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Spinal Muscular Atrophy (SMA) is caused by depletion of the ubiq-
uitously expressed survival motor neuron (SMN) protein, with one
in forty Caucasians being heterozygous for a disease allele. SMN
is critical for the assembly of numerous ribonucleoprotein com-
plexes, yet, it is still unclear how reduced SMN levels affect motor
neuron function. Here, we examined the impact of SMN depletion
in Caenorhabditis elegans and found that decreased function of
the SMN ortholog SMN-1 perturbed endocytic pathways at motor
neuron synapses and in other tissues. Diminished SMN-1 levels
caused defects in C. elegans neuromuscular function and smn-
1 genetic interactions were consistent with an endocytic defect.
Changes were observed in synaptic endocytic proteins when SMN-
1 levels decreased. At the ultrastructural level, defects were ob-
served in endosomal compartments, including significantly fewer
docked synaptic vesicles. Finally, endocytosis-dependent infection
by JC polyomavirus (JCPyV) was reduced in human cells with
decreased SMN levels. Collectively, these results demonstrate for
the first time that SMN depletion causes defects in endosomal
trafficking that impair synaptic function, even in the absence of
motor neuron cell death.

endocytic trafficking | survival motor neuron | spinal muscular atrophy
| C. elegans | infection

Introduction
Spinal Muscular Atrophy (SMA) is one of the most severe neuro-
muscular diseases of childhood, with an incidence of 1 in 10,000
live births and a high carrier frequency of roughly 1 in 40 Cau-
casians (1-3). SMA is caused by reduced levels of the ubiquitously
expressed survival of motor neuron (SMN) protein and results in
degeneration of α-spinal cord motor neurons, muscle weakness,
and/or death. Two human genes encode the SMN protein, SMN1
and SMN2. SMA alleles arise at relatively high frequency due to
small intrachromosomal de novo rearrangements including the
SMN1 locus (4). Patients often carry homozygous SMN1 dele-
tions, although missense and nonsense alleles exist (5). Multiple
copies of SMN2 rarely compensate for loss of SMN1 due to a
C>T nucleotide change in SMN2 exon 7 that perturbs pre-mRNA
splicing and results in a truncated protein of diminished function
and stability (SMN△7) (5-9).

SMN has numerous roles and interacts with various proteins;
yet, it remains unclear which interactions are most pertinent to
SMA pathogenesis. As a component of the Gemin complex, SMN
is required for biogenesis of small nuclear ribonucleoprotein
(snRNP) particles critical for pre-mRNA splicing (10-12). Fur-
thermore, SMN is needed for stress granule formation (13, 14), is
found in RNP granules moving through neuronal processes, and
is part of RNP complexes implicated in synaptic local translation
(15-20). Additional roles for SMN, in transcription (21), in the
PTEN-mediated protein synthesis pathway (22), in translational
control (23) and in cell proliferation/differentiation (24) have
been described. Importantly, no consensus has been reached

regarding the cellular and molecular pathways whose perturba-
tion results in SMA pathology. Identifying the cellular pathways
most sensitive to decreased SMN is essential to understand how
SMN depletion causes neuronal dysfunction/death in SMA and
to accelerate therapy development.

One of the early events in SMA pathogenesis is the loss of
neuromuscular junction (NMJ) function, evidenced by muscle
denervation, neurofilament accumulation, and delayed neuro-
muscular maturation (25-27). In addition, reduced neurotrans-
mitter release and decreased numbers of docked vesicles that
precede axonal degeneration and/or motor neuron death have
been reported at synapses of severe SMA mouse models (28,
29). Notably, accumulation of synaptic vesicles away from release
sites was observed in SMA fetal samples (30). The proximate
cause of these synaptic changes is unclear. Numerous hypotheses
have been proposed, including functional abnormalities in axonal
transport and/or calcium channel loss in the nerve terminals
(25-30), but none have explained the defects observed in SMA
presynaptic regions.

Here, we use a previously established model of SMA in the
nematode Caenorhabditis elegans (C. elegans) and show, using
functional assays, pharmacological challenges, and genetic epista-
sis, that decreased SMN levels cause endocytic pathway defects.
In C. elegans cholinergic motor neurons, decreased SMN levels
caused aberrant localization of proteins critical for endocytosis.

Significance

Spinal Muscular Atrophy (SMA) is a devastating motor neuron
disease, caused by decreased levels of the ubiquitous Survival
Motor Neuron (SMN) protein. Despite the well-characterized
role of SMN in pre-mRNA splicing, it remains unclear why
SMA has a high carrier frequency (∼1:50 Caucasians) and why
diminished SMN affects synaptic function. Here, we demon-
strated for the first time that SMN depletion causes defects
in endosomal trafficking that impair synaptic function. Addi-
tionally, diminished SMN in human cells reduced endocytosis-
dependent viral infection. It is possible that decreased SMN
function may increase resistance to infection. Our findings
point to endocytic trafficking as a major player in SMA patho-
genesis.
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Fig. 1. Decreased SMN function in C. elegans causes defective motor neuron function. (A) Images of age-matched smn-1(ok355) (top) and smn-1(ok355);[smn-
1(+)] (bottom) animals. Single-copy insertion of an [smn-1(+)] transgene rtSi10 rescued smn-1(ok355) larval lethality and growth, but did not restore fertility.
Arrow indicates adult vulva, which has not developed in age matched smn-1(ok355). (B) smn-1(ok355) and smn-1(rt248) animals had reduced pumping rates
versus respective smn-1(+) controls. Studies in panel B involving smn-1(ok355) were run independently from studies with smn-1(rt248), but combined into one
panel for brevity (black column: smn-1(+) control for ok355; cross-hatched: smn-1(+) control for rt248). smn-1(ok355) pharyngeal pumping defects (at day 3
post-hatching) were ameliorated by introducing an smn-1(+) rescue construct. Mean ± SEM;Mann-Whitney U-test, two tailed: **p < 0.01, ***p < 0.001. (C)
smn-1(ok355) and smn-1(rt248) animals were resistant to the acetylcholinesterase inhibitor aldicarb. Time course for paralysis induced by 1 mM aldicarb in
smn-1(+), smn-1(ok355), smn-1(rt248) and unc-57(ad592) young L4 hermaphrodites is shown. unc-57 encodes C. elegans endophilin A; unc-57(ad592) causes
inappropriate resistance to aldicarb (43). Log-rank test: *p < 0.05, ***p < 0.001. (D) The aldicarb resistance of smn-1(ok355) animals was mostly restored by
[smn-1(+)] genomic rescue (rtSi10). Log-rank test: ***p < 0.001, n.s., not significant. (E) smn-1(ok355) and smn-1(rt248) were hypersensitive to levamisole,
a nicotinic ACh receptor agonist. smn-1(+), smn-1(ok355), smn-1(rt248) and lev-1(e211) young L4 hermaphrodite paralysis on 0.4 mM levamisole plates is
reported. lev-1(e211) animals lack a nicotinic ACh receptor subunit. Error bars indicate ±SEM. Log-rank test: *p < 0.05, ***p <0.001, n.s., not significant.

