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SUMMARY
Diffuse midline gliomas (DMGs) are highly aggressive, incurable childhood brain tumors. They present a clin-
ical challenge due to many factors, including heterogeneity and diffuse infiltration, complicating disease
management. Recent studies have described the existence of subclonal populations that may co-operate
to drive pro-tumorigenic processes such as cellular invasion. However, a precise quantification of subclonal
interactions is lacking, a problem that extends to other cancers. In this study, we combine spatial computa-
tional modeling of cellular interactions during invasion with co-evolution experiments of clonally disas-
sembled patient-derived DMG cells. We design a Bayesian inference framework to quantify spatial subclonal
interactions between molecular and phenotypically distinct lineages with different patterns of invasion. We
show how this approach could discriminate genuine interactions, where one clone enhanced the invasive
phenotype of another, from those apparently only due to the complex dynamics of spatially restricted growth.
This study provides a framework for the quantification of subclonal interactions in DMG.
INTRODUCTION

Pediatric-type diffuse high-grade glioma, including diffusemidline

glioma (DMG) such as diffuse intrinsic pontine gliomas ( DIPGs),

are a highly heterogeneous group of tumors with no effective

treatments (Jones et al., 2017; Jones and Baker, 2014; Mackay

et al., 2017). DMG, in particular, is characterized by a highly inva-

sive phenotype that results in extensive infiltration of the brain pa-

renchyma. This phenotype, coupled with the critical region within

which these tumors originate, makes surgical resection difficult

and leads to poor prognosis. In a recent study, Vinci et al.

(2018) demonstrated the role of intra-tumoral heterogeneity

(ITH) in the phenotypic severity of these tumors and implicated

subclonal interactions as a potential driver of disease.

ITH is the natural consequence of an evolutionary process

driven by random mutation, neutral drift, and non-random posi-

tive and negative selection (Turajlic et al., 2019). Moreover, as

pediatric malignancies maintain a remnant of the differentiation

program, cell signaling leading to interactions between lineages

of cells or subclones has also been described (Azzarelli et al.,

2018; Behjati et al., 2021; Jessa et al., 2019; Vinci et al., 2018).

Evidence of subclonal interactions in other cancer types have

been explored (Marusyk et al., 2014; Massagué and Obenauf,
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2016; Tabassum and Polyak, 2015). However, these interactions

remain difficult to quantify, and experimental observations are

subject to bias and unaccounted confounding factors, such as

spatial constraints and lack of mechanistic models applied to

the data to test different alternative hypotheses.

Subclonal interactions can be studied through the lens of evo-

lution and ecology, which seeks to understand the dynamics of a

particular population within its environment and in relation to

others. The most evident negative interaction between popula-

tions is competition for space and resources, leading to

Darwinian selection (Christiansen and Loeschcke, 1990). There

are also other forms of interactions such as amensalism, where

the negative effect is only experienced by one population (Deines

et al., 2017; Lidicker, 1979). Positive interactions instead lead to

a population benefitting from the presence of another, and can

arise in three varieties (Deines et al., 2017; Lidicker, 1979): mutu-

alism, commensalism, and exploitation (Figure 1A). Mutualism is

a two-sided benefit where two species to evolve to occupy com-

plementary niches. Although it may be unlikely that two cancer

subclones concomitantly evolve this form of adaptation by two

independent subclones in the short timescales of a growing ma-

lignancy compared with millions of years in natural species, this

has been suggested as a potential avenue for the survival of
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Figure 1. Schematic of the classification and nature of spatial subclonal interactions

(A) Illustration of interactions between sub-populations characterized by the effect one population has on another. The effect can be positive, negative, or neutral.

(B) Potential biological mechanisms through which spatial subclonal interactions can lead to enhanced invasion.
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heterogeneous subclones (Axelrod et al., 2006). Commensalism,

where a species benefits from the presence of another without

affecting it, is instead potentially more likely as it only requires

one population to provide an interaction that other populations

can benefit from. An example is the production of extracellular

signaling through secreted factors, which can lead to ‘‘public

goods’’ dynamics, where all cells in the environment benefit

from the subclone producing the signaling molecule (Archetti,

2016; Axelrod et al., 2006). Finally, exploitation interactions

confer a positive benefit to one population at a cost to another,

which, in the context of cancer, where turnover is considerably

faster than in species, can lead to extinction. In multicellular or-

ganisms, this could be seen from the emergence of ‘‘cheaters’’

that violate the cooperative structure previously present (Aktipis

andMaley, 2017). Indeed, examples of positive interactions have

been observed in tumors, such as colon cancer, where paracrine

amphiregulin production by treatment-resistant clones confers

resistance to sensitive clones (Hobor et al., 2014). There have

also been some studies that have found interactions driving tu-

mor initiation (Polyak and Marusyk, 2014), metastasis (Marusyk

et al., 2014), and cell growth (Cleary et al., 2014).

Mathematical modeling of cellular population dynamics allows

simulating different interaction models to assess whether the

different types of interaction fit the real data. There is a vast liter-

ature ofmathematical models in cancer (Altrock et al., 2015; Ger-

lee and Nelander, 2012, 2016; Rockne et al., 2019; Stanková

et al., 2019; Swanson et al., 2011; Zhang et al., 2017); however,

these are not very often applied to data directly with the intent of

inferring biology. Computational andmathematical modeling ap-

proaches are powerful, and, when used together with statistical

inference, the resulting conclusions aremeasurable and translat-

able to further exploration (Zhang et al., 2017). Furthermore,

although seminal studies have modeled interactions with evolu-

tionary game theory in terms of growth advantage of subclones

(Stanková et al., 2019), these approaches are largely non-spatial,

and are not therefore suitable to capture the spatial patterns of

invasion that we want to study in pediatric gliomas.

In DMG, we are interested in understanding whether there are

cellular interactions driving its most problematic phenotype: the

diffuse pattern of invasion. Subclonal interactions have been

linked to an enhanced or diminished invasive capacity of an indi-
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vidual, with cooperation between subclones demonstrated in

Drosophila between RasV12 and scrib� clones (Wu et al., 2010).

Much of the focus around subclonal interactions revolves around

the growth rate of clones, with little attention devoted to the effects

on collective cellular invasion. There are multiple biological mech-

anisms via which this interaction could occur: cell-cell adhesion

leading to the co-invasion of cells, extracellularmatrix degradation

allowing for cells lacking this ability to escape, or paracrine

signaling (Figure 1B) (Vinci et al., 2018). In this study, we focus

on measuring interactions affecting collective cellular invasion.

This study focuses on a set of primary glioma cell lines derived

from patients during rapid autopsies. The lines have been thor-

oughly characterized at the molecular and phenotypic levels.

