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Abstract
Genome Wide Association Studies have identified several Single Nucleotide Polymorphisms
(SNPs) that are independently associated with small increments in risk of prostate cancer, opening
up the possibility for using such variants in risk prediction. Using segregation analysis of
population-based samples of 4390 families of prostate cancer patients from the UK and Australia,
and assuming all familial aggregation has genetic causes, we previously found that the best model
for the genetic susceptibility to prostate cancer was a mixed model of inheritance that included
both a recessive major gene component and a polygenic component (P) that represents the effect

of a large number of genetic variants each of small effect, where . Based on
published studies of 26 SNPs that are currently known to be associated with prostate cancer, we
have extended our model to incorporate these SNPs by decomposing the polygenic component

into two parts: a polygenic component due to the known susceptibility SNPs, , and
the residual polygenic component due to the postulated but as yet unknown genetic variants,

. The resulting algorithm can be used for predicting the probability of developing
prostate cancer in the future based on both SNP profiles and explicit family history information.
This approach can be applied to other diseases for which population-based family data and
established risk variants exist.

Introduction
Prostate cancer is the most common non-skin cancer in males living in developed countries,
and incidence has been increasing since the early 1990s [AIHW (Australian Institute of
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Health and Welfare) & AACR (Australasian Association of Cancer Registries) 2007; Parkin,
et al. 2003]. Other than advancing age, the strongest risk factor for the disease is having a
family history of prostate cancer. The risk of prostate cancer for first degree relatives of men
with prostate cancer is approximately 2.5-fold greater than for men without a family history,
which suggests that familial factors are important for the disease development [Johns and
Houlston 2003].

In the last few years, several prostate cancer susceptibility variants have been identified.
Other than mutations in BRCA2 [Agalliu, et al. 2007; Edwards, et al. 2003; The Breast
Cancer Linkage Consortium 1999; Willems, et al. 2008], no other genes with high-penetrant
variants have been discovered. Genome Wide Association Studies (GWAS) have identified
several common variants (SNPs) that individually are associated with small increments in
risk of prostate cancer. Taken together these loci explain 22% of the familial risk of prostate
cancer [Eeles, et al. 2009]. This opens up the possibility for using SNPs in risk prediction.

Risk prediction algorithms are an important tool for identifying individuals at high risk of
developing the disease who can then be offered individually tailored clinical management.
They are also useful in the planning of clinical and screening trials or for estimating the
population burden of disease [Freedman, et al. 2005].

Recently, an empirical risk model for prostate cancer was published which included the
cumulative association of eleven genetic variants and first degree family history with
prostate cancer risk using data from a Swedish study [Zheng, et al. 2008]. All the
associations were combined using a logistic regression model. A disadvantage of this
approach is that it does not deal adequately with different types of family history of prostate
cancer and it does not take into account information on all available relatives. An alternative
approach is to base predictions on a genetic risk model that explicitly models family history
and can provide consistent risks for families with any disease structure [Antoniou and
Easton 2006].

In a previous article, we described the development of a genetic model for familial prostate
cancer using segregation analysis [MacInnis, et al. 2010]. We demonstrated that genetic
susceptibility to prostate cancer can be explained by a mixed model of inheritance that
includes the effects of a recessively inherited major gene and a polygenic component
representing the effects of a large number of genetic variants each of small effect on risk. In
this article, we further develop the model by incorporating the explicit effects of the
identified common prostate cancer susceptibility variants. We investigate the predictions of
this model and demonstrate the potential clinical utility of risk profiling based on common
polymorphisms.

Subjects and Methods
Subjects: Australian Prostate Cancer Case-Control Study

Eligible cases were men diagnosed with a first primary invasive adenocarcinoma of the
prostate under the age 70 years, between 1993 and 1998 while resident in Melbourne,
Sydney, or Perth in a population-based case-control study of risk factors for prostate cancer.
Data on prostate cancer family history in all first -degree relatives were collected by face-to-
face interview. In this analysis, only data from cases (1,832 probands) and their relatives
were used. This dataset is described in detail elsewhere [Giles, et al. 2001; MacInnis, et al.
2010]
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Subjects: Royal Marsden NHS Foundation Trust, U.K
Eligible participants were men diagnosed with prostate cancer at any age, identified through
a systematically collected series of patients from prostate cancer clinics in the urology unit
at the Royal Marsden NHS Foundation Trust, UK, between 1992 and 2006. 2,558
participants completed a questionnaire that recorded family history of prostate cancer for all
first degree relatives. More details can be found in [MacInnis, et al. 2010].