Further, ultrastructural analysis of endosomal compartments re-
vealed numerous defects when SMN levels were depleted, includ-
ing loss of synaptic docked vesicles. Endocytic pathway defects
were also observed in non-neuronal tissues. Finally, endocytosis-
dependent infection by JC polyomavirus (JCPyV) was reduced
in human cells with decreased SMN levels. Combined, these
results demonstrate for the first time that SMN depletion causes
widespread defects in endosomal trafficking that impair synaptic
function in motor neurons, even in the absence of motor neuron
death.

Results

smn-1 is required for neuromuscular function. The C. elegans
genome harbors a single ortholog of SMN, SMN-1. Animals with
a wild type copy of the endogenous smn-1 gene are referred
to herein as smn-1(+) and are used as controls. Diminished
smn-1 function causes slow growth, larval lethality and impairs
neuromuscular function in pharyngeal pumping during feeding
(31, 32) (Figure 1A). C. elegans feed on microorganisms using
a discrete subset of muscles and neurons in the pharynx (33).

Animals pump symmetrically and continuously roughly 250 times
per minute when food is present. The pumping rates of smn-1 loss
of function animals (smn-1(ok355)) are significantly reduced (p =
3e-12, Figure 1B) (31, 32). To confirm that the defects described
here are caused by smn-1 loss, we generated a new smn-1 allele,
smn-1(rt248), using CRISPR/Cas9 targeted mutagenesis (34, 35).
The rt248 allele results in a premature truncation at the 19th

amino acid (D19fs) of the SMN-1 protein, disrupts RNA binding,
Tudor and oligomerization domains, and likely eliminates SMN-1
protein function (Figure S1). The pumping rates of smn-1(rt248)
animals were significantly reduced (p = 3e-9, Figure 1B). This de-
fect was re-confirmed using RNA interference (smn-1(RNAi), p
= 2e-09, Figure S2). These neuromuscular defects are progressive
and not a developmental process; homozygous smn-1(ok355) and
smn-1(rt248) larvae initially resemble wild type animals due to
maternal smn-1 loading. Eventually, homozygous smn-1 animals
lose maternally-loaded smn-1 product, suffer decreased motor
neuron function, and usually die as larvae. However, no motor
neuron loss is observed (36). The impact of smn-1 loss is recessive;
heterozygous animals are overtly normal. Single copy insertion
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Fig. 2. Double mutant analysis using pharyngeal pumping suggests synaptic vesicle recycling defects. (A) C. elegans neuromuscular function is assessed
as pharyngeal grinder (arrow) movement during feeding. (B-D) Complete loss of endophilin-A,synaptojanin, or syndapin(unc-57(ok310), unc-26(s1710), or
sdpn-1(ok1667))did not alter smn-1(ok355) pharyngeal pumping defects. (E and F) Complete loss of Munc-18 or synaptobrevin(unc-18(e234) or snb-1(md247))
exacerbated smn-1(ok355) pharyngeal pumping defects. Additive defects with SV exocytosis loss of function mutants suggested that SMN-1 depletion impairs
the SV recycling pathway. Total number of animals tested listed for each genotype ± SEM;Mann-Whitney U-test, two tailed: *p < 0.05, **p < 0.01, ***p <
0.001, n.s., not significant.

of an smn-1(+) genomic DNA transgene (containing 445 bp of
5’ regulatory sequences, 816 bp smn-1 genomic DNA and 558
bp of 3’ non-coding sequences, called rtSi10) fully rescued larval
lethality, partially ameliorated pharyngeal pumping defects (p =
0.0004, Figures 1A and 1B), but did not restore fertility of smn-
1(ok355) animals. The partial rescue of smn-1(ok355) defects may
arise from regulatory sequences required for SMN-1 expression
that were not included in the rescue construct. Nevertheless,
the results presented here confirm that these defects can be
attributed to SMN-1 depletion and that SMN-1 is required for
normal neuromuscular function.

smn-1 regulates synaptic transmission. Studies in SMA pa-
tients and mice revealed defects in motor neuron synapses when
SMN levels are reduced (37). We examined motor neuron func-
tion pharmacologically in smn-1(ok355) and smn-1(rt248) ani-
mals by assessing sensitivity to aldicarb and levamisole. Aldicarb
is an acetylcholinesterase inhibitor that causes muscle hyper-
contraction and paralysis due to accumulation of acetylcholine
(ACh) in the synaptic cleft (38). Decreased ACh release slows

