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ScienceDirect
After two decades of research, intrinsically disordered regions

(IDRs) are established as a widespread phenomenon. The

growing understanding of the significant functional role of IDRs

has challenged the structure–function paradigm, proving

irrefutably that a stably folded structure is not a strict

requirement for function. Nonetheless, (un)structure–function

relationships remain at the core of IDR-mediated interactions.

An IDR can populate a continuously transitioning continuum of

structural conformations from fully disordered to stable

globular states. In these ensembles, only subsets of

conformations are binding competent, with intramolecular IDR

contacts serving as important intermolecular binding

determinants. Here, we review our current understanding of

different types of intramolecular IDR interactions, their effects

on IDR complex formation and their modes of biological

regulation.
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Introduction
Many proteins harbour extensive regions that lack stable

secondary or tertiary structure in their native unbound

states [1�,2,3��]. These protein segments, known as intrin-

sically disordered regions (IDRs), are predicted to consti-

tute up to 40% of the residues in higher eukaryotic

proteomes [4,5]. Given that many residues in the globular

regions of the proteome are buried in inaccessible stabi-

lising hydrophobic cores, up to half of the surface area of

the human proteome accessible for protein interaction

may be in unstructured regions (Figure 1a). Decades of

research have uncovered the key functional roles of these
www.sciencedirect.com 
regions in diverse biological systems. A key finding was

the discovery that IDRs contain interaction modules,

such as short linear motifs (SLiMs) and intrinsically

disordered domains (IDDs), that mediated interactions

and thereby confer functionality [6�,7�,8]. Estimates sug-

gest that tens of thousands of interaction modules

are encoded in the IDRs of the human proteome [9�].
These modules engage in diverse sets of activities that

include providing enzyme docking sites regulating pro-

tein modification states, controlling protein stability (by

recruiting ubiquitin ligases), acting as signals to target

proteins to specific subcellular locations, directing

dynamic complex formation or driving concentration-

dependent phase transitions [2,6�,10]. Conversely, IDRs

can contribute to protein function as a direct result of their

structural properties without the requirement of a binding

event, for example, by acting as flexible linkers or entro-

pic chains [11,12�]. Finally, layers of transcriptional, post-

transcriptional and post-translational regulation add cell

type and cell state dependent conditionality to these

IDR-encoded functions [13,14��,15,16].

Despite the growing acknowledgement of the key func-

tional role of IDRs, the relationship between the struc-

ture and function of IDRs remains under-determined

except for a few prototypic cases such as a-synuclein,
tau, p53 and E1A. For historical reasons, our understand-

ing of protein structure has been guided by our knowl-

edge of stably folded domains. At the same time, the

pervasive static linear representations of IDRs have

restricted our perception of the structure and dynamism

of IDRs. That is, we often think about IDRs as linear

stretches of amino acids in two dimensions, and in isola-

tion, rather than in three dimensions and in the context of

crowded intracellular environments. As a consequence,

the interplay between IDR structure and function is still

poorly understood, especially in the context of the cell.

Intrinsically disordered regions have unique composi-

tional and biophysical properties that enable the sampling

of a wide array of distinct conformations (Figure 1b) [17�].
In such ensembles, binding to IDR functional modules is

only compatible with a subpopulation of the sampled

conformational landscape [18�,19]. There are three key

structural attributes that define these properties in rep-

resentative terms: transient structural elements, compact
states and higher-order topologies. Local, regional and global

intramolecular contacts are at the heart of these three

distinct structural attributes that can influence IDR func-

tion. Importantly, these structural attributes will often be

conditional, integrating changes to cellular states into
Current Opinion in Structural Biology 2019, 56:155–163
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Figure 1

58Å2 99Å2

11 million residues 3-4 million residues in IDRs Å2 accessible surface per residue 350 million Å2 in IDRs

Disordered Disordered Disordered Disordered Folded Folded
Dynamic Compact Extended Residual Structure Unstable/Partial Stable

State StateTransition

Mechanism
Post-translational modification

- Moiety attachment and removal
- Proteolytic cleavage

- Peptide isomerization

pH changes
Oxidative stress

Crowding/Concentration
Interactor binding

Allosteric
Metal binding

Mechanical forces
Alternative transcription/splicing

40 60 80 100 120

(a)

(b)

(c) (d)

(e)

(f) (g)

(h)

α β

Current Opinion in Structural Biology

(a) Of the �11 000 000 residues of the �21 000 primary isoforms of human proteins in the range of three to four million, or approximately one-

third, of the residues are predicted to occur in IDRs (blue circles) [4,5]. On average, residues in IDRs have higher accessible surfaces area (blue,