Importantly, from these cell lines, subclones with distinct molec-

ular features and invasion characteristics have been isolated in a

previous study by Vinci et al. (2018). In this study, clones

were isolated from patient-derived cell lines with distinct ge-

netics and phenotypes, with VI-D10 and VI-E6 isolated from

SU-DIPG-VI and clones 007-F8 and 007-F10 isolated from

HSJD-DIPG-007. Here we integrate co-culture in vitro invasion

assays with a spatial computational modeling framework to

quantify the presence, or lack of thereof, of spatial interactions

affecting the invasive phenotype of a subclonal population. In

this study, inference is divided in two sections; first, the pheno-

type of a pure population is quantified. This is achieved by

coupling data from in vitro assays and in silico simulations to infer

the distribution of parameters that quantitatively describe the

phenotype of a population. The second part involves using in

silico simulations to understand the effect of interactions of the

invasion of a population. Here, the inference from mono-culture

assays allows for the normalization of in silico simulations. The

resulting computational model is leveraged to analyze co-culture

assays to determine a quantitative description of the interactions

present between two subclonal populations (Figure 2A).

RESULTS

Combining invasion assays with computational
modeling to measure cellular interactions
The experimental design used in this study relies on growing

tumor spheroids embedded in gelatinous matrix designed



Figure 2. Combining computational modeling with invasion assays to measure cellular interactions

(A) We first quantify the invasion parameters of a pure population with computational inference previously validated in silico. We ensure we recovery the right

parameters from simulated data, before applying the inference to real data frommono-cultures. We then detect and quantify the strength of interactions using the

same approach, first with in silico inference and then inference on the real data, modeling different types and intensity of subclonal interactions. Inference on real

data generates a credible interval of the true interaction strength.

(B) An illustration of the labeled co-culture experiments with spheroids embedded in an extracellular matrix and imaged over time.

(C) Images of pure and mixed cultures using phase and fluorescent channel to highlight the effectiveness of labeling in distinguishing sub-populations (scale bar,

200 mm).

(D) Deep learning image analysis framework for segmentation of cellular populations (scale bar, 200 mm).

(E) Images highlighting the result of image processing, with an outline of the binary mask (yellow) overlaid on the green fluorescence channel (scale bar, 200 mm).
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to mimic the extracellular matrix and thus the conditions

affecting tumor cells in patient tumors. We grow these

distinct clones in mono-cultures and in co-cultures at various

ratios to assess the differences in the invasive phenotype

intrinsic to each clone, as well as the differences observed
when cultured together (Figure 2A). Cells are seeded to form

spheroids, which are then encapsulated in the extracellular

matrix. These invading spheroids are imaged every 24 h

using both phase and red/green fluorescence imaging

(Figure 2B).
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Figure 3. Simulating cellular invasion

(A) Illustration of simulation flow.

(B) Summary statistics used to measure invasion: (i) traveling-wave solution to reaction-diffusion equations fit to the spatial configuration of cells, (ii) convex hull

area.

(C) Measurements of pure population invasion, detailing the effect of proliferation and motility rates on the phenotype observed.

(D) Highlighting the effect of introducing interactions on the phenotype observed. As the positive interaction strength increases, the area invaded relative to the

pure culture also increases in a co-culture.
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Fluorescent imaging is used to identify individual subclonal

populations within a co-culture. This approach requires effective

fluorescent marker expression and detection, and this is

validated through the strong agreement of phase-contrast and

fluorescent imaging channels for a mono-culture (Figure 2C).

The 50:50 co-cultures of VI-E6 and VI-D10 demonstrated the

effectiveness in the fluorescent channel providing subclonal res-

olution (Figure 2C). We used a tile-based deep learning image

segmentation algorithm to process images from in vitro experi-

ments. This algorithm created binary masks that represent the

presence or absence of a subclone at a particular location within

an image. Here a neural network is trained with a subset of im-

ages where the desired (ground truth) segmentation masks are

provided (Figure 2D). These final masks are then compared

with the original image to ensure accurate segmentation (Fig-

ure 2E). The final binary masks generated from this algorithm

can be used to process spatial summary statistics, which are

used for parameter inference using simulations.

We used a spatial simulator based on a 3D cellular automata

(CA) model to simulate cellular invasion in silico. This model

was used to generate spatial realizations that were compared
4 Cell Reports 40, 111283, August 30, 2022
with the data contained in experimental images. We used

approximate Bayesian computation (ABC) to infer parameter

values from experimental observations, by comparing binary

masks generated from segmentation with simulation realiza-

tions, thus quantifying the biological characteristics of cell

cultures.

We start by inferring parameters for a monoclonal population,

to then create a null model of invasion in co-culture conditions.

From this baseline model, we introduce subclonal interactions

to test deviations from the null expectation. We determine a

method of recovering the strength of interactions in silico and

apply this method to in vitro data to detect the presence of and

measure the strength of interactions in our experimental system

(Figure 2A). The performance of parameter inference at each

stage can be verified in silico to ensure consistent recovery of

parameters from simulated data (see STARMethods for details).

Simulating cellular invasion
We simulate cellular invasion using an agent-based model (Fig-

ure 3A). A similar approach has been used in previous studies

to simulate glioma invasion (Gerlee and Nelander, 2012). The



(legend on next page)
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phenotype of each cell is described by two parameters: growth

and movement. We use Gillespie’s stochastic simulation algo-

rithm (Gillespie, 1977) to generate simulations with temporal

dynamics comparable with real data. (Figure 3A). Without an

experimental metric to track cell death, we have assumed cell

death is a fixed proportion (10%) of the proliferation rate to allow

for cell turnover while ensuring positive growth. The model takes

input parameters for the proliferation rate, describing rate of

replication of a clone, and motility rate, describing the rate at

which a clone moves around the environment. The unit of the

proliferation rate is the number of divisions per day (d/day) and

the unit of the motility rate is the number of cell widths, denoted

as x, traveled (in any direction) per day (x/day).

We explored the resulting stochastic simulations to describe

the invasion dynamics and generate summary statistics to quan-

tify parameters. In order to make meaningful comparisons

between experimental and simulated data, a set of summary sta-

tistics is required to reduce the dimensionality of the data. The

first summary statistic proposed takes inspiration from previous

studies of glioma invasion (Gerlee and Nelander, 2016), by using

the traveling-wave solutions of a reaction-diffusion equation in

order to find diffusion and wave-front coefficients, which

describe how disperse a spatial configuration of cells is and

how large the core of an invading spheroid is, respectively (Fig-

ure 3B, panel i). The coefficients we are using describe a static

description of the configuration of cells, thus are not directly

interpretable as reaction-diffusion equation coefficients. The

diffusion coefficient (cell density/distance) describes how steep

the slope of the wave is, whereas the wave-front coefficient (dis-

tance) describes distance of the initial high-density region of the

wave. Other measures used are the area invaded (with units

distance2) and cellular density of invaded area (cell number/dis-

tance2), we are able summarize the extent of invasion, while den-

sity seeks to provide information on the dispersion of the area

invaded (Figure 3B, panel ii).