the onset of aldicarb-induced paralysis. We found that smn-
1(ok355) and smn-1(rt248) animals were resistant to aldicarb
compared to animals with normal smn-1 function (p = 0.03 smn-
1(ok355) and p = 8e-6 smn-1(rt248) vs smn-1(+) derived from
+/hT2 parents, Figure 1C). This increased resistance was due
to diminished smn-1 as introducing an smn-1(+) genomic DNA
fragment restored aldicarb sensitivity (p = 0.17, Figure 1D).
Resistance to aldicarb was also observed when smn-1 was knocked
down by RNAi specifically in cholinergic neurons (p = 0.004,
Figure S3) (39). Therefore, SMN-1 is required for neuromuscular
function, likely in cholinergic neurons, which is consistent with
a previous study reporting resistance to the acetylcholinesterase
inhibitor pyridostigmine bromide (40). smn-1(ok355) and smn-
1(rt248) aldicarb resistance could be caused by decreased neuro-
transmitter release or reduced post-synaptic response to acetyl-
choline. To discriminate, we assessed smn-1(ok355) and smn-
1(rt248) sensitivity to levamisole, an agonist, which induces paral-
ysis by directly activating post-synaptic nicotinic receptors. Lev-
amisole resistance is thought to be purely post-synaptic (41). smn-
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Fig. 3. Altered localization of presynaptic endocytic proteins in smn-1 loss of function animals. (A-E) Representative images of fluorescently-tagged,
presynaptic proteins expressed in the dorsal nerve cord of cholinergic DA motor neurons of smn-1(+) control, smn-1(ok355), and smn-1(rt248) animals. Scale
bar, 10 μm. (F) Percent change from control for SYD-2 (α-liprin), NLP-21 (GGARAF neuropeptide family), APT-4 (AP2 α-adaptin), ITSN-1 (DAP160/Intersectin) and
SNB-1 (synaptobrevin) in smn-1(ok355) animals is reported for average puncta width, puncta total intensity, and linear density (number/μm). ITSN-1 and SNB-1
are reported for smn-1(rt248). Light and dark shading indicates an increase or decrease, respectively, in the smn-1(ok355) and smn-1(rt248) animals compared
to smn-1(+) control (See Dataset S1 for extended analysis). Mann-Whitney U-test, two tailed *p < 0.05, **p < 0.01, ***p < 0.001. (G-I) A single copy of the
[smn-1(+)] construct rtSi10 fully rescued APT-4 linear density (Control smn-1(+) animals versus rescued smn-1(ok355);rtSi10[smn-1(+)]) p = 0.5; smn-1(ok355)
versus rescued p = 0.002), partially ameliorated puncta width defects (control smn-1(+) versus rescued p = 0.002; smn-1(ok355) versus rescued p = 0.03), but
may not have improved total intensity (control smn-1(+) versus rescued p = 5e-04; smn-1(ok355) versus rescued p = 0.09).Distributions of APT-4 puncta width,
linear density, and puncta total intensity in smn-1(ok355) animals is compared to distributions in control smn-1(+) and rescued animals. Results are presented
as kernel density estimates, which convert distribution histograms intosmooth, continuous density function curves. X-axis values were log2-transformed prior
to the calculation of the density function. Linear density (puncta/μm) values are less than 1 resulting in negative values after log-2 transform (Dataset S1). At
least three independent trials performed (n>25 animals in total/genotype).

1(ok355) and smn-1(rt248) were hypersensitive in their response
to levamisole (p = 0.02 smn-1(ok355) and p = 5e-4 smn-1(rt248)
vs smn-1(+), Figure 1E). According to Miler and colleagues (42)
a normal or hypersensitive response to levamisole suggests that an
impaired ACh response at the muscle is not the cause of aldicarb
resistance. Together, these data suggest that SMN-1 likely impacts
presynaptic function and is required for normal neurotransmitter
release.

Genetic interaction of smn-1 with endocytic pathway genes.
The smn-1(ok355) and smn-1(rt248) synaptic defects could be
due to impairments in the synaptic vesicle (SV) cycle. Poten-
tial functional interactions between smn-1 and genes encoding
SV endo- or exocytosis proteins were examined by constructing
double mutant strains. For this epistasis analysis, we used two
quantitative neuromuscular phenotypes: aldicarb sensitivity and

pharyngeal pumping rates. First, double mutant animals were
constructed with smn-1(ok355) and complete (null) loss of func-
tion alleles for unc-57 (endophilin-A) and unc-26 (synaptojanin),
which encode proteins in the synaptic clathrin-mediated endo-
cytosis (CME) pathway (43), and sdpn-1 (syndapin), which is
required for activity-dependent bulk endocytosis (ADBE) (44).
Loss of smn-1 did not exacerbate the aldicarb resistance defects
of unc-57(ok310) nor unc-26(s1710) compared to each single
mutant strain, but rather an intermediate defect was observed
(Figure S4A and S4B). The aldicarb response of smn-1(ok355-
);sdpn-1(ok1667) animals was almost identical to that of smn-
1(ok355) animals (p = 0.76, Figure S4C). When double mutant
strains were constructed with complete (null) loss of function
mutants involved in SV exocytosis, snb-1 (synaptobrevin) or unc-
18 (Munc18), the aldicarb response defects were non-additive (p
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Fig. 4. Endosomal defects are seen in smn-1(ok355) motor neurons and elsewhere. (A) Representative electron micrograph images of smn-1(+) control and
smn-1(ok355) neuromuscular junctions. Arrows point to synaptic vesicles (SVs) and arrowheads to dense core vesicles (DCVs). DP indicates dense projection; C
indicates a cistern. (B) SVs per synaptic profile, as defined by the presence of a DP, were reduced in smn-1(ok355) animals. Mann-Whitney U-test, two tailed:
***p < 0.001. (C) Docked SVs in contact with the DP were reduced in smn-1(ok355) animals. Mann-Whitney U-test, two tailed: **p < 0.01. (D) smn-1(ok355)
animals had reduced numbers of SVs within the region 100 nm from the synaptic profile/DP. Mann-Whitney U-test, two tailed: ***p < 0.001 (Table S2). E)
The number of DCVs per synaptic profile/DP in smn-1(ok355) animals was not different than control smn-1(+) animals. Mann-Whitney U-test, two tailed: n.s.,
not significant. (F) Cisternae accumulated aberrantly in motor neurons of smn-1(ok355) mutants. Mean ± SEM is shown,Mann-Whitney U-test, two tailed: *p
< 0.05. (G) Fluid-phase endocytosis by coelomocytes was decreased in smn-1(ok355) animals, Mann-Whitney U-test, two tailed: *p < 0.05. Image on the right
shows the pair of coelomocyte cells lying just anterior to vulva; arrows indicate GFP accumulation inside the coelomocytes. No GFP accumulation in the body
cavity of ok355 animals was observed. (H) Representative electron micrograph images of multivesicular bodies (MVBs) in the hypodermis of smn-1(+) control
and smn-1(ok355) animals. The MVBs of smn-1(ok355) animals contained fewer intraluminal vesicles compared to smn-1(+) control animals, Mann-Whitney
U-test, two tailed: *p < 0.05.

