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TO THE EDITOR: 

The key event in the pathogenesis of Systemic light chain amyloidosis (AL) is an unstable 

misfolded secondary or tertiary structure of a monoclonal immunoglobulin (IG) light chain, 

that precipitates in the extracellular compartments.1 The plasma-cell disorder underlying AL, 

is likely to lie within the common spectrum of plasma-cell diseases, but limited confirmatory 

data analysing the genetic architecture of AL are available.2  

To address this, we prospectively included twenty-four newly diagnosed histologically 

proven AL samples from the National Amyloid Centre, University College London, UK, 

prior to any treatment. AL was confirmed by immunohistochemistry or mass spectrometry. 

CD138+ cells and peripheral blood were isolated, DNA extracted and used in an exome 

capture protocol and sequenced as previously published.3 This AL dataset was compared to 

previously published MGUS4 and MM5,6 datasets and filtered similarly to ensure 

comparability of mutation numbers. Detailed methods and Patient’s characteristics may be 

found in the Supplemental-Methods and Supplemental-Table 1.  

In terms of mutational burden, the median number of exonic, non-IG, non-synonymous 

mutations per sample that had a tumour variant allelic fraction greater than 5% was 39 

(interquartile range (IQR): 5-185) which is more than was seen in MGUS4 (20 (IQR: 1-41), 

p=0.002) but not statistically different from MM6 (35 (IQR: 3-74), p=0.4), Figure 1A. When 

analysing the individual genes, we identified a total of 1491 genes that were mutated in our 

dataset with 236 of them being mutated more than once. As expected, there was no unifying 

mutation in AL. The dataset was too small to identify any significantly mutated genes.7 

Among the recurrently mutated genes (Supplemental-Table 2), mutations in IL7R, a gene 

that encodes for a cell surface receptor known to regulate V(D)J recombination by altering 

the accessibility of DNA substrates to the recombinase in pro-B-cells,8 were noted. Thirty-

seven percent of samples (n=9) had a mutation in one of the 63 previously described MM-

driver genes.9 This is less than MM (84.1%)9 and similar to MGUS (36%).4 The number of 

mutated driver-genes per sample ranged from zero to five. Among the 63 driver-genes, 13 

were mutated, Table 1. Most of these mutations were sub-clonal with IG-adjusted estimated 

tumour fractions ranging from 18% to 100% (Supplemental-Table 3). We identified cases 

with MM hotspot mutations in NRAS (Q61R and Q61H) but not in KRAS. Even though a 

trend for fewer KRAS mutations in AL was observed, there was no significant difference in 

the incidence of driver mutations between MM, MGUS, and AL, Figure 1B. Interestingly 

there were mutations in some of the other driver-genes such as EGR1 (Q95R), DIS3 (D479E, 
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M667L), IRF4 (S332G), and TRAF3 (K99_sp). Only the same TRAF3 (K99_sp) and DIS3 

(D479E, M667L) mutations were seen in the MM dataset, Supplemental-Figure 1A-E.9 In 

MM, IRF4 mutations are associated with t(11;14), and in this AL dataset the IRF4 mutation 

(S332G) occurred in a non t(11;14) patient and was neither at the K123R hotspot seen in 

MM6 nor the L116R seen in CLL.10 There were no mutations in the previously reported 

adverse prognostic genes such as ATM, ATR, ZFHX4 and TP53, nevertheless mutations in 

BRCA2 (P1088T, N372H) and the driver-gene EP300 (I997V) were seen suggesting DNA-

repair pathway involvement. Copy-number analysis did not reveal any copy number changes 

at these loci suggesting the absence of bi-allelic inactivation. Finally, evidence would suggest 

the presence of NF-κB pathway activation, with not only mutations in the driver-genes (such 

as TRAF3, IRF4) but also mutations in kinases (such as LYN (I165T)), downstream 

transducing molecules (CARD11 (R1077V)) and inhibitors (NFKBIE_sp), Supplemental-