For a culture of a pure population with a fixed proliferation rate,

the effect of increasing the motility rate is to increase the wave-

front coefficient, diffusion coefficient, and area invaded while the

density decreases (Figure 3C). This is not surprising as a popu-

lation moving faster, while growing at the same rate, will occupy

a larger area with the same number of total cells, leading to lower

cellular density. On the other hand, keeping themotility rate fixed

while increasing the proliferation rate causes wave-front coeffi-

cient, the area invaded, and the density to increase while the

diffusion coefficient decreases (Figure 3C). Most importantly,

the density and diffusion coefficientmeasurements have positive

contours, while the wave-front coefficient and area invaded have

negative contours, suggesting that a combination of these mea-

surements can provide complementary information to recover

both rates (Figure 3C).
Figure 4. Measuring the parameters that govern invasion of a monoclo

(A) Summary statistics calculated for experimental images from SU-DIPG-VI clo

onstrates a clear difference in the invasive phenotype.

(B) Images show the differences in the invasion of spheroids (scale bars, 200 mm

(C) Posterior distribution of simulated recovery of sample data with ground truth

(D) Posterior distribution of parameters from experimental images, with truncated

the distribution from the simulation parameters were drawn from (summary of nu
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Finally, looking at a model with interactions, we see the effect

of an interaction on the invasive phenotype of co-culture seeding

ratios. In co-culture conditions, as the interaction strength is

increased, the value of the area invaded, normalized to the

pure culture observation, increases, and therefore the invasive

phenotype is enhanced (Figure 3D).

Measuring invasion in a mono-culture population
To assess the presence and strength of interactions present

between distinct subclones, it is essential to understand the

phenotype of each subclone in isolation. The two clones isolated

from the tumor SU-DIPG-VI, VI-E6 and VI-D10, display a differ-

ential invasive phenotype. VI-D10 displays a stronger invasive

phenotype, in comparison with VI-E6, as demonstrated by the

diffusion and wave-front coefficients increasing faster (Fig-

ure 4A). This is evident in the images, which show a larger core

and more dispersion of cells (Figure 4B). Similarly, between the

two clones isolated from the tumor HSJD-DIPG-007, 007-F8

and 007-F10, 007-F10 displays a stronger invasive phenotype

initially (Figures 4A and 4B). We do, however, observe a plateau

in the invasion of 007-F10 after day 2.

We used ABC inference on in silico data to validate the accu-

racy of parameter recovery. This analysis is performed across a

range of sample motility and proliferation rates to show there is

consistent recovery of the ground truth (Figure 4C). We also

tested the robustness of the inference using other summary

statistics (Figure S1).

Applying this methodology to the binary masks generated

from in vitro invasion assays, the posterior distributions for the

proliferation and motility rates we recovered for SU-DIPG-VI

clones VI-E6 and VI-D10 are consistent with the observation

that VI-D10 displays significantly more invasion than VI-E6.

The posterior distribution of proliferation and motility rates are

then fitted to a distribution (truncated normal distributions), al-

lowing for the quantification of the phenotype of each of our

clones, and the use of these distributions as priors for our co-cul-

ture models (Figures 4D and S1). This allows for the propagation

of uncertainty, which often is lost when inferring a single value

and is crucial in avoiding skewing further inference.

We have also characterized the invasion parameters in a

mono-culture for the clones 007-F8 and 007-F10 from the bulk

tumor HSJD-DIPG-007, showing that 007-F8 displays a similar

rate of proliferation but a substantially reducedmotile phenotype

compared with 007-F10 (Figure 4D).

Measuring cellular interactions between distinct clones
in co-cultures
Using the posterior distributions recovered for mono-culture

populations, we are able parameterize co-culture simulations.

By assigning motility and proliferation rates that are drawn
nal population

nes VI-E6 and VI-D10 and HSJD-DIPG-007 clones 007-F8 and 007-F10 dem-

and 400 mm for SU-DIPG-VI and HSJD-DIPG-007 respectively).

highlighted by a dashed vertical line.

normal distributions fitted (dashed line). The prior distribution (gray) represents

mber of experimental replicates in Table S2).



Figure 5. Summary statistics used to measure cellular interactions between distinct clones with differential invasion

(A) Summary statistic of invaded area of a clone normalized to its mono-culture observation for different interaction strengths.

(B) Linear relationship between area under curve and interaction strength.

(C) Posterior distribution of simulated data aimed at in silico recovery of the ground truth (red dashed line), with credible interval (gray).

(D) Summary statistics on experimental data from day 3 demonstrates the parabolic relationship for VI-E6 but not for VI-D10.

(E) Images demonstrate that VI-D10 displays lower invasion in a co-culture than in isolation, while VI-E6 displays enhanced invasion in a co-culture. Phase images

show similar invasion between the two sets of co-culture images (scale bar, 200 mm).

(F) Summary statistics on experimental data from day 2 demonstrates the parabolic relationship for 007-F8 but not for 007-F10. In 007-F8 we see a similar

parabolic relationship; however, there is a decrease to the level of 007-F10 in the 75:25 (007-F8:007-F10) ratio, while 007-F10 is strictly decreasing with a plateau.

(G) Images demonstrate that 007-F10 displays lower invasion in a co-culture than in isolation, while 007-F8 displays enhanced invasion in a co-culture. Phase

images show that there is similar invasion in the two sets of co-culture images (scale bar = 400 mm) (summary of number of experimental replicates in Table S2).
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from our posterior distributions, we can then focus on the effect

that the interaction parameter has on the phenotype observed.

Based on simulations from a range of different interaction

strengths, from low to high, we explored how an interaction af-

fects the invasive phenotype in silico. For weak/absent interac-

tions, we can see that the normalized area of a clone decreases
as its seeding ratio decreases (Figure 5A). This is intuitive, as

there are fewer cells to grow and move thus the invasion is

less pronounced. However, introducing a positive interaction

leads to a parabolic relationship, with a peak that increases as

the interaction strength increases. This shows how introducing

a small proportion of another clone that provides a positive
Cell Reports 40, 111283, August 30, 2022 7
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interaction leads to an increase the invasive phenotype. Howev-

er, it is important to remember that the cells also experience

competition with one another for both space and nutrients,

such as growth factors in the cell culture medium, thus

increasing the proportion of another clone by too much leads

to a plateau in the area invaded followed by a decline as compe-

tition increases and counteracts the effect of interactions

(Figure 5A).

Hence, increasing the interaction strength leads to the fitted

curve becoming parabolic with an increasing peak. This can be

summarized as increasing interaction strength corresponds

with an increase in the area under the curve (AUC) (Figure 5B).

This link suggests that AUC can be used as a summary statistic

in ABC inference to recover the interaction strength. Indeed,

applying this inference to quantify the interaction strength on

simulated data, with AUC of the fitted curve as a summary statis-

tic, leads to the correct recovery of the interaction strength

parameter value. This relationship should allow for the recovery

of the interaction strength by applying AUC as a summary statis-

tic in ABC inference. We are also able to confirm the difference

between zero and non-zero interactions, providing power to

distinguish between their presence and absence. The ground

truth is always contained in the credible interval for all samples,

and thus there is confidence in the ability to recover the interac-

tion strength using AUC as a summary statistic (Figure 5C).