= 0.55 for snb-1(md247) vs smn-1(ok355);snb-1(md247) and p
= 0.72 for unc-18(e234) vs smn-1(ok355);unc-18(e234), Figures
S4D and S4E). These results are consistent with smn-1 depletion
impairing SV function, but definitive conclusions could not be
drawn. Therefore, we turned to pharyngeal pumping rates to
assess genetic interactions (Figure 2A). Loss of C. elegans en-
dophilin, synaptojanin or syndapin did not exacerbate the de-
creased pharyngeal pumping rates of smn-1(ok355) (p = 0.34
for smn-1(ok355) unc-57(ok310), p = 0.93 for smn-1(ok355);unc-
26(s1710) and p = 0.67 for smn-1(ok355);sdpn-1(ok1667), Figures
2B, 2C and 2D). By contrast, double mutant strains with genes
involved in SV exocytosis were additive and had significantly

reduced pumping rates compared to each single mutant strain
(p = 0.01 for smn-1(ok355);unc-18(e234) and p = 0.008 for
smn-1(ok355);snb-1(md247), Figures 2E and 2F). Overall, these
results indicate that SMN-1 depletion impairs synaptic transmis-
sion, potentially by decreasing SV recycling.

Diminished SMN-1 alters the presynaptic structure of motor
neurons. If SV recycling is defective when SMN levels are dimin-
ished, then the localization and/or levels of specific presynaptic
proteins might change. Synaptic localization was examined in the
DA motor neurons of smn-1(ok355) and smn-1(rt248) animals for
two fluorescently-tagged presynaptic proteins: SNB-1 (synapto-
brevin) and ITSN-1 (DAP160/Intersectin) (45, 46). In the dorsal
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Fig. 5. Low SMN levels decrease JCPyV infection, but not virus binding. (A)
SMN siRNA knockdown in SVG-A cells. SVG-A cells reverse-transfected with
siRNAs specific for SMN; protein levels were determined by SDS-PAGE and
immunoblot analysis using antibodies specific for SMN or tubulin (loading
control). Percentage remaining SMN is indicated. (B) JCPyV infection is
dependent on SMN. SVG-A cells were reverse-transfected with SMN siRNAs,
infected with JCPyV and quantified based on nuclear VP1 staining. Here,
we report the percentage of infected cells, relative to the siRNA scrambled
control (n=3 independent experiments). For each experiment, 5 fields of view
of a 12 well plate were scored for infection and each was compared to
siRNA scrambled control (100%). Error bars indicate SEM; Student’s t-test,
two tailed: *p < 0.05, **p < 0.01.(C) JCPyV binding to SVG-A cells is not
affected by SMN knockdown. Following siRNA-knockdown of SMN, SVG-A
cells were either treated or untreated with neuraminidase (NA). Cells were
incubated with JCPyV-633 and analyzed by flow cytometry. Data represent
the relative fluorescence intensity of JCPyV-633 binding to cells normalized
to control. (D) SMN protein levels in fibroblasts from an individual with
SMA and control fibroblasts were determined by SDS-PAGE and immunoblot
analysis using antibodies specific for SMN or tubulin (loading control). SMN
levels are represented as % control SMN. (E) Fibroblasts derived from an SMA
patient do not support JCPyV infection. Fibroblast cells were infected with
JCPyV and quantified based on nuclear VP1 staining. Bar graphs represent
the average number of infected cells/well for 3 wells and represent data
from 3 independent experiments. Error bars indicate standard deviation (SD);
Student’s t-test, two tailed: *p < 0.05. (F) JCPyV binding is not decreased in
SMA patient fibroblasts. SMA patient and control fibroblasts were incubated
with JCPyV-633 and analyzed by flow cytometry. Relative fluorescence inten-
sity of JCPyV-633 binding to cells normalized to control is indicated.

cord, DA motor neurons have no presynaptic inputs and form
en passant synapses onto muscle processes (47). This results in
a punctate pattern of protein localization along the length of the
dorsal cord, composed primarily of presynaptic active zones (45).

Fig. 6. The motor neurons of smn-1(ok355) animals display endocytic
defects. Schematic summary of puncta and TEM analysis. The number of
active zones and dense core vesicles (DCV) in smn-1(ok355) motor neurons
was unchanged, but fewer presynaptic docked vesicles were observed, more
irregular large vesicles, called cisternae, and aberrant localization of both
AP2 α-adaptin and Intersectin/DAP160 endocytic proteins was observed in
smn-1(ok355) motor neurons.

We quantified puncta width, puncta total intensity, and puncta lin-
ear density (number/μm). In both smn-1(ok355) and smn-1(rt248)
animals, puncta of the SV protein SNB-1 were diminished in
width, intensity and density (average puncta width decreased 26%
and 19% for ok355 and rt248, respectively, p = 0.02 for ok355 and
p = 0.04 for rt248; average total intensity decreased 35% and 27%
for ok355 and rt248, respectively, p = 0.005 for ok355 and p =0.02
for rt248; density decreased roughly 30% for both alleles; p =
0.004 for ok355 and p = 0.01 for rt248, Figure 3E and 3F). Puncta
of the endocytic protein ITSN-1 (DAP160/Intersectin) were also
altered in width and intensity in both smn-1(ok355) and smn-
1(rt248) animals; linear density changed only in smn-1(ok355)
animals (Figure 3D and 3F). ITSN-1 puncta were smaller in size
(ITSN-1 average puncta width decreased by 13% and 19% for
ok355 and rt248, respectively, p = 0.03 for ok355 and p = 0.008
for rt248. Puncta total ITSN-1 intensity was reduced by 20% and
23% for ok355 and rt248, respectively, p = 0.02 for ok355 and p
= 0.004 for rt248.

As both smn-1 loss of function alleles had the same profile,
we also examined three more presynaptic markers in the cholin-
ergic DA motor neurons of smn-1(ok355) animals only: SYD-2
(α-liprin), NLP-21 (GGARAF neuropeptide family) and APT-4
(AP2 α-adaptin). SYD-2 and NLP-21 puncta were unaltered in
smn-1(ok355) animals, suggesting that the number of synapses -
based on active zones and dense core vesicles (DCV), respectively
- is unchanged when SMN-1 levels drop (Figure 3A, 3B and 3F).
This is consistent with previous work showing that smn-1(ok355)
animals have no overt defects in nervous system morphology and
no motor neuron death (31). Puncta of the endocytic APT-4 (AP2
α-adaptin) were altered in intensity and number in smn-1(ok355)
animals (Figure 3C and 3F). APT-4 puncta were more numerous
along the neuronal processes (APT-4 increased 46%, p = 0.003),
but were smaller in size (APT-4: decreased 39%, p = 8e-06).
Puncta total intensity was reduced by 44% for APT-4 (p = 3e-
05). To further confirm that changes in synaptic protein levels
were due to decreased smn-1 function, a wild type copy of smn-
1(+) was introduced to smn-1(ok355) animals expressing APT-
4::GFP. Synaptic defects were ameliorated or eliminated (Figure
3G, 3H and 3I). Combined, these results suggest that smn-1
loss of function likely causes defects in SV recycling resulting in
aberrant localization of endocytic proteins and fewer functional
synaptic vesicles. To confirm this interpretation, we examined
smn-1(ok355) presynaptic specializations at a higher resolution.

