articles/SiGNet_a_signaling_network_data_simulator_

to_enable_signaling_network_inference/4578808. SiGNet is licensed under the Creative Com-

mons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/.

Supporting information

S1 Fig. SiGNet simulations predict how noise affects signaling inputs and outputs. Data

points are mean values from ten ‘experimental replicates’ produced using SiGNet, incorporating

SiGNet: A signaling network data simulator
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a user-specified amount of noise. Negative inputs correspond to node inhibition; positive inputs

correspond to node activation. Inputs range from ‘weak’ (0.5) to ‘strong’ (1.5). For each node,

net input is calculated as the total score of activating interactions minus the total score of inhibi-

tory interactions.

(TIFF)

S2 Fig. Results of simulations of network shown in Fig 3, with an additional weak feedback

loop modeled. SiGNet was used to simulate the effect of EGF treatment on EGFR and its

downstream proteins, and the simulated data tested against published experimental data [32],

with addition of simple, generic feedback loop nodes. These simulations with a simple feed-

back mechanism generally show poorer Pearson correlations between the simulated and real

data than the modeling done in Fig 3 of the main manuscript. This demonstrates that adding a

simple feedback loop to the network does not improve the accuracy of the data simulation and

hence it is unlikely that such simple feedback loops are responsible for the experimental obser-

vations. More complex, multi-component feedback loops could be constructed, for example

based upon additional experimental data, and simulated to identify and prioritise possible

‘missing’ interactions in the network. (A) Schematic showing the network structure, which

was based on interactions reported by Blagoev et al, with an additional feedback loop added.

Here this corresponds to a node activated by ERK that weakly inhibits EGFR. The network

was drawn in Cytoscape and used as an input for SiGNet. (B) Data simulated for the network

in (A) using SiGNet. Data shown are mean values calculated from ten ‘experimental replicates’

and without the use of the optional decay function. Pearson correlations between simulated

and real data are shown. (C) Data simulated as per (B), applying the optional decay function.

Pearson correlations between simulated and real data are shown.

(TIFF)

S3 Fig. Results of simulations of network shown in Fig 3, with an additional feedback loop

modeled. SiGNet was used to simulate the effect of EGF treatment on EGFR and its down-

stream proteins, and the simulated data tested against published experimental data [32], with

addition of simple, generic feedback loop nodes. These simulations with a simple feedback

mechanism generally show poorer Pearson correlations between the simulated and real data

than the modeling done in Fig 3 of the main manuscript. This demonstrates that adding a sim-

ple feedback loop to the network does not improve the accuracy of the data simulation and

hence it is unlikely that such simple feedback loops are responsible for the experimental obser-

vations. More complex, multi-component feedback loops could be constructed, for example

based upon additional experimental data, and simulated to identify and prioritise possible

‘missing’ interactions in the network. (A) Schematic showing the network structure, which

was based on interactions reported by Blagoev et al, with an additional feedback loop added.

Herethis corresponds to a node activated by ERK that inhibits EGFR at standard strength. The

network was drawn in Cytoscape and used as an input for SiGNet. (B) Data simulated for the

network in (A) using SiGNet. Data shown are mean values calculated from ten ‘experimental

replicates’ and without the use of the optional decay function. Pearson correlations between

simulated and real data are shown. (C) Data simulated as per (B), applying the optional decay

function. Pearson correlations between simulated and real data are shown.

(TIFF)

S4 Fig. Results of simulations of network shown in Fig 3, with an additional strong feed-

back loops modeled. SiGNet was used to simulate the effect of EGF treatment on EGFR and

its downstream proteins, and the simulated data tested against published experimental data

[32], with addition of simple, generic feedback loop nodes. These simulations with a simple

SiGNet: A signaling network data simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0177701 May 17, 2017 10 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177701.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177701.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177701.s004
https://doi.org/10.1371/journal.pone.0177701


feedback mechanism generally show poorer Pearson correlations between the simulated and

real data than the modeling done in Fig 3 of the main manuscript. This demonstrates that

adding a simple feedback loop to the network does not improve the accuracy of the data simu-

lation and hence it is unlikely that such simple feedback loops are responsible for the experi-

mental observations. More complex, multi-component feedback loops could be constructed,

for example based upon additional experimental data, and simulated to identify and prioritise

possible ‘missing’ interactions in the network. (A) Schematic showing the network structure,

which was based on interactions reported by Blagoev et al, with an additional feedback loop

added. Here this corresponds to a node activated by ERK that strongly inhibits EGFR. The net-

work was drawn in Cytoscape and used as an input for SiGNet. (B) Data simulated for the net-

work in (A) using SiGNet. Data shown are mean values calculated from ten ‘experimental

replicates’ and without the use of the optional decay function. Pearson correlations between

simulated and real data are shown. (C) Data simulated as per (B), applying the optional decay

function. Pearson correlations between simulated and real data are shown.

(TIFF)

S5 Fig. Using SiGNet to reproduce experimental protein dynamics - simulating protein

phosphorylation within network motifs. SiGNet was used to simulate the effect of EGF treat-

ment on protein phosphorylation within HeLa cells, and the simulated data tested against

published experimental data [33]. (A) Normalised proteomics data for a number of network

motifs (B). Data is reproduced, with permission from Elsevier Ltd, from a 2006 paper pub-

lished by Olsen et al [33]. (B) Schematic representation of the network motifs [33]. (C) Simu-

lated data generated by SiGNet for the network motifs shown in (B). Data shown are mean

values of ten ‘experimental replicates’.

(TIFF)

S1 File. Discussion of the difficulty of obtaining suitable data for assessing SiGNet’s accu-

racy.
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