Segregation analysis
A number of different genetic models were previously investigated for the genetic
susceptibility to prostate cancer using complex segregation analysis [MacInnis, et al. 2010].
The most parsimonious model was a mixed recessive model, which incorporated a major
gene effect that was recessively inherited combined with a polygenic component
representing the multiplicative effects of multiple genetic variants with small effect on risk.
Under this model, the prostate cancer incidence λi(t) for individual i at age t is assumed to
depend on the underlying genotype through a model of the form λi(t) = λ0(t) exp(Gi + Pi(t)),
where λ0(t) is the baseline incidence at age t, Gi is the natural logarithm of the relative risk
(RR) associated with the major genotype of individual i, and Pi(t) is the polygenic

component that is assumed to be normally distributed with mean 0 and variance . This
is analogous to a Cox model with the genetic components represented by random effects.
The polygenic component was approximated by the Hypergeometric Polygenic Model
(HPM), such that

(1)

where R has a binomial distribution (2N, 1/2) and N was the number of loci used in the HPM
[Fernando, et al. 1994; Lange 1997]. The model was implemented using the pedigree
analysis software MENDEL [Lange, et al. 1988].

Incidences within this model are calendar period and cohort specific, and the overall
incidence of prostate cancer is constrained to agree with the national incidences. The model
incorporates incidences for England and Wales (1960-2004) [Office for National Statistics
2006; Parkin, et al. 2003] and for Australia (1982-2003) [AIHW (Australian Institute of
Health and Welfare) & AACR (Australasian Association of Cancer Registries) 2007] and
individuals were assumed to be at risk of disease from birth and censored at the earliest of
the following events: age at diagnosis of any cancer, age at death, age at last follow-up, or
age 80 years.

In this analysis, we fitted additional models in which the polygenic variance was assumed to

be age dependent . Maximum likelihood estimation was used to estimate the model
parameters and we maximized the conditional likelihood of observing the family phenotypes
given the disease phenotype of the index patient. Nested models were compared using
likelihood ratio tests. The Akaike's A Information Criterion [Akaike 1974] [AIC = −2 log
Lik + 2×(no. of parameters)] was used to discriminate between non-nested models [Elston
1990], where log Lik equals the total log likelihood across all families.

Genetic variants
At the time of commencement of analyses, 26 SNPs were identified as being associated with
prostate cancer susceptibility [Al Olama, et al. 2009; Easton and Eeles 2008; Eeles, et al.
2009] in 24 distinct regions. We used estimates of minor allele frequencies and odds ratios
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from a case-control study of UK and Australian men [Al Olama, et al. 2009; Eeles, et al.
2009]. SNPs rs721048 and rs4430796 were not genotyped in this study; instead we used
other published results [Gudmundsson, et al. 2008; Gudmundsson, et al. 2007]. SNP
rs16901979 was also not genotyped in this study, but genotype data were available for a
perfectly correlated SNP (rs1050548, r2=1 based on HapMap data). For SNPs in the same
region we used the ORs from the joint analyses of the SNPs.

Incorporating common genetic variants
To incorporate information on the genetic variants known to confer increased prostate
cancer risk, we decomposed the total polygenic component of the model above (P) into two
parts: a polygenic component due to the known susceptibility loci PK and an unknown
residual polygenic component PU. We assumed that both were independent and normally

distributed with mean 0 and variance  and  respectively. Under this model, P=PK +PU,

where  is given from the fitted models above, and . Given a set of

known genetic variants and their joint RR distribution, it is possible to determine  (see

below). As  is known, we can therefore solve for . To compute PK, we assumed that the
known genetic loci interact multiplicatively. Therefore for each individual i,

where βij is the log RR associated with the genotype of individual i at SNP j, and μ is the
mean of the log-RR distribution across all SNPs. The polygenic variance due to the set of

known-genotyped loci  was computed as:

where  and fj is the minor allele
frequency at locus j, exp(β1j) is the RR at locus j for carriers of a single copy of the minor
allele and exp(β2j) the RR at locus j for carriers of 2 copies of the minor allele. Note that

 is the coefficient of variation in disease incidence due to SNP j [Antoniou and
Easton 2003].