In the experimental data, the VI-D10 population behaves simi-

larly to that of no interactions, while E6 displays a parabolic

phenotype, which suggests the presence of an interaction (Fig-

ure 5D). Indeed, experimental images demonstrate that VI-D10

invasion appears to be lower in the 50:50 (VI-E6:VI-D10) ratio

compared with a mono-culture. However, on closer inspection

of VI-E6, there aremore cells that can escape and invade the sur-

rounding matrix in the 50:50 (VI-E6:VI-D10) ratio compared with

themono-culture (Figure 5E). Similarly, we can see that, between

the clones 007-F8 and 007-F10, 007-F8 displays a weak

parabolic relationship that quickly declines to below 1 (the

mono-culture normalized value) at a ratio seeded of 50:50

(007-F8:007-F10), while 007-F10 displays a significantly nega-

tive trend as the ratio seeded decreases (Figure 5F). Once again,

closer inspection of images shows that indeed 007-F8

and 007-F10 have invaded a smaller distance at the 75:25

(007-F8:007-F10) ratio (Figure 5G).

By applying our computational inference framework to those

experimental images, we then generated credible intervals for

the biological parameters. For VI-D10, the credible interval

overlaps with 0, with a modal interaction strength interval of

(�1.5, �1.0) (Figure 6A). This indicates that there is insufficient

evidence to suggest there is any interaction received by VI-

D10. More interestingly, in the case of VI-E6, the credible interval
Figure 6. Quantification of interaction strengths across two pairs of su

These pairs of subclones are VI-E6 with VI-D10 and 007-F8 with 007-F10.

(A) VI-D10 receives a neutral interaction (when cultured with VI-E6).

(B) VI-E6 receives a positive interaction (when cultured with VI-D10).

(C) 007-F8 receives a positive interaction (when cultured with 007-F10).

(D) 007-F10 receives a negative interaction (when culturedwith 007-F8). (i) Posterio

plotted with the experimental AUC as a vertical line, (iii) distributions highlighti

replicates in Table S2).
for all replicates does not contain 0, with one replicate demon-

strating a modal interaction strength interval of (2.5, 3.0)

(Figures 6B and S2). The evidence indicates that a model with in-

teractions better explains the data than amodel without, coupled

with the reproducibility of the interaction strength acrossmultiple

experiments strongly indicated that VI-E6 receives ameasurable

commensal interaction from VI-D10.

Further investigating the clones 007-F8 and 007-F10, we see

that 007-F8 displays a positive interaction strength with a cred-

ible interval that does not overlap with 0 and a modal interaction

strength interval of (8, 9) (Figure 6C), while F10 displays a credibly

negative interaction strength with a modal interaction strength of

(�20,�18) (Figure 6D). The evidence indicates that a model with

interactions better explains the data than a model without, with

the posterior distributions suggesting that 007-F8 displays an

exploitative interaction on 007-F10.

We can also infer the maximal possible effect interactions can

have on the motility of a clone by comparing the distribution of

the motility rate plus interaction strength against just the motility

rate alone. We observe that the VI-E6 demonstrates a noticeable

positive shift in the distribution, while VI-D10 has largely overlap-

ping distributions with a slight negative shift (Figures 6A and 6B).

The same conclusions can be drawn for 007-F8 and 007-F10,

with 007-F10 showing a noticeable negative shift in the distribu-

tion, while 007-F8 has slightly overlapping distributions with a

noticeable positive shift (Figures 6C and 6D).

We see larger stochasticity in our experimental data compared

with simulations, and this is particularly noticeable for measure-

ments of VI-E6. This can be explained by the interplay between

interactions and competition, where there is the potential for

spatial competition tomask the effect of any interaction. This oc-

curs when VI-D10 is able to quickly engulf VI-E6, thus limiting VI-

E6 in terms of finding space to invade. We demonstrated this by

overlaying the green fluorescence channel on top of the phase

images, to highlight the possible scenarios, from complete

freedom to invade in all directions to complete spatial restriction

from being engulfed (Figure S3).

Here we have demonstrated, from two pairs of subclonal pop-

ulations derived from two different bulk tumors, the presence of a

commensal interaction as well as an exploitative interaction.

DISCUSSION

In this study, we present a quantitative methodology enabling

the detection and measurement of positive spatial interactions

that affect the invasive phenotype of subclonal populations.

We applied this to a set of single-cell-derived clones from two

DMG autopsy patients. These findings help understanding the

role of ITH, a phenomenon linked to the adverse prognosis for
bclones from two patient-derived models

r distributions of the interaction strength received by a clone, (ii) simulated data

ng the maximal effects of interactions (summary of number of experimental
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patients, particularly in the case of pediatric-type high-grade gli-

omas (Vinci et al., 2018). The ability to detect and measure

subclonal interactions can open avenues for testing and vali-

dating treatments that seek to contain tumors by disrupting pos-

itive interactions and promoting negative interactions.

We demonstrated ameasurable change in the invasive pheno-

type of a subset of clones used in this study, which was observ-

able only when grown in the presence of other distinct clones.

This is particularly of note in the context of disease development

and progression as it reveals the implications of tumoral hetero-

geneity and subclonal interactions on tumors. DMG is character-

ized by a highly invasive phenotype that results in infiltration of

critical regions of the brain parenchyma, so understanding the

factors that result in the phenotype is crucial in further under-

standing the disease. We measured the effect of heterogeneity

on the cellular invasion through the modeling of co-cultures of

single-cell-derived clones with results showing both positive

and negative interactions. Most notably, clone VI-E6 displayed

negligible invasive potential in a mono-culture; however, this

was significantly enhanced when in a co-culture with VI-D10,

which is another clone from the same tumor. The effect on the

motility of VI-D10 wasminimal and, as a result, we demonstrated

the presence of a spatial interaction that can be classified as

commensalism. This demonstrated that the phenotype of indi-

vidual clone in a tumor cannot be considered in isolation and

the effect of subclonal interactions is a potential avenue for

enhancing disease aggression. We also demonstrated the pres-

ence of an exploitative interaction where clone 007-F8 benefited

from a higher motility rate in a co-culture, while clone 007-F10

suffers with a fall in its motility rate. These results demonstrated

the role of subclonal interactions in altering the characteristics of

tumor cells and add a layer of complexity to our understanding of

how tumors grow and develop.

The most obvious extension to our methodology would be to

include the inference of cell death rates. We have set the death

rate to 10%of the proliferation rate to ensure turnover andgrowth

without extinction; however, this choice could be adjusted if the

rate could be directly measured. Through the use cell death

markers, such as using Annexin V and flow cytometry to quantify

the proportion of dead cells, this rate could be measured and

further enhance the predictive value of stochastic simulations.