Decreased smn-1 function causes defects in endocytic com-
partments. We sectioned and reconstructed part of the ventral
nerve cord for both normal smn-1(+) and mutant smn-1(ok355)
animals to determine the number and distribution of vesicles
in the presynaptic specializations by using transmission electron
microscopy (TEM) (Figure 4A). The total number of SVs per
presynaptic region was reduced by 36% in motor neurons of
smn-1(ok355) animals versus smn-1(+) (14±2, n=45 versus 22±2,
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n=35, respectively, p = 0.0002, Figure 4B). The average number
of docked vesicles at the plasma membrane (p = 0.008) and
average number of SVs 100 nm away from the active zone (p = 4e-
08) were also decreased in smn-1(ok355) animals versus smn-1(+)
(Figure 4C and 4D). By contrast, the average number of DCVs in
each presynaptic profile was not significantly different between
smn-1(+) and smn-1(ok355) animals (p = 0.34, Figure 4E). The
changes observed in synaptic vesicles were consistent with results
from the puncta analysis (Figure 3). TEM studies also revealed
an unusual accumulation of cisternae in smn-1(ok355) synapses
(Figure 4F). Cisternae are large and abnormal-sized vesicles that
often reflect arrested endocytic vesicle maturation and sorting.
Cisternae accumulation was reported in the synapses of C. elegans
defective in endocytosis, such as unc-57 and unc-26 animals (43,
48). smn-1(+) animals had 0.06±0.01 cisternae/synaptic special-
ization, whereas smn-1(ok355) animals exhibited a three fold in-
crease (0.17±0.02 cisternae/profile; p = 0.02). The ultrastructural
abnormalities in smn-1(ok355) animals further support a model in
which diminished SMN-1 function impairs endosomal trafficking
in motor neuron synapses.

Diminished SMN-1 causes endosomal defects in non-
neuronal tissues. Synaptic vesicle recycling shares common ele-
ments with endosomal trafficking in other cells. To determine if
smn-1 depletion causes endosomal defects more broadly, other
tissues were examined. The C. elegans body cavity contains six
coelomocyte cells that rely on fluid-phase endocytosis to clear sol-
uble moieties from the pseudocoelom (49). Animals engineered
to secrete GFP from body wall muscles into the body cavity have
been used extensively to characterize endocytic activity in coelo-
mocyte cells (50). We compared coelomocyte GFP uptake in smn-
1(+) and smn-1(ok355) animals. GFP uptake in smn-1(ok355)
animals (Figure 4G, p = 0.01) is significantly reduced, indicating
that diminished SMN-1 causes endocytic pathway defects in these
non-neuronal cells. As GFP does not accumulate in the body
cavity of smn-1(ok355) animals, the coelomocytes defect is not
severe. To confirm that smn-1 loss decreases endocytosis, we used
RNAi to knock down SMN-1 specifically in coelomocytes. Loss
of SMN-1 resulted in increased GFP intensity in coelomocytes
and significant accumulation of GFP in the body cavity, consistent
with stalled endocytosis and a cell-autonomous defect. No gross
morphology changes or large vacuoles were observed (Figures S5
and S6).

Next, the impact of SMN depletion on late endoso-
mal/lysosomal compartments was examined by assessing mul-
tivesicular body (MVB) morphology in TEM sections. MVBs
contain internal intraluminal vesicles that can be degraded in
the lysosome or transported to the cellular membrane for re-
cycling/secretion. In smn-1(ok355) animals, the average number
of MVB intraluminal vesicles per MVB was dramatically de-
creased compared to smn-1(+) animals (22±4 versus 6±1, p =
0.002, Figure 4H) suggesting that diminished SMN-1 impacts
either generation or clearance of intraluminal vesicles in this
late endosomal compartment. The average diameter of MVBs in
smn-1(ok355) animals was unaffected in relatifon to controls (p
= 0.81). Additionally, apical (luminal) endocytosis in the intes-
tine of smn-1(ok355) animals was tested by feeding nematodes
rhodamine-dextran. No difference in the endocytosis-dependent
accumulation of fluorescence in intestinal cells was observed
in smn-1(ok355) versus smn-1(+) animals (Figure S7). Overall,
these results demonstrate that SMN-1 depletion causes endocytic
pathway defects in motor neurons and in other tissues.

Decreased SMN impairs endocytosis-dependent viral infec-
tion. Endocytic trafficking is required for multiple cellular events
in both invertebrates and vertebrates, including infection by
pathogenic organisms. Many viruses use cellular endocytic path-
ways to enter cells and reduction of classical endocytic proteins
impairs viral infection in Drosophila (51) and human cells (52-54).

To determine whether the defects caused by diminished SMN in
C. elegans are conserved in vertebrates, we examined endocytosis-
dependent infection of human cells by a virus known to use the
endocytic pathway for entry and internalization. JCPyV binds
to cell surface receptors and enters cells via clathrin-mediated
endocytosis (52-54). Initially, we tested two different siRNAs
and found that both depleted SMN in SVG-A glial cells that
support JCPyV infection (Figure 5A). To determine whether
JCPyV infection was reduced by SMN1 knockdown, we compared
infection in SMN-depleted cells versus control scrambled siRNA-
treated cells; decreased SMN impaired JCPyV infection (Figure
5B). To rule out an effect on virus binding prior to endocytosis,
we assessed the binding of fluorescently-labeled virus (JCPyV-
633) to glial cells treated with SMN-specific or control siRNA
by flow cytometry. Binding of JCPyV-633 to glial cells was not
affected when SMN levels were decreased by siRNA treatment
(Figure 5C). However, binding was reduced when cells were pre-
treated with neuraminidase, indicating that JCPyV bound to the
appropriate sialic acid receptor (Figure 5C) (55, 56). To confirm
the impact of SMN knockdown on infection, the same experi-
ments were undertaken using commercially available fibroblasts
from an unaffected carrier and a Type I SMA patient. SMA
Type I fibroblasts were resistant to infection, while virus binding
was equivalent to control fibroblasts from a carrier individual
with normal SMN levels (Figures 5D-5F). Collectively, these data
suggest that decreased SMN levels result in resistance to JCPyV
infection. Overall, SMN depletion may impair infection at the
stage of endosomal trafficking and/or at subsequent steps in the
infection cycle.