The proportion of the variance explained by each SNP was computed by dividing the

variance contribution of each SNP  by the total variance of the polygenic component ( ).

Risk of developing prostate cancer in the future

Let  denote the event that the proband will develop prostate cancer between ages t0 and t1,
where t0 is the current age and t1>t0. The probability of the proband developing the disease
between ages t0 and t1, conditional on the observed SNP genotypes and family phenotypes is
given by:
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(2)

where y represents the vector of all the family phenotypes at age t0, y* represents the vector
of family phenotypes including the proband diagnosed with prostate cancer between ages t0
and t1 and PK1 is the known polygenic component for the proband such that P1 = PK1 + PU1
⋅ PU1 is the residual (unknown) polygenic component for the proband and P1 is the total
polygenotype. Therefore, P(y*, PK1) represents the probability of observing all family
phenotypes, the known polygenic component for the proband and the proband developing
the disease between ages t0 and t1.

In equation (2), the denominator can be expressed in terms of , the nth “total
polygenotype” for the proband, as follows:

(3)

where the summation is over all possible polygenotypes and N is the number of loci in the
HPM. Note that this is possible due the discrete nature of  under this model (as
approximated by equation (1)). In these calculations N was assumed to be equal to 5.

 is the conditional normal density function given by:

(4)

 is the probability of observing all family phenotypes at current age t0 for the
proband and the proband having a total polygenotype . When the polygenic variance is
age dependent, expression (3) is evaluated at age t0.

The numerator of (2) incorporates the probability of developing the disease from age t0 to
age t1 for the proband and can be computed as follows

Where  represents the event of observing the family phenotypes with the proband
diagnosed with prostate cancer at age t. Following equation (3):

Where  is the total polygenotype of the proband at age t.
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Hence, the probability of developing prostate cancer in the future can be computed in terms
of a series of likelihood functions computed in MENDEL [Lange, et al. 1988].

Descriptive statistics were calculated using Stata 10.

Results
Segregation analysis models

Prior to incorporating the effects of the prostate cancer susceptibility SNPs, we fitted
additional models to the family data to investigate in more detail the behavior of the
polygenic component (Table I). The most parsimonious model was the one with two age
groups for the polygenic variance and this formed the basis for developing the risk
prediction algorithm. Under this model, the risk allele of the major gene component was
estimated to have a population frequency of 0.165 with a RR for the rare homozygotes
compared with common homozygotes of 65. The polygenic variance for age group 35-59
was estimated to be 26.82, and for age group 60-79 2.15.

Known prostate cancer susceptibility SNPs
The allele frequencies, odds ratios and the amount of total polygenic variance explained for
each of the 26 SNPs considered are shown in Table II. In practice, it is possible that only a
subset of the known prostate cancer susceptibility variants is measured on an individual. In
our model formulation we transform the observed SNP profile into the observed polygenic
scale and therefore each combination of typed SNPs defines a separate observed polygenic
distribution. σK for having all 26 SNPs typed is 0.45, which explains about 14% of the total
polygenic variance (for ages 60-79).

Based on the combined genotypes at all 26 SNPs, the 10% and 1% of the population at
highest risk were 2.0 and 3.5 times respectively more likely to develop prostate cancer
compared with the population average (i.e., no SNPs measured). Conversely, the 10% and
1% of the population at lowest risk had RRs of 0.5 and 0.3 respectively compared with the
population average.

Risk prediction examples
Figure 1 shows the risk of developing prostate cancer by age 85 years by percentile of the
SNP profile, for a random individual between 40-80 years old. In the absence of SNP or
family history information, based on our model, such an individual would be susceptible to
the population prostate cancer incidence. At young ages (40-60 years), the lifetime risk was
over 6% higher for those in the top 10th percentile of the SNP profile compared with the
average population. The risk of prostate cancer by age 85 for a 40 year old male who was in
the top 10th percentile of the SNP profile distribution was estimated to be 19%, while for a
male in the bottom 10th percentile it was 7%.