99 Å2 - based 667 models from 10 PEDB ensembles) than those in globular regions (green, 58 Å2 - based on 2 738 CATH representative domain

structures). Consequently, up to a half of the accessible surface area of the human may occur in IDRs. (b) Snapshots in the continuum of

structural states of polypeptides. (c) Representative examples of mechanisms that can conditionally control the transition between the structural

states of polypeptides. (d) A C-terminal proline (orange) modulates the helicity of the Mdm2-binding motif (blue) in p53 and thereby the binding

affinity of the p53–Mdm2 interaction (PDB: 1YCR) [28��]. (e) The phosphorylated Ser2 of the CTD repeat of RNA polymerase (Pol) II (blue) does not

contact the CID domain of the cleavage and polyadenylation factor Pcf1 but strongly enhances the affinity by stabilising the b-turn conformation

of the CID domain-binding motif (blue) (PDB: 1SZA) [32,33]. (f) Mechanical unfolding of a five-helix bundle domain of talin reveals the vinculin-

binding site (VBS) (blue) and results in the binding of the N-terminal vinculin head domain (PDB: 1SJ7) [43]. (g) Phosphorylation (orange)

dependent folding of Eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2) results in a disorder-to-order transition and buries an

eIF4E-binding YXXXXLF motif (blue) relieving 4E-BP2 dependent inhibition (PDB: 2MX4) [41��]. (h) Oxidation of Yeast AP-1-like transcription factor

(yAP1) results in disulphide bond (orange) mediated folding of two distant regions into a four-helix bundle masking a nuclear export signal (NES)

(blue) and resulting in cytoplasmic sequestration (PDB: 1SSE) [42��].
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Box 1 How is the structure/function relationship of an IDR

conditionally modulated?

Molecular switching mechanisms modulating SLiM or IDD function

controlled by spatiotemporally conditional physicochemical, steric

and competition-based switches are common in IDRs [14��,73–75]. A

range of elegant mechanisms can also be hypothesised to condi-

tionally modulate the structure and thereby the function of IDRs

(Figure 1c). Every conformation sampled by an IDR can have distinct

binding affinity and specificity properties for each binding partner.

Therefore, cell state perturbations that regulate the conformational

preferences to shift the populated conformations towards or away

from binding-competent conformations will modulate the binding

attributes of that region. From a conceptual point of view, this mode

of regulation instigates a paradigm shift in our understanding of

regulatory events as these cell state perturbations can control pro-

tein-protein interactions in an indirect manner without participating in

the binding interfaces. Such modes of intramolecular communication

bear all the hallmarks of disordered allostery [76]. Several examples

of structural transitions of IDRs regulating protein functionality have

already been characterised, for example, where a functional module

becomes inaccessible through complete folding of a region

[41��,42��,47�,77,78], or a required preformed secondary structural

element for binding is promoted or inhibited [32,35�,36,79,80].
However, we have only begun to investigate the regulatory

mechanisms controlling IDR function through IDR structure and the

next decade will reveal a range of elegant and unexpected condi-

tional structure–function relationships.
structural changes to regulate a protein’s function

(Figure 1c) (Box 1). In order to reassess the structure–

function paradigm, the structural biology field must

unravel the mechanistic principles that encode such

intramolecular interactions and their effects on IDR

functions. Furthermore, they must do so in a cellular

context where additional contributions from physiologi-

cally relevant complex association and quinary interac-

tions with cellular components may further exacerbate

these structure–function relationships.

This perspective focuses on the structural modulation of

the binding attributes of the functional modules com-

monly found in IDRs and highlights open questions in

the field regarding the link between the structure and

interactions of IDRs. In recent years, a new understand-

ing of protein IDRs as key regulators of basic biological

functions has emerged. It is vital that we discover the

general design principles encoding the structural proper-

ties of IDRs and the effect of these structural properties

on the function of IDRs. However, this will require new

advances in key methodologies to comprehensively study

these elusive biological phenomena [20�].

The contribution of structure to IDR-binding
events
Local — transient structural elements

Most binding events involving IDRs necessitate transi-

tions from dynamic unbound states to more constrained

bound protein states [8]. Although, many of these
www.sciencedirect.com 
interaction interfaces retain significant flexibility [21].

Furthermore, in some cases, high levels of dynamism

can be observed even in the bound state [22��]. Approxi-

mately two-thirds of the functional IDR modules struc-

turally solved in complex with their binding partners

adopt defined secondary structures when bound [23].