Figure 2. We compared the mutational landscape of AL to previously sequenced MM 

(n=1273)9 and MGUS (n=33)4 samples. Overall, there were 101 genes in common between 

AL, MGUS, and MM. Ninety-three percent of the AL-mutated genes (n=1386) were shared 

with either MM or MGUS. Only 7% of these genes (n=105) had not previously been reported 

in MM or MGUS, Supplemental-Figure 3 and Table 4. None of these mutations were 

recurrent. A Gene enrichment analysis of the 105 genes that were mutated in AL only11 did 

not reveal any specific pathway enrichment suggesting they are random. There were no 

mutations in the ribosome sub-unit genes.12 Among the 68 differentially expressed genes 

(Paiva et al.), we only identified a mutation in TIAM2 previously reported in MM.2 Of note, 

we did identify a mutation in the 8th exon of PSMA2 gene (P223S) that was among the 

differentially expressed genes found by Abraham et al13. In a hierarchical clustering approach 

of driver mutation based on previously published data,4,5,14,15 AL clustered with MGUS and 

was closely related to MM, Figure 1C. In terms of translocations, we identified seven 

t(11;14) encompassing 30% of cases. The breakpoints, located 2-600 kb upstream of CCND1, 

were consistent with those seen in other lymphoid malignancies, Supplemental-Figure 4. 

They were all generated via class switch recombination with breakpoints occurring in the 

IGHA1 (2/7) and IGHM (5/7) switch regions. There was no evidence of other canonical 

translocation but we identified a t(1;14) involving IGHG4 and the RCC1 gene in a t(11;14) 

patient, Supplemental-Figure 5. There was no evidence of inter-chromosomal translocations 

involving MYC; one patient had an 8q24 gain, 5’ to MIR1208, suggesting MYC 

rearrangements also occur in AL. Regarding other cytogenetic abnormalities, there was no 

difference in the incidence of copy number changes with the exception of del(1p), and 

For personal use only.on December 4, 2018. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


Boyle et al.  Landscape of AL mutations 

4 
 

del(14q) that was lower than expected in MM (n=1, 4%, p=0.008 and n=0, p<0.0001 

respectively) but similar to MGUS, Supplemental-Figure 6.  

This is the largest dataset of whole exome sequencing (WES) of AL to date and combined, 

these data suggest the underlying disease in AL resembles other plasma-cell disorders such as 

MGUS and MM. The number of mutations in AL was comparable to MM suggesting AL is a 

more complex disease than MGUS. Like previously published AL cases that had undergone 

WES,2 we failed to identify any unifying mutation. We were nonetheless able to detect MM-

defined driver mutations. They occurred at similar frequencies to MGUS and were less 

common than in MM. They were predominantly sub-clonal suggesting they occurred late 

during disease progression. There was evidence of mitogen activated protein kinase (MAPK) 

activation with NRAS mutations (8%) in keeping with previously published data by Rossi et 

al16, NF-κB activation (17%) and DNA-repair pathway alterations (12%).Unlike previous 

reports, none of the NRAS mutated patients had classical CRAB criteria but one had another 

myeloma defining event (SFLC ratio>100 with an involved chain greater than 1000 mg/L).17 

These data are consistent with observations from MGUS and SMM where NRAS mutations 

may be found with lower frequencies than in MM. 4,16,18 There was a 93% overlap in mutated 

genes indicating a common spectrum of mutations between AL and other plasma-cell 

disorders. Attempts to cluster patients based on MM-driver genes placed AL close to MM 

and MGUS and not with other lymphoid malignancies.  

Overall AL showed a similar mutation burden to MM but resembled MGUS in terms of copy 

number changes and driver-gene mutations suggesting AL lies within the continuous 

spectrum from MGUS to MM. Given that the similarities with MGUS and MM are 

outweighing the differences, it is unlikely that the plasmacell biology per se explains the 

clinical presentation of AL, however, these data support the ongoing use of myeloma-based 

therapy for this disease.  
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Tables 

Table 1: Driver mutations found in AL 
 

Gene 