Discussion

Despite decades of work we still do not know why decreased SMN
levels causes abnormal synaptic organization and defective synap-
tic neurotransmission in SMA. Here, we report for the first time
that decreased SMN protein levels impair endocytic pathways,
which have not been previously implicated in SMA pathogenesis.
The majority of the work presented here is based on a previously
defined C. elegans model of SMA in which decreased function of
the C. elegans SMN ortholog, SMN-1, results in neuromuscular
functional defects, without motor neuron death. We found that
the motor neurons of smn-1 loss of function animals had reduced
numbers of presynaptic docked vesicles, inappropriately high
numbers of irregular vesicles called cisternae, aberrant localiza-
tion of endocytic proteins, and decreased synaptobrevin levels.
Additionally, genetic interactions of smn-1 with known compo-
nents of the synaptic vesicle cycle suggested that endocytosis
was impaired. Combined, these results indicate impaired synaptic
vesicle recycling and perturbed endocytic pathway function (Fig-
ure 6). We also observed defects in the endosomal compartments
of non-neuronal tissues, consistent with the observation that SMA
has consequences outside the neuromuscular system. Finally,
SMN depletion reduced endocytosis-dependent viral infection
in human cells, but did not affect virus binding, consistent with
results from the C. elegans SMA model. Combined these results
suggest that impaired endocytic trafficking may be a major player
in SMA pathology.

Depletion of SMN has widespread endocytic consequences.
Neuromuscular defects are the most obvious hallmarks of SMA,
but SMN is ubiquitously expressed and numerous studies have
suggested non-neuronal requirements for SMN function in heart
(57-59), liver (60), muscle vascular system (61), lung, intestine
(62), and in pancreatic islets (63). Therefore, it was not surprising
that endosomal defects were observed in other C. elegans tissues
when SMN levels were compromised. SMN-1 reduction led to
impaired endocytic trafficking by coelomocyte cells, which clear
the body cavity of small solutes. Also, the number of intraluminal
vesicles in hypodermal late endosomes/MVBs was decreased by
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72% in smn-1 mutants, suggesting that defects in transmembrane
receptor recycling/clearance may occur when SMN levels are di-
minished. Endosomal pathways play critical roles in protein traf-
ficking and receptor signaling in all tissues. Overall, our results
suggest that endosomal defects may contribute to the systemic
problems of SMA patients.

SMN-depleted cells are resistant to viral endocytosis-
dependent infection. To independently assess the impact of SMN
depletion on endocytic pathways, we turned to an established
model of endocytosis-dependent viral infection. In Drosophila,
heterozygous mutations in genes involved in endocytosis result
in resistance to Drosophila C virus infection, consistent with a
critical role for endocytosis in infection and pathogenesis (51).
Here, we report that SMN depletion results in decreased JCPyV
infection both in cells treated with SMN siRNA and in SMA
patient-derived cells. There are multiple steps in viral endosomal
trafficking and infection that may be impacted by diminished
SMN but viral attachment was not affected. The results presented
here are consistent with SMN decrements affecting viral infection
that is dependent on endocytosis, but viral infection is complex
and further studies will be required to determine how diminished
SMN decreases infection. A link between decreased SMN levels
and increased resistance to viral endocytosis-dependent infection
would be of significant interest and might explain why SMA
mutant alleles are common. To our knowledge, a link between
SMN levels and infection has not been examined previously.
The SMA heterozygosity frequency (1:40 to 1:60) is similar to
the frequency observed for sickle cell anemia and cystic fibrosis
alleles, which are known to confer carrier survival benefits in
populations at risk. (64-66). SMA alleles frequently arise de novo
via chromosome rearrangement and in some cases the neighbor-
ing neuronal apoptosis inhibitory protein (NAIP) gene is deleted
(4). Mice lacking the NAIP gene fail to activate a response to
Legionella pneumophila infection (67), but results herein suggest
a role for SMN should be considered in future studies.

How could SMN regulate endocytic trafficking? Two nonex-
clusive models may explain why diminished SMN causes endo-
cytic pathway defects. In the first model, SMN depletion leads to
aberrant trafficking or splicing of mRNAs that encode proteins
critical for endocytic function. For example, SMN loss impairs
axonal transport of RNP granules containing mRNAs that encode
numerous proteins, including: annexin 2, annexin 3 and Rab18
(68); their loss may result in endosomal defects. Or more indi-
rectly, loss of SMN may cause missplicing of mRNAs that encode
proteins with a role in endocytic trafficking; mRNAs such as
annexin 2 are known to be misspliced when SMN levels are de-
pleted (69). In the second model, SMN is part of an RNA/protein
complex that promotes endocytic trafficking. SMN directly binds
and is transported within axons with the alpha subunit of the
coat protein 1 (COPI), a critical player in intracellular vesicular
trafficking. COPI can be found on Golgi, ER and MVB mem-
branes and COPI loss results in defective endosomal function
(70-72). Alternatively, the functional interaction between SMN,
Plastin 3 and actin might play a role in the endocytic pathway
defects observed when SMN levels are depleted. Plastin 3, an
actin-bundling protein was identified as a gender-protective SMA
modifier and was found in a protein complex along with SMN
and actin (73). Loss of fimbrin, the yeast PLS3 ortholog, inhibits
endocytosis (74) and Plastin 3 interacts with activated Rab5 to
facilitate mammalian endocytosis (75). Also, actin filaments can
form a critical collar-like structure around the neck of endocytic
vesicles as they pull away from the cell membrane (76-78), but
it is unclear if SMN or Plastin 3 are associated with these struc-
tures. Hence, we consider it possible that SMN and Plastin 3
are essential players of a protein complex required for endocytic
trafficking, but additional studies will be needed to determine

which of these models best explains the endosomal defects caused
by SMN reduction.