In these cases, a preformed bound conformation can be

a requirement for binding, a process known as conforma-

tional selection. Alternatively, the conformation can be

adopted upon binding, a process known as induced fit. In

many instances, both mechanisms contribute to the actual

binding event [24,25,26�]. For several structurally char-

acterised IDRs that interact with globular protein

domains via disorder to order transitions, bound IDR

states can be detected experimentally in free molecules

as transiently populated, pre-structured motifs (PreSMo)

[27�]. PreSMo’s exert pronounced effects on actual

binding behaviours because they reduce entropy costs

associated with folding-upon-binding transitions [28��].
Therefore, the sequence of the functional module

encodes both the physicochemical complementarity to

the IDR-binding interface and the structural propensity

of the region, and evolution can tune these attributes to

optimise binding attributes [29,30�]. An elegant example

to illustrate the contribution of transiently populated

structures giving rise to defined binding affinities and

productive biological outcomes is the p53–Mdm2 inter-

action (Figure 1d). By artificially increasing the levels of

residual helicity within the IDR PreSMo of p53, the

authors generated p53 mutants with enhanced Mdm2-

binding affinities [28��,31]. Similarly, in the cell, the

population of preformed secondary structural elements

can also be modulated to strengthen or weaken IDR–

ligand interactions in response to external and internal

cellular cues (Figure 1c). For example, phosphorylation of

the cleavage and polyadenylation factor Pcf1-binding

motif within the CTD repeat of RNA polymerase (Pol)

II does not form any intermolecular contacts but enhances

binding affinity by stabilising the bound b-turn confor-

mation [32,33] (Figure 1e). Another common example

is the post-translational modification of the flanks of

a-helices to positively or negatively regulate helicity

and modulate binding [34,35�,36].

Regional — compact states

The accessibility of a functional module for recognition

by a binding partner is a fundamental requirement of a

biomolecular binding event. Non-uniform accessibility

resulting from preferentially sampled compact disordered

states are functionally intriguing. Compact collapsed

states can be driven by local or long-range intramolecular

contacts, with contributions from the physicochemical

properties and flexibility of the polypeptide chain

[17�,37�]. Compaction will influence the binding attri-

butes to the modules within a region by limiting the

accessibility of the functional modules. The functional

role of constitutive collapsed disordered states has only
Current Opinion in Structural Biology 2019, 56:155–163
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been studied in a handful of proteins. For example,

a-synuclein where intramolecular contacts promote com-

pact conformational states and shield the amyloidogenic

NAC region [38��]. Interestingly, nitration of C-terminal

tyrosines in a-synuclein has been shown to shift the

population of sampled conformational states and this

change can modulate binding of the N-terminus to mem-

branes [39]. This example represents a mode of allosteric

regulation that results not from the propagation of struc-

tural changes through a globular structure, as observed in

classical allostery, but results from the modulation of the

ensemble-averaged contribution of all sampled confor-

mational states [40]. Most of the comprehensively char-

acterised examples of a functional role of accessibility in

IDR function involve large structural transitions and

conditional folding (Figure 1f–h). The prototypic exam-

ple is the phosphorylation-dependent folding of Eukary-

otic translation initiation factor 4E-binding protein 2 (4E-

BP2) that results in a disorder-to-order transition and

buries an eIF4E-binding YxxxxLF motif relieving 4E-

BP2-dependent inhibition [41��]. Several other similar

examples exist and the diversity of the observed mecha-

nisms suggests widespread usage of disorder-to-order

transitions in the cell. For example, transition initiators

ranging from oxidation, in the case of Yeast AP-1-like

transcription factor (yAP1) resulting in disulphide bond

mediated folding of two distant regions into a four-helix

bundle masking a nuclear export signal (NES) [42��], to

mechanical unfolding, in the case of talin to reveal the

vinculin-binding motif and permitting binding of the N-

terminal vinculin head domain [43], have been charac-

terised. Several key questions remain unanswered: how

accessible are the unstructured regions of the proteome in
vivo [20�,44]? What proportion of these regions are par-

tially or fully collapsed (compact globule or molten glob-

ule) [38��,45,46�]? Or even conditionally folded

[19,41��,42��,47�,48]? How is the accessibility modulated

by changes to cell state? And most importantly, how does

the accessibility of the modules within these regions

modulate their function?

Global — higher-order structure

Many eukaryotic proteins are composed of multiple

structurally independent segments organised by inter-

region interactions to produce the topologies that define

the super-tertiary structure of the protein [49]. The

literature on higher-order structure of IDRs is sparse.