Another factor to explore is the emergence of quiescence where

a clone enters a reversible state of non-proliferation; this is high-

lighted by the ‘‘go or grow’’ hypothesis in gliomas. Here cells can

either move through the microenvironment or divide through

phenotypic switching (Hatzikirou et al., 2012). Modeling this

switching in phenotype can provide more detailed insight into

the invasive dynamics (Godlewski et al., 2010). However, based

on the short durations of the assays and low cell numbers

used, it is unlikely that cell death was a key driver of the pheno-

typic changes observed in this study. Further expansion to

include the effect of therapeutics that would induce cell death

would inevitably require an adjustment to the experimental

design.

In the case of this study, a key addition would be to introduce

mechanistic modeling to determine the nature of interactions

and find the causal factor. The clones used in this study were

established and characterized in our previous study, where we
10 Cell Reports 40, 111283, August 30, 2022
highlighted the phenotypic consequences in co-cultures (Vinci

et al., 2018). This characterization revealed a small number of

important somatic mutations that genotypically defined the sub-

clones, as well as differences in the expression of some key

genes associated with chemokine signaling. These latter obser-

vations represent an attractive candidate mechanism for the in-

teractions we have observed, whereby treatment of non-motile

clones with the pro-migratory chemokines secreted by the

motile cells enhanced these phenotypes in vitro.

There are a multitude of different avenues for interactions to

exhibit themselves, such as being pulled via cell-cell adhesion

(Janiszewska et al., 2020; Reher et al., 2017) or modulation of

chemokine signaling (Helbig et al., 2003; Manu et al., 2011; Mar-

usyk et al., 2014; Tabassum and Polyak, 2015). This will require

the creation of assays tailored to detecting these interactions,

which should be matched with computational models that aim

to do the same. Examples of such designs could be achieved

through the use of conditioned medium for long-range interac-

tions (Chang et al., 2012; Liu et al., 2019a), or several homoge-

neous spheroids from a number of different clones can be

seeded in the same well and the invasive phenotype of each

spheroid can be correlated to the distance from one another.

Experimental designs such as these could help determine the

distance across which interactions occur. Exploring models to

recreate the interplay between spatial competition and interac-

tions will help broaden the understanding of how likely a partic-

ular clone is to be engulfed and how this may change with the

seeding ratio and strength of interaction.

Spatial interactions are largely unexplored in cancer, and little

has been done in particular for those affecting cellular invasion,

with much of the literature focusing on the proliferative interac-

tions. This study presents an approach to tackle spatial interac-

tions by demonstrating the ability to detect positive and negative

interactions as well as estimate their strengths across biological

replicates; however, there is significant room for further develop-

ments. Detecting interactions is merely the initial step; the

ultimate goal should be to use our understanding of such interac-

tions to improve patient outcomes through enhanced prediction

of the trajectory of disease and therapeutic interventions. A

crucial avenue of exploration is the role of the tumor microenvi-

ronment on cellular invasion (Altorki et al., 2019; Marusyk et al.,

2014; Tabassum and Polyak, 2015). Numerous studies have

highlighted the role of microenvironmentally induced tumor

spread and metastasis, such as those demonstrating the role of

cancer-associated fibroblasts (Gaggioli et al., 2007; Liu et al.,

2019b) ormacrophages (Chenet al., 2019; Lin et al., 2019). Future

studies designed to expand on the findings of this work could

explore the role of the tumor microenvironment on cellular inva-

sion as well as an understanding of the translation of discoveries

from in vitro studies to in vivo and clinical settings. This could be

achieved through the use of in vivomodels to simulate the tissue

structure faced by tumors, organotypic brain slice cultures to

introduce microenvironmental features (Chadwick et al., 2015),

and adjusted in vitro models to introduce microenvironmental

factors. The microenvironment, however, is a highly complex

system, thus initial exploration is necessary to identify the factors

that are the most pertinent to the invasion phenotype observed.

Finally, an application of measuring the response of spatial
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interactions to therapeutic interventions can be performed using

drug screens that seek to derive a relationship between dose and

interaction strength.

This study combined computational modeling with the study of

intra-tumoral interactionsbetweensubclonesandcreatedamodel

trained from two pairs of distinct patient-derived cell lines that are

well characterized phenotypically and genotypically. This model

can therefore be applied to more cell lines and subclones, and

potentially more cancer types. However, the experimental tech-

niques would require the ability to distinguish between a larger

number of distinct populations in a co-culture. Using different

combinations of fluorescent tags simultaneously could be used

to create a system that could trackmany uniquely labeled popula-

tions (Pericoli et al., 2020). For example,with a choice of three tags

(such as red, green, and blue fluorescent proteins; Weber et al.,

2008) applying combinatorics, up to seven distinguishable

populations can be created. More interestingly, mass cytometry

technology presents the opportunity to tag over 50 populations

simultaneously when combinedwith protein barcoding (Wroblew-

ska et al., 2018). Jin et al. (2020) demonstrated the ability to tag

many human cell lines and track their metastatic potential in a

co-culture in vivo environment using similar technology. From

this study, inspiration can be drawn and a more complex

ecosystemof interacting cancer cells could bemodeled; however,

suchanexpansionwill create a heightenedcomputational burden.

In thisstudy,wehighlighted thepresenceofspatial subclonal inter-

actions, and it is clear that future explorations integrating a greater

degree of complexity should be considered.

Advances in technologies such as in situ spatial profiling of

tissues or imagingmass cytometry present an interesting avenue

for further exploration of data with a finer resolution, and this will

allow for the extension of such approaches to a more diverse

experimental system, with increased subclonal heterogeneity

and inclusions of factors from the tumor microenvironment.

Integrating enhanced microenvironmental complexity can be

achieved through the use of brain slices, such as those demon-

strated by Venkatesh et al. (2015). These experimental advances

are crucial in extending the inferencemethodology applied in this

study to system more closely replicating tumor dynamics in

patients.

The model used in this study provides a crucial stepping stone

in detecting spatial subclonal interactions that have seldombeen

explored. Detecting and quantifying the presence of such inter-

actions indicated that greater attention should be drawn to such

phenomena. Our approach allows for the identification of inter-

actions, which can in turn be an indication of where resources

and time should be spent to further explore the causes of such

interactions.

Limitations of the study
Some limitations of this current studymust be acknowledged. As

discussed previously, this study focuses on the subclonal inter-

actions between two pairs of single-cell-derived cell lines. The

approach of using pairs of subclones was deliberate as we

sought to establish the presence of spatial subclonal interac-

tions, whose presence becomes convoluted as complexity

increases. However, understanding more complex dynamics of

interactions is crucial and must be investigated further by build-
ing on the approaches demonstrated in this study. Additionally,

features of the tumormicroenvironment were largely absent from

this model, besides the inclusion of subclonal heterogeneity and

the use of an extracellular matrix. Through the profiling of the

relevant tumor microenvironment, studies can seek to introduce

layers of complexity, such as adding the presence of stromal

cells into a co-culture or extending experimental systems into

an in vivo setting. Finally, the optimization of labeling techniques

is essential in distinguishing between clones, especially once

model complexity is increased, and techniques such as imaging

mass cytometry should be investigated.
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heterogeneity reinforces tumour cell dissemination: novel insights from a

mathematical model. Biol. Direct 12, 18. https://doi.org/10.1186/s13062-

017-0188-z.