Conclusions. The genetic, pharmacological and functional
studies presented here demonstrate that SMN depletion impacts
endocytic trafficking. Previous studies connect endocytosis and
endosomal trafficking with other neurodegenerative diseases.
For example, over-expression of the endosomal protein Rab11
reverses the synaptic transmission and vesicular deficits caused
by mutant huntingtin in a Drosophila model of Huntington’s
disease (HD) (79). Furthermore, CHMP2B mutations cause fron-
totemporal dementia (FTD) and impair endosome-lysosome fu-
sion (80). Additionally, Farg and co-workers identified a role
in Rab-mediated endosomal trafficking for C9ORF72, a cause
of sporadic Amyotrophic Lateral Sclerosis (ALS) (81). Finally,
BICD2 mutations are linked to autosomal-dominant SMA (82),
and notably loss of the BICD2 Drosophila ortholog impairs
clathrin-mediated endocytosis at presynaptic specializations (83).
Identifying the functionally relevant components that connect
diminished SMN levels to endocytic pathways could lead to the
identification of novel therapeutic interventions for SMA and
related neurodegenerative disorders.

Materials and Methods
C. elegans strains, constructs and transgenes. Strains listed in Table S1
were maintained at 20°C under standard conditions (84). For all experiments
involving smn-1(ok355) or smn-1(rt248), animals tested were first genera-
tion progeny of parents heterozygous for the hT2 balancer. To maintain
a common genetic background, control smn-1(+) animals were similarly
derived from +/hT2 parents. Plasmid pHA#582 contains a 1819 bp fragment
corresponding to the smn-1 promoter, coding sequence and 3’ untranslated
region subcloned as an AflII/XhoI product into pCFJ356 (Addgene plas-
mid 34871) (85). Primers for amplification: 5-tgatcttaagtctacgagcgacattcatcg
and 5-tgatctcgagcagcctctcatcctgattgc. rtSi9[Cb-unc-119(+)]IV and rtSi10[smn-
1p::smn-1;Cb-unc-119(+)] IV transgenes were generated by Mos1-mediated
single-copy insertion (85, 86). 50 ng/µl of targeting plasmid (pCFJ356 or
pHA#582) was injected into EG6703 (unc-119(ed3)III;cxTi10816 IV) animals
along with 50 ng/µl pCFJ601 (eft-3p::Mos1 transposase), 10 ng/µl pGH8 (rab-
3p::mCherry), 5 ng/µl pCFJ104 (myo-3p::mCherry) and 2.5 ng/µl pCFJ90 (myo-
2p::mCherry). Insertion events were identified based on rescue of unc-119 in
non-fluorescent animals and confirmed by PCR-genotyping, prior to crossing
into smn-1(ok355)/hT2. In Figures 1A, B and D and in Figure 3 G, H and I, smn-
1(ok355);[smn-1(+)] animals carry rtSi10. For these same figures, smn-1(+)
and/or smn-1(ok355) animals carry rtSi9, which differs from rtSi10 only in the
absence of an smn-1(+) gene copy. The small guide RNA (sgRNA) plasmid tar-
geting the smn-1 gene (pHA#730) for CRISPR/Cas9-mediated genome editing
was generated by amplification of PU6::klp-12 (35) and subsequent ligation
of the PCR product obtained by primers: 5’- AACATCGTCTAAACATTTAGAT-
TTGCAATTCAATTATATAGGGACC-3’ and 5’- TGGGATGATAGTTTTAGAGCTA-
GAAATAGCAAGTTAAAATAAGGC-3’. The resulting plasmid was injected at
50 ng/μl into wild type animals following the dpy-10(cn64) co-conversion
protocol from Arribere et al., 2014 (34). After backcross, the resulting smn-
1(rt248) allele was balanced over the hT2 chromosomal translocation. smn-
1(rt248) creates D19fs and likely eliminates SMN-1 function.

C. elegans behavioral assays. Pharyngeal pumping assays were per-
formed in the last larval stage as previously described (32). Grinder move-
ment in any axis was scored as a pumping event. Average pumping rates (±
SEM) were combined from at least three independent trials (n>25 animals in
total/genotype). Aldicarb and levamisole assays on early L4 stage larval ani-
mals were carried out blinded as to genotype in at least three independent
trials (n≥30 animals in total/genotype) as described elsewhere (38, 87). Drug-
induced paralysis caused by 1 mM aldicarb (Sigma) or 0.4 mM levamisole
(Sigma) was scored as inability to move/pump in response to prodding with
a metal wire.

C. elegans light level microscopy. Early L4 stage larval animals were
mounted on 2% agar pads and immobilized using 30 mg/ml BDM (Sigma)
in M9 buffer. Images were captured as Z-stacks from the dorsal cord above
the posterior gonad reflex (100x objective, Zeiss AxioImager ApoTome and
AxioVision software v4.8). At least three independent trials (n>25 animals
in total/genotype) were undertaken. Puncta total intensity, width and linear
density were quantified using the ‘Punctaanalyser’ program in Matlab (88).
Kernel density estimation of the puncta population was determined in R
(v3.0.3). Invariant fluorescent illumination was confirmed daily using 0.5
μm fluorescent beads (FluoSpheres, Molecular Probes) (46). Coelomocyte
imaging was undertaken blinded as to genotype in three independent trials
(n>25 animals in total/genotype). GFP levels in the six coelomocytes of early
L4 stage animals were assessed using a Zeiss V20 stereoscope (50).

C. elegans transmission electron microscopy. Animals were prepared in
parallel for transmission electron microscopy as described (89). Briefly, early
L4 nematodes were fixed by a high-pressure freezing apparatus followed
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by a 2% osmium in acetone freeze substitution. Ultra-thin serial sections
(50-60nm thickness) were collected on Formvar/Pioloform-coated copper
slot grids, stained with 4% uranyl acetate in 70% methanol, followed by
washing and lead citrate incubation. Images were obtained on a Philips CM10
transmission electron microscope using an Olympus Morada camera system
driven by the iTEM software (Olympus Soft Imaging Solutions). Image regis-
tration and annotation was performed using TrakEM2 (90). Three hundred
and five hundred serial sections were imaged for control and smn-1(ok355)
animals, respectively. The anterior ventral nerve cord was reconstructed from
one animal for each genotype. Synapses were examined from VA and VB
cholinergic neurons and the VD ɣ-aminobutyric acid (GABA) neuron (47).
Thirty five control (27 cholinergic and 8 GABAergic) and 45 smn-1(ok355) (25
ACh and 20 GABAergic) neuromuscular synapses were examined. The ratio of
GABAergic to cholinergic (ACh) synapses was not significantly different from
control, suggesting that ACh synapses are not preferentially lost (Chi-squared
test, p > 0.05). A synapse was defined as a set of serial sections containing
a dense projection. Docked vesicles were defined as those contacting the
plasma membrane adjacent to a dense projection. The number of synaptic
vesicles (∼30 nm diameter) and dense core vesicles (∼40 nm diameter) were
counted in sections containing a dense projection and the numbers of each
profile were averaged to obtain the final value. The presence of large clear
vesicles/cisternae (>40 nm diameter) was analyzed by counting every other
serial section within one micron to either side of a dense projection. For
multivesicular bodies, the intraluminal vesicles were counted for >30 cell
profiles per genotype.