Several IDRs have physiologically important auto-inhib-

ited topologies that hide a functional module by intra-

molecular interaction with a globular region, for exam-

ple, the Wiskott–Aldrich syndrome protein (WASP)

[50�,51]. Additional basic cases exist such as the intra-

molecular interactions mediated by the N-terminal IDR

of Colicin-N that protects the unstructured receptor

binding region against proteolysis [52] or the organisa-

tion of the intrinsically disordered N-terminus of Src

kinase around the SH3 domain [45]. These simple
Current Opinion in Structural Biology 2019, 56:155–163 
examples raise the question can multiple disordered

regions in a protein or protein complex have complex

higher-order topologies that modulates function [53]?

Recent breakthroughs have shown chromatin in the

nucleus has spatial organisation [54]. Distinct regions,

known as topologically associating domain (TADs), pref-

erentially co-localise in functionally significant higher-

order chromatin structure. Analogously, long distance

intramolecular interactions organising topology associ-

ated intrinsically disordered regions (TAIDRs) could

result in preferential three-dimensional proximity of

distinct disordered regions within a protein or complex

(Figure 2a). This higher-order topology could act as a

platform for signal integration by allowing the functional

modules in these regions to cross-talk. Topologies of this

type have been hypothesised for the Gab protein family

[55�], but to date, no experimental evidence validating

these hypotheses has been published. Hypothetically,

the TAIDRs could be organised by numerous mecha-

nisms including interaction with a globular region, dis-

order-disorder contacts or membrane anchoring and

these mechanisms could be conditionally regulated to

modulate protein function. This includes regulation by

protein chaperones such as 14-3-3 or LC8 that could act

as protein organisers analogous to the CCCTC-binding

factor (CTCF)-dependent organisation of chromatin

TADs [54,56,57].

Quaternary — IDRs in complexes

The low affinity of interactions mediated by functional

modules in IDRs has long been a curiosity to molecular

biologists. For example, the dissociation constants mea-

sured for isolated SLiMs interactions are usually in the

low micromolar range [6�]. Many IDR-mediated interac-

tions occur through multiple functional modules in a

single IDR increasing module concentration and cooper-

atively producing dynamic yet strong interactions

[58�,59,60]. The high local concentration of the functional

modules or their binding partner will result in repeated

binding–dissociation–rebinding events [61��]. Conse-

quently, although the affinity of a single interaction is

low, multiple IDRs or IDR-binding regions increases the

on-rate of the binding and slows diffusion of the binding

partners. The binding attributes of the complex can then

be tuned by the number of these low-affinity interaction

interfaces in the complex. This cooperativity is usually

studied in a single IDR analysing avidity-based mecha-

nisms, such as the ABBA-KEN-ABBA cassette of BubR1

binding to the APC/C holoenzyme [62], or allovency-

based mechanisms, such as the phospho-dependent

multi-motif-mediated interaction of TCOF1 and E3

Ub ligase CUL3-KBTBD8 [63�]. However, in the cell,

many IDRs are present in multiple copies in large com-

plexes. The complex association, oligomeric state or local

concentration of the IDR-containing protein is often

overlooked when we study protein interactions mediated

by IDDs or SLiMs [64,65] (Figure 2b). Large quasi-stable
www.sciencedirect.com
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Figure 2
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(a) Schema describing how preferential interactions mediated by Topology Associated Intrinsically Disordered Regions (TAIDRs) could drive

higher-order super-tertiary structure of a protein. (b) Quaternary structure can modulate the binding attributes, and thereby function, of IDRs in

multiple ways. Multiple motifs, multiple motif-binding pockets, or both in a single complex result in unique binding attributes that can be strong yet

dynamic (green boxes denote motif-binding domains, blue blocks denote motifs, grey boxes denote globular domains, arrows denote binding–

dissociation–rebinding events). (c) Quinary structure, the molecular crowding and interactions of the cell, represent a different environment to

those commonly used in IDR experiments (green boxes denote motif-binding domains, blue blocks denote motif binding partner of green domain,

non-blue blocks denote peptides with similar specificity determinants to the motif-binding partner of the green domain, grey circles denote

molecular crowding by the cellular environment).
complexes can easily be built using co-operative func-

tional modules within multiple IDRs and numerous

key interactions in the cell utilise these design principles,

for example, the high density of SH2 domain-binding

motifs in large submembrane signalling complexes [61��],
the repetitive IDRs driving phase transition [66], or the

FG-repeat motifs in the nuclear pore [67]. Conversely,

the multimerisation of the IDR-binding domain-contain-

ing protein can also be required for IDR binding. A

canonical example is the trimerisation of TRAF2

required to bind three TRAF2-binding motifs in tumour

necrosis factor receptor signalling [68,69] where a single

motif-domain interaction is unable to produce a biologi-

cally relevant interaction [70]. In many cases, the oligo-

merisation of the IDR-containing or IDR-binding protein

can be an important regulatory step, consequently, the

system can use these properties to robustly encode a

regulatory output [68].