Rockne, R.C., Hawkins-Daarud, A., Swanson, K.R., Sluka, J.P., Glazier, J.A.,

Macklin, P., Hormuth, D.A., Jarrett, A.M., Lima, E.A.B.F., Tinsley Oden, J.,

et al. (2019). The 2019 mathematical oncology roadmap. Phys. Biol. 16,

041005. https://doi.org/10.1088/1478-3975/ab1a09.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: convolutional net-

works for biomedical image segmentation. In Medical Image Computing and

Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer

Science, N. Navab, J. Hornegger, W.M. Wells, and A.F. Frangi, eds. (Springer

International Publishing), pp. 234–241. https://doi.org/10.1007/978-3-319-

24574-4_28.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Subcloning DH5aTM Competent cells InvitrogenTM #18265017

One ShotTM Stbl3TM Chemically Competent

E. coli

InvitrogenTM #C737303

Lentivirus Lego iC2 This paper N/A

Lentivirus Lego V2 This paper N/A

Biological samples

HSJD-DIPG-007 (male, 9.9 years old) SU: Michelle Monje,

Stanford University

N/A

SU-DIPG-VI (female, 7 years old) HSJD: Angel Montero Cascaboso,

Hospital San Joan de Deu, Barcelona

N/A

Chemicals, peptides, and recombinant proteins

Trans-Lentiviral shRNA Packaging system Dharmacon #TLP5912

Lipofectamine2000 Invitrogen #11668030

LentiX Concentrator Takara #631231

NucLight Red BacMam 3.0 Sartorius #4621

NucLight Green BacMam 3.0 Sartorius #4622

Primocin Invivogen #ant-pm

Plasmocin Invivogen #ant-mpt

Dulbecco’s Modified Eagles Medium:

Nutrient Mixture F12

Thermo Fisher #11330-032

Neurobasal-A Medium Thermo Fisher #10888-022

HEPES Buffer Solution Thermo Fisher #15630-080

MEM sodium pyruvate solution Thermo Fisher #11360-070

MEM nonessential amino acids solution Thermo Fisher #11140-050

Glutamax-I Supplement Thermo Fisher #35050-061

B-27 Supplement Minus Vitamin A Thermo Fisher #12587-010

Human-EGF Shenandoah Biotech #100-26

Human-FGF-basic Shenandoah Biotech #100-146

Human-PDGF-AA Shenandoah Biotech #100-16

Human-PDGF-BB Shenandoah Biotech #100-18

Heparin Solution, 0.2% StemCell Technologies #07980

Laminin Bio-Techne #3446-005-01

Accutase Sigma # A6964

Matrigel Basement Membrane Matrix,

LDEV-free

Corning #354234

Critical commercial assays

Plasmid maxi kit Qiagen #12362

Cell Titer-Glo� Luminescent Cell Viability Promega #G7571 and #G7572

Deposited data

Deposited data - Experimental This paper https://doi.org/10.17632/mszhzrm4dd.1

Deposited data - Simulation This paper https://doi.org/10.17632/mszhzrm4dd.1

Deposited data - Images This paper https://doi.org/10.17632/mszhzrm4dd.1

Deposited code – Computational simulator This paper https://doi.org/10.5281/zenodo.6835901

Deposited code - Image analysis This paper https://doi.org/10.5281/zenodo.6835901
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Experimental models: Cell lines

HEK293T GibcoTM #A35347

Recombinant DNA

Lego-iC2 Addgene #27345

Lego-V2 Addgene #27340

Software and algorithms

CUDA C Nvidia CUDA Toolkit 11.4.0

MATLAB https://www.mathworks.

com/products/matlab.html

R2021b

R https://www.r-project.org/ 3.5.3

Python3 https://www.python.org 3.7

Incucyte S3 live-cell analysis system Sartorius N/A

OpenCV Opencv.org 4.4.0.44

PyTorch Pytorch.org 1.10
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Chris

Jones (chris.jones@icr.ac.uk).

Materials availability
Materials generated in this study are available upon request from the lead contact, subject to an MTA.

Data and code availability
d Statement about data: Data is available via Mendeley data at https://doi.org/10.17632/mszhzrm4dd.1.

d Statement about code: Code for computational analysis is available at https://doi.org/10.5281/zenodo.6835901.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Primary cell culture
In this study, two primary patient-derived cell lines: SU-DIPG-VI (female, 7 years old) (H3F3A K27M, TP53 p.R175H & p.E198*, MYC amp)

and HSJD-DIPG-007 (male, 9.9 years old) (H3F3A K27M, ACVR1 R206H, PPM1Dp.P428fs:, PIK3CAp.H1047R). Use of human material

covered by Multiregional Research Ethics Committee approval 18/LO/0514, all samples collected under full informed consent.

METHOD DETAILS

Study and experimental design
In in-vitro cell culture there is considerable variability between the phenotype of a cell across replicates, even when ensuring condi-

tions are kept as consistent as possible. This represents a significant barrier in separating the signal present between interacting sub-

clonal populations and noise from the variability present. To alleviate this issue, we conducted all mono-culture and co-culture assays

of the same cell line in parallel. This allows for much of the experimental noise to be eliminated as cells seeded will be from the same

passage, at the same time and under near-identical cell culture conditions.

Cell culture
Patient-derived cultures SU-DIPG-VI and HSJD-DIPG-007 were grown in stem cell media consisting of Dulbecco’s Modified Eagles

Medium: Nutrient Mixture F12 (DMEM/F12), Neurobasal-A Medium, HEPES Buffer Solution 1M, sodium pyruvate solution 100nM,

nonessential amino acids solution 10mM, Glutamax-I Supplement and penicillin Streptomycin solution (all Thermo Fisher, Loughbor-

ough, UK). The media was supplemented with B-27 Supplement Minus Vitamin A, (Thermo Fisher), 20ng/ml Human-EGF, 20ng/ml

Human-FGF-basic-154, 20ng/ml Human-PDGF-AA, 20ng/ml Human-PDGF-BB (all Shenandoah Biotech, Warwick, PA, USA) and

2mg/ml Heparin Solution (0.2%, Stem Cell Technologies, Cambridge, UK) to constitute the complete media. Cells were incubated

at 37�C, 5%CO2, 95% humidity and were refed at least twice weekly with complete media. Cell authenticity was verified using short
Cell Reports 40, 111283, August 30, 2022 e2

mailto:chris.jones@icr.ac.uk
https://doi.org/10.17632/mszhzrm4dd.1
https://doi.org/10.5281/zenodo.6835901
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.r-project.org/
https://www.python.org


Article
ll

OPEN ACCESS
tandem repeat (STR) DNA fingerprinting. SU-DIPG-VI cells were maintained on laminin-coated flasks/plates at 10mg/ml (Bio-Techne,

3446-005-01), whereas HSJD-DIPG-007 cells were maintained as neurospheres. When the cells reached confluency, 90% surface

area or 200mm neurosphere, cells were split into new flasks and/or plates depending on the assay required. Each split, cells were

dissociated by enzymatic reaction using Accutase (Sigma, A6964) for 2-5min at 37�C then diluted into PBS before centrifugation

at 1000rpm for 10min for neurospheres or 13000rpm for 5min for 2D cells. The cell pellet was resuspended with complete media

to obtain a single suspension that can be assessed for cell count and viability using the automated cell counter Countess II FL (In-

vitrogen, AMQAX1000). Further details on human glioma lines used can be found on www.crukchildrensbraintumourcentre.org/

research/resources/cell-line-repository/.