Cells and viruses. Cells were grown at 37°C in a humidified incubator
with 5% CO2. SVG-A cells are a subclone of the human glial cell line SVG
transformed with an origin-defective SV40 mutant and grown in minimum
essential medium (MEM) supplemented with 10% fetal bovine serum (FBS)
and 1% penicillin-streptomycin (P/S) (Mediatech, Inc.) (91). Untransformed
primary fibroblasts were from a patient with SMA Type I (GM09677) and
control cells from a disease-free SMA carrier (GM03814) (Coriell Cell Repos-
itories). Fibroblasts were grown in MEM supplemented with 10% FBS and
non-essential amino acids. Generation and propagation of the virus strain
Mad-1/SVEΔ was previously described (92).

Transfection. Cells were reverse-transfected with SMN-specific siRNAs
using Lipofectamine RNAiMax (Life Technologies). SMN siRNAs (SMN siRNAa
[Hs SMN1 11]: ACGGTTGCATTTACCCAGCTA (Cat. No. SI04950932) and SMN
siRNAb [Hs-SMN1 12]: ATCAGATAACATCAAGCCCAA (Cat. No. SI04950939))
from Qiagen were prepared according to manufacturer’s instructions. Serum-
free medium was added to triplicate wells of a 12 well plate and siRNAs were
diluted to a final concentration of 0.1, 1, 5, and 50 nM. Two microliter of
RNAiMax Lipofectamine was added, solutions were mixed and incubated at
room temperature (RT) for 20 min. Following incubation, 2 x 105 cells in 1
mL of media containing FBS was added to each well. Cells were incubated
at 37°C for 36 h and then infected or harvested for protein quantitation by
immunoblot analysis. Infection data were compared to cells transfected with
Allstars siRNA negative control (Qiagen).

Infection. Patient fibroblasts were plated to 60% confluency in 12
well plates O/N. Cells from siRNA transfections were infected at 36 h post-
transfection. Media was aspirated and cells were infected with a multiplicity
of infection (MOI) of 5 (JCPyV) fluorescent focus units (FFU)/cell in MEM
containing 2% FBS at 37°C for 1.5 h. Infected cells were then fed with
2 mL of appropriate media and incubated at 37°C for 72 h. Cells were
washed in 1X phosphate-buffered saline (PBS), fixed in cold methanol, and
incubated at −20°C. Fixed cells were washed in PBS, permeabilized with 0.5%

Triton X-100 (USB Corporation) at RT for 5 min, incubated with PAB597, a
hybridoma supernatant that produces a monoclonal antibody against JCPyV
VP1 (generously provided by Ed Harlow) (93), at a 1:10 dilution in PBS at 37°C
for 1 h, washed with PBS, incubated with a goat anti-mouse Alexa Fluor 488-
conjugated antibody (1:1000; 20 µg/mL) (Life Technologies) in PBS at 37°C
for 1 h, and washed again in PBS. Cells were analyzed for VP1 staining in the
nucleus under a 20X objective using an Eclipse TE2000-U microscope (Nikon).

Immunoblot. Cell lysates were prepared by washing cells in 200 µL PBS,
scraping, and collecting the lysates. Cells were centrifuged at 3000 rpm for
5 min and pellets were resuspended in 1X RIPA buffer with protease (1:10)
and phosphatase (1:100) inhibitors (Sigma) and incubated on ice for 30 min.
Cells were pelleted at 14,000 rpm and supernatants were diluted at a 1:1
ratio in SDS loading buffer, boiled at 95°C for 5 min, and 15 µL was resolved
by SDS-PAGE using a 4-15% Tris-HCL gel (BioRad). Gels were transferred to
PVDF membranes (BioRad) using a Transblot system (BioRad) at 10V for 30
min. Membranes were blocked in 2% milk in PBS with 0.1% Tween 20% (PBS-
T) O/N, then incubated with a purified mouse anti-SMN primary antibody at
1:5000 dilution (BD Biosciences; 610647) and an anti-alpha tubulin polyclonal
antibody loading control at 1:450 dilution (Abcam; ab4074) at RT for 1 h,
washed in PBS-T, then incubated with a 680 nM goat-anti-mouse secondary
antibody at 1:1000 dilution (Life Technologies) and a 800 nM anti-rabbit
secondary antibody at 1:5000 dilution (LI-COR Biosciences) at RT for 1 h.
All antibodies were diluted in 2% milk. Immunoblots were scanned and
analyzed using an Odyssey CLx Infrared Imaging System (LI-COR Biosciences).

Flow Cytometry. All cells (SVG-A treated with SMN or control siRNAs or
fibroblasts) (1 x 106) were washed with PBS, incubated with cell stripper (Cell-
gro), and removed from plates. Cells were pelleted, washed, and incubated
in 100 μL of PBS with 2.5 μg of JCPyV labeled with Alexa Fluor 633 (JCPyV-

633) or PBS alone for 2 h on ice. For neuraminidase treatment, cells were first
incubated for 45 min at 37°C in the presence of 5 U/mL Type V neuraminidase
from Clostridium perfringens (Sigma) or PBS control. Cells were pelleted and
washed with PBS twice, resuspended in 1x PBS and analyzed for virus binding
using a BD FACSCalibur equipped with a 633 nm laser line (BD Bioscience).
Data were analyzed using FlowJo software (Tree Star, Inc.).

Statistical analysis. Two-tailed Mann-Whitney U or Log-rank test was
used for C. elegans statistical analysis. For JCPyV infection, p values were
determined using an unpaired Student’s t-test (two-tailed distribution).
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