Conclusion
This perspective posits that intramolecular contacts

within IDRs will modulate the function of the interaction

interfaces contained within these ubiquitous regions.

These contacts will encode the transient secondary

structure, accessibility and the higher-order structure of
www.sciencedirect.com 
functional module-containing regions to contribute to

their binding attributes, and thereby, function. The

mechanisms controlling the structural properties of these

regions will be both constitutive and non-constitutive.

The structural properties of the constitutive examples

will be directly encoded in the primary sequence of

the IDR(s) and will fine-tune the binding attributes of

the functional modules for their binding partner. Whereas

the structural properties of the non-constitutive examples

will be modulated in a cell state-dependent manner by

external factors and act as conditional decision-making

regions. Given the evolutionary plasticity of IDRs and

the functional modules commonly found within them

[29,30�,71], any regulatory mechanism controlling the

function of a disordered region that is possible and

accessible to evolution will likely exist.

The search for functional modules in IDRs has increas-

ingly become the focus of intense research and the

methodology for the functional analysis of disordered

regions has reached the cusp of a high-throughput age

[72]. Conversely, most of the structural mechanisms

modulating IDR function are not easily accessible to

the currently available structural biology methods. This

suggests that the paucity of examples of structural
Current Opinion in Structural Biology 2019, 56:155–163
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Box 2 Does a reductionist approach to studying protein

interactions work for IDRs?

Do in vitro experimental findings on the structure–function relationship

tell us what is happening in the cell [44]? If an isolated SLiM or IDD in
vitro can function differently to the same functional module in the

context of the complete IDR, the full-length protein, in a biologically

relevant homomultimer or in complex, then how can we translate

complex biophysical information gained in vitro to biological insight in

the cell. Large IDRs can contain multiple subregions with distinct

physicochemical, structural and functional properties and region,

protein and complex will behave differently to fragments. Subregions

may overlap and the conformations of one region may modulate the

surrounding regions (Figure 2a). This presents an issue for experi-

mental design where the boundaries or the oligomerisation state of the

studied regions will alter the observed binding properties. Furthermore,

as IDRs often contain multiple functional modules, an IDR can have

multiple distinct bound states where given binding events can shift the

population of conformations to a specific conformation, inhibiting or

promoting binding at a distinct site from the interaction interface. For

example, Mdm2 binding to P53 has been shown to induce long range

interactions in the N-terminal IDR of P53 [81]. Finally, many IDRs are

highly decorated with post-translational modifications that modulate

the physicochemical properties of the region. Consequently, studying

the physiologically relevant state of a protein is vitally important to

understand the binding events of an IDR.

These experimental issues are compounded in situ as the quinary

interactions of a protein differs significantly in solution, in cell extract

and in the cell. Consequently, in the cell, both structural properties and

protein-binding attributes of an IDR should diverge from the results of

in vitro methods. The effect of the cellular environment on IDR struc-

ture has been tested for a handful of proteins [38��,46�]. However, the

contribution of a heterogeneous crowded environment, physiological

cell concentrations and competition from physicochemically similar

peptides or surfaces similar to the IDR-binding pockets to IDR-

mediated binding events has been largely neglected (Figure 2c). The

effect of the cellular environment should contribute disproportionately

to the binding attributes of lower affinity interactions, a hallmark of IDR-

mediated interactions, than those of stable globular–globular interac-

tions. Nonetheless, it is still unclear whether the binding attributes

observed in vitro will be positively or negatively modulated in the cell

[82]. It may be that there is no simple answer and the effect will depend

on the composition of the IDR or the binding interface. Consequently,

translating in vitro observations to in cell biological insight may be

more complicated than we think. A key step is studying structural

contributions to IDR-mediated interactions in situ; however, this is

currently experimentally prohibitive [20�,83].
regulation of functional modules within IDRs is a reflec-

tion of the experimental difficulties characterising these

mechanisms (Box 2). Consequently, it is important that

we develop an in vitro, in cell and in silico framework

capable of accessing the subtle yet functionally important

contribution of the conformational space sampled by

IDRs [20�]. With such a framework in place, we can

comprehensively investigate the design principles encod-

ing functional information in the dynamic interconverting

conformations of IDRs. First, we need to take one simple

step: we must start thinking about intrinsically disordered

regions in three dimensions.
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