To further illustrate the results of the model and impact of considering jointly SNP profile
and family history information, we computed the remaining cumulative lifetime risk (to age
85) of prostate cancer by percentile of the SNP profile, assuming all 26 SNPs are measured
under different scenarios (Figure 2). An UK male in the top 10th percentile of the SNP
profile distribution, whose father was diagnosed with prostate cancer at age 70 had a
cumulative risk of 33% of developing prostate cancer by age 85, while the equivalent risk
for a male in the bottom 10th percentile was 12%. If we had no SNP information available
for this person, then their remaining cumulative lifetime risk would be 22%. The difference
in absolute risk between the top and bottom 10th percentiles of the SNP profile distribution
for a 50 year old UK male with a father and brother affected at age 60 was 47%. The
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magnitude of the difference between SNP risk groups were similar for Australian men
(results not shown).

The size of the difference between the percentiles of the SNP profile distribution depended
on the percent of polygenic variance explained by the known SNPs, which in turn depended
on how many SNPs are measured. As the proportion of polygenic variance explained
increased, the absolute difference in risk between the extreme tails of the SNP profile
distribution increased (Figure 3). For example, the difference in remaining lifetime risk for a
UK male aged 50 with no information on family history of prostate cancer between the top
and bottom 10th percentiles of the SNP profile was only about 3% if the percent polygenic
variance explained (for age 60 and older) equaled 1%, whereas the difference increased to
12% if the percent polygenic variance explained equaled 14% (based on the currently known
prostate cancer susceptibility SNPs). If 30% of the polygenic variance is explained, then the
difference would be 17%.

Discussion
We have developed a risk prediction algorithm for familial prostate cancer which takes into
account 26 common variants identified through GWAS. The residual familial clustering of
the disease is explained by a mixed model of inheritance that includes an age-dependent
polygenic component and a recessive major gene component. The algorithm takes into
account explicit family history information on both affected and unaffected relatives and
their relationship and can be used on pedigrees of an arbitrary size or structure. To our
knowledge, this is the first genetic risk prediction model for prostate cancer that considers
the simultaneous effects of the known susceptibility SNPs and residual familial effects. The
algorithm can be easily extended to incorporate further polymorphisms as they are identified
and confirmed in the literature. Moreover, the approach is quite general and should be
straightforward to apply to other cancers with both known and unknown genetic
components, such as breast or colorectal cancer, or other diseases with familial component.

The algorithm we have implemented depends on two key assumptions. The first is that the
effect of the known genetic variants can be modeled to good approximation by a normal
distribution (combining additively with the unknown polygenic component). This will be
true provided the known genetic variants interact multiplicatively. Analyses to date for
prostate cancer have found little evidence of non-multiplicative interactions. One study
found that the combined effect of seven SNPs was close that predicted by a simple
multiplicative model, suggesting that this is a reasonable assumption [Kote-Jarai, et al.
2008].

In turn, the total polygenic component in our model is approximated by the HPM [Fernando,
et al. 1994; Lange 1997]. This transforms the continuous distribution of risk into a discrete
distribution, where the number of loci used in the approximation defines the number of risk
categories. Increasing the number of loci in the HPM gives greater precision for risk
estimation, particularly in the extremes of the risk distribution. The penalty for increasing
the number of loci used in the HPM is an increase in the computation time. The current
algorithm assumes that the number of loci is equal to 5, which provides enough precision to
discriminate between individuals in the extreme 1% of the SNP profile distribution.

The second assumption is that the known SNP genotypes are assessed on the consultand.
This essentially allows the pedigree likelihood to be factorized, conditional on the
polygenotype of the proband, and hence for pedigree likelihoods to be computed using the
Elston-Stewart algorithm [Lange, et al. 1988]. This is likely to suffice for most practical
situations. If more than one individual is genotyped, the same factorization does not apply.
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In principle it would be possible to consider the segregation of the known and unknown
polygenotypes through the pedigree separately (provided that the same SNPs were
genotyped for each individual), but currently this appears computationally prohibitive and
improvements to the computational algorithms will be required to generalize to this case.