Cell doubling time
Cell doubling time was assessed by seeding 6000 and 4000 cells into 96-well back plates (Grainer, 655976) for SU-DIPG-VI and

HSJD-DIPG-007 respectively. The cell viability was measured at different timepoints using Cell Titer-Glo (Promega, G7571 and

G7572) following the manufacturer’s instructions. We generated a growth curve from which we could calculate the doubling time us-

ing the readings from the two timepoints flanking the exponential phase. The doubling time results are presented in Table S1.

Cell labeling
Different clones were derived from the bulk of SU-DIPG-VI (VI-D10 and VI-E6) and HSJD-DIPG-007 (007-F8, 007-F10) as previously

described in our previous publication (Vinci et al., 2018).

Each clone was stably labeledwith the lentiviral "gene ontology" (LeGO) vectors (Weber et al., 2008). Transduction were performed

using lentivirus encapsulated with the following plasmids: the plasmid Lego-iC2, mCherry expressing vector (#27345; Addgene) or

the plasmid Lego-V2, Venus expressing vector (#27340; Addgene), allowing the fluorescent gene of interest to be integrated into the

genome of the cells and expressed constitutively.

Briefly, each LeGo plasmid was transfected into HEK293T cells together with the Trans-Lentiviral shRNA Packaging System

(#TLP5912; Dharmacon) helped by Lipofectamine (2000) (#11668030; Invitrogen). Forty-eight hours post-transfection viral particles

in the supernatant were collected, filtered through Millex-HV 0.45um filter (#SLHVM33RS, Millipore), concentrated with LentiX

Concentrator according to the manufacturer’s instructions (#631231, Takara) then stored aliquoted at �80C. For a clonal selection,

the transfected cells were single cell flow sorted into the inner 60 wells of 96 well plates ultra-low attachment round bottom (#7007,

Corning) using a Beckman Coulter MoFlo in Class IIA2 biohazard containment hood. Cells were dropped in 100mL/well of complete

media supplemented with 2X growth factors, Primocin (#ant-pm, InvivoGen), Plasmocin (#ant-mpt, InvivoGen), penicillin and strep-

tomycin (Life Technologies). In order to enhance the fluorescent signal, clones were also labeled transiently with NucLight Red or

Green BacMam 3.0 Reagent (#4621 and 4622 respectively; Sartorius (discontinued) before seeding for the assays.

A parallel two-colour system (red/green) was used for 007-F8 and 007-F10. For clones VI-E6 and VI-D10, the expression of the

mCherry vector was not sufficient to be detected, thus a single color system (green) was used to track a single subclone: VI-E6

was expressing Venus in green and VI-D10 was expressing mCherry in red in some of the assays, and in some others VI-D10

was expressing Venus and VI-E6 was expressing mCherry. When the cells are seeded as co-culture, the cells were labelled first

using the methods described above and then seeded with the different ratio as a mixed population. To fully evaluate their invasion

ability without being biased by the labeling effect, we considered only the results from the green channel as shown in the Results

section.

Invasion assays
We generated single spheres per well using an ultra-low attachment 96-well plate (Corning, 7007). Cells were seeded in 200mL of

complete media at D0 as the following: 200 cells for SU-DIPG-VI bulk and 250 cells for VI-E6 and VI-D10; 150 cells for HSJD-

DIPG-007 bulk and 150 cells for 007-F8 and 007-F10. They were centrifuged at 1300rpm for 5min and incubated at 37C, 5%

CO2, 95%. At D3, the neurospheres from the mono- and co-cultures, 6 replicates per condition, reached about 50-100mm diameter.

Invasion assays were performed as previously described (AU - Vinci et al., 2015; Vinci et al., 2018, 2012), with somemodifications.

A total of 100mL mediumwas removed from each well containing the single neurosphere. Cold Matrigel (Corning, 354234) was gently

added at 100 mL/well and plates were incubated at 37�C, 5% CO2, 95% humidity for 1hr. Once the Matrigel solidified, 100mL/well of

culturemediumwas added on top and cells were incubated in normal condition in the IncucyteS3 for imaging throughout the length of

the assay.

Cell imaging
Images are taken using the Incucyte S3 live-cell analysis system using the spheroid scanning module with a 43 objective. Images

were taken of the phase, red and green imaging channels at intervals of 24h.

Image segmentation
First images were exported from the IncuCyte S3 with out of focus images discarded. To enhance the signal in the fluorescent chan-

nels a pre-processing step of contrast-limited adaptive histogram equalisation (CLAHE) was applied using a 5x5 pixel window,

resulting in enhancement of the signal in the fluorescent channels.
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We then prepared training data, to train a neural network to identify features from the images to segment on. Ground truth training

masks of positive cells were produced by manual annotation. These masks were created for phase and any applicable fluorescence

channels. A total of 120 masks were used for training distributed across four assays conducted in this study.

The ground truth masks were used to train a UNet (Ronneberger et al., 2015)-style segmentation, using ResNet-18(He et al., 2015)

blocks pre-trained on ImageNet data for encoding. Training data was divided using an 80–20 training-validation split (with 96 training

images and 24 validation images) and running the training process until the validation error converged. This trained model was used

for the segmentation in the next step.

We then applied our segmentationmodel on the phase and fluorescent images, resulting in probability maps that indicate the prob-

ability that each pixel contains a cell. These probability maps are converted to binary masks by thresholding at a cutoff of 0.5, pixel

with probability above this are determined to contain a cell.

The position of the microscope camera may change throughout the experiment. Thus, our time series image data must be regis-

tered into a common reference frame before cell movement can be compared across images. In order to do this, we used phase

correlation to perform image registration, using the imregcorr function in MATLAB’s Image Processing toolbox. This is performed

using the phase channel to generate a transform which shifts an image in the x-y plane to fit the previously seen image. For each

well we fixed the earliest image as the reference frame and applied this transform.

We then reviewed each binary mask to evaluate their accuracy. To reduce the potential of false positive pixel we required that a

pixel would only be classed as a cell if it was positive on both a phase and fluorescence channel. This has the cost of increasing the

proportion of pixels that are false negatives (meaning they are incorrectly labeled as not containing a cell when in fact they do. To

address this, segmentation masks were overlaid on the original images to identify any under-segmentation. We compared masks

with the original images and corrected inaccurate masks are corrected. The result of this process is a final binary mask used for

further analysis.

Genetic algorithm
Summary statistics are combined using aweighted Euclidean distance between observed and simulated values. The optimal weight-

ing of each summary statistic to this distance was determined using a genetic algorithm. The optimal weights minimised the squared

distance between the ground truth and value of parameters recovered in the posterior distribution. This was carried out over a range

of values with optimal recovery demonstrated in Figure 4C. Multiple simulations were initialised across a range of starting weights

with the resulting fitness compared to ensure likely convergence to a global optimum. Analysis was produced using the GA package

in R.

Traveling-wave solution to a reaction-diffusion equation

CðrÞ =
1

1+ e
r�m
2a

where r is the distance from the centre of a spheroid, C(r) is the cellular density at a distance r from the center, m is the wave front

coefficient representing the growth of the dense core of a spheroid and a is the diffusion coefficient which represents the motility of

cells.

Gillespie’s stochastic simulation algorithm (SSA)
SSA was used to calculate the likelihood of each process and the time taken to the next process to occur in an agent-based cellular

automaton. This was processed according to the study by Gillespie (1977) (Gillespie, 1977).

Agent based cellular automaton
A cellular automaton (CA) is a class of discrete models in computing, consisting of a finite-dimensional grid which each point in the

grid representing a finite state and pre-determined rules that are followed. Thesemodels have been used extensively to study natural

processing including models in oncology (Chkhaidze et al., 2019). Agent-based CA introduce distinct independent ‘agents’ that

behave according to their own pre-defined set of rules.

We created a CA model on a three-dimensional grid with each point representing an empty space or containing a single cell. Each

cell can undergo a pre-determined set of possibilities; divide into a neighbor grid point, move to a neighboring grid point (cells cannot

move to an occupied grid point) or undergo cell death – in all cases using a (using a 3DMoore neighbourhood of length 1) (Figures 2A

and S4). A cell can be assigned a distance to which it can push all neighbouring cells, this is called the proliferation aggression param-

eter (Chkhaidze et al., 2019). The aggression parameter is usedwhen proliferation is chosen to occur and there is no space in the local

neighbourhood. In this case if there is an empty spacewithin distance defined by the aggression parameter, the cell will divide into the

local neighborhood and push all other cells outwards to occupy the empty space.

Each of these processes occur at different rates and as themodel is extended, wewill have a distinct set of rates for each individual

subpopulation we are modelling. To determine the next process to occur at any given time and the location at which this occurs we

employed Gillespie’s stochastic simulations algorithm (SSA) (Gillespie, 1977). This is a common choice and has been shown to
Cell Reports 40, 111283, August 30, 2022 e4
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generate a statically consistent trajectory of stochastic equations, with a caveat of being computationally intensive. In this study the

cell death rate was set to be proportional to the division rate (10%of division rate) as this will allow for turnover of cells but also reduce

the computational requirements of the model when used for inference.

We initiated a simulation with cells set to a pre-determined radius around a central point (this radius was set to 5 pixels). From this

state, we calculated the propensity for each process to occur. Next, we chose a random process and cell for the next process to

occur, weighted for propensity (the likelihood of each process), as well as the time to next process using the total propensity. At

this point we updated the state of the simulation by updating the current time and executing the process selected. This loop is

repeated until the end time of the simulation is achieved; at set intervals we take a snapshot of the state of the simulation to use

for analysis (Figure 2A). In all instances, when a snapshot of the simulation is saved, we create a 2D collapse of the 3D configuration

(see STAR Methods) to be representative of the nature microscope images, which are 2D representations of a 3D system.

We modify our previous model to account for co-culture conditions by allowing for the presence of three different states in our

simulations: empty, cell of type A or cell of type B. The rest of the simulation is carried out in the samemanner as previously described.

We now have an additional parameter which determines the initial ratio between the two subpopulations. We introduced an

interaction strength parameter which affects the motility rate of a cell and it is scaled according to the proportion of another cell.

The interaction strength is now defined by; Mi = mi + rj * Iij where subscripts dictate the cell, m is the base motility without interaction,

M is the final motility rate of a cell, r is the current proportion and Iij is the interaction strength on i received by j. We have chosen this

regime as it is a simple method of introducing interactions and rj represents the proportions of a cell and the neighborhood which this

is calculated in our current implementation includes the entire simulation space. These longer-range interactions can bemore akin to

chemokine signaling as opposed to shorter range contact induced interactions. Whilst there are a multitude of different regimes to

implement, we are drawing our attention to distinguishing that a model with no interactions is insufficient in explaining the data. The

interaction neighborhood can be modified by changing the neighbourhood size parameter (with a neighbour size of N representing a

3D Moore neighborhood of magnitude N). We have chosen a global neighbourhood size spanning the entire simulation space. A

visualisation of a sample co-culture simulation can be seen in Figure S4.

Finally for further analysis, a 2D collapse of the 3D array is created. Here 2D array is created for each cell type used (in this case

2 cell types) with every x-y coordinate containing a 1 if there was a cell of this type in the z-direction of the 3D array.

QUANTIFICATION AND STATISTICAL ANALYSIS

Bayesian computation
We used an approximate Bayesian computation approach throughout this study. The general approach here was to create a large

databank of simulations. Each realisation in our databank is initiated from a set of parameters, where our parameters of interested

was drawn from a non-informative uniform random distribution. In order to reduce the size of the databank, an exploratory simulation

was run to validate the limits of the prior to ensure it encompasses the posterior.

For a sample, either experimental or simulated measurement, we calculated the distance between this and each realisation in our

databank using a weighted Euclidean distance (derived using a genetic algorithm). We set an acceptance threshold, any distances

that fell below this value were accepted and were used to generate a posterior distribution.

In theory, for an infinitely large databank, as the threshold approaches zero the posterior distribution converges to a single value,

this value is the true parameter value.

For mono-culture simulations we fit a truncated normal distribution to the posterior distribution using the packages fitdistrplus,

truncnorm and extraDistr in R.

However, in practice this is computationally infeasible and as such we generated credible intervals. These are the 95% HDI of the

posterior distribution, and we expect our true parameter value to lie in this interval, this calculated using the HDInterval package in R.

Weighted Euclidean distance of summary statistics was calculated using the general formula:

Distance =
XN

i

wiðObsVali � SimValiÞ2 with
XN

i

wi = 1
Validation of summary statistics
To validate the accuracy of a scheme of summary statistics in recovering invasion parameters, a set of sample simulations are run

with pre-defined motility and proliferation rates, and these are compared to a dataset of random simulations. Summary statistics are

calculated for the sample simulations as well as each realisation in a dataset and weighted Euclidean distance between the sample

and each simulation in the dataset is calculated for a scheme of summary statistics, such as a combination of the diffusion and wave

front coefficients.
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