The use of systematic PSA blood tests and digital rectal examinations to predict prostate
cancer risk in asymptomatic men is controversial. Currently, there are no official screening
programmes for prostate cancer in the UK or Australia and this is unlikely to change unless
there is a shift in the evidence or better screening tests become available. Results from large
randomized clinical trials are still inconclusive, and it is uncertain whether screening will
help reduce mortality from prostate cancer [Andriole, et al. 2009; Schroder, et al. 2009]. Our
risk prediction model could potentially be used in conjunction with results from clinical
trials to plan future public health policies for PSA screening. For example, the median 10
year risk of prostate cancer at age 65 in the UK population is 3.7%. Assuming that this
defines the risk threshold for referring individuals for PSA screening and that all the 26
SNPs can be genotyped, (explaining 14% of the polygenic variance), predictions based on
our proposed model suggest that the age for screening could be reduced to 61 for the top
10% and raised to age 77 for the bottom 10% of the SNP profile distribution. If we were to
identify more SNPs associated with prostate cancer which explain for example 28% of the
polygenic variance, then the age for screening, according to the SNP profile distribution, for
the top 10% would be 60 years, while the bottom 25% would be 74 years, and the bottom
10% would never reach a 10 year risk of 3.7%. These age differences will only increase as
more SNPs associated with prostate cancer risk are identified. While such an approach
would improve the efficiency of a screening program, it could also help reduce mortality
from prostate cancer by targeting those at higher risk. It may also potentially help to target
those who may warrant more invasive methods of screening such as primary biopsy.

There are several directions that our model can be extended. As more loci are identified,
they will be incorporated into the algorithm. It is likely that the number of susceptibility
SNPs will increase rapidly over the next few years as results from further large GWAS are
reported. In addition, high throughput sequencing technologies may allow rarer
susceptibility variants missed by GWAS to be identified [Easton and Eeles 2008]. The
current model can be extended straightforwardly to incorporate further variants, providing

that their effects can be modeled within polygenic distribution (simply increasing ). Rarer
variants conferring higher risks may be more problematic; if many such variants need to be
incorporated individually into the model, further improvements in computational efficiency
will be required. Given the populations where GWAS have been conducted to date were
mostly over 60 years, estimates of the SNPs for men less than 60 years would also help
improve the model. The model can also be extended to incorporate the effects of the causal
variants as these are identified through fine mapping and experimental studies.

The current model does not take into account prostate cancer aggressiveness but none of the
confirmed markers identified to date have been clearly shown to be associated with prostate
cancer aggressiveness [Easton and Eeles 2008; Witte 2009]. Inclusion of BRCA2 carrier
status would also improve predictions; several studies have cindicated that BRCA2
mutations predispose to aggressive prostate cancer [Mitra, et al. 2008; Tryggvadottir, et al.
2007]. It should also be possible to extend the model to incorporate PSA levels as a
covariate, although this is complicated by the fact that at least two of the susceptibility loci
(MSMB and KLK3) are also associated with PSA levels.

In conclusion, we have derived a general model of prostate cancer susceptibility that has the
ability to provide accurate predictions of prostate cancer risk based on the genotypes at all
known susceptibility SNPs and family history of the disease. However, it will be important
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to evaluate the accuracy of the predictions in independent populations, and preferably in
prospective studies and to determine the potential benefit of use of such a model in prostate
cancer screening studies.
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Figure 1. Predicted remaining lifetime risks of prostate cancer for a random individual by
current age and percentile of the SNP profile (assuming UK incidences after 1924, all 26 SNPs in
Table II typed)

MacInnis et al. Page 11

Genet Epidemiol. Author manuscript; available in PMC 2014 March 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Predicted cumulative risk of prostate cancer for a 50 year old male by percentile of the SNP
profile (assuming UK incidences after 1924, all 26 SNPs in Table II typed).
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Figure 3.
Remaining lifetime risk for a 50 year old random individual by percent polygenic variance
(age 60-79) explained and percentile of the SNP profile (assuming UK incidences after
1924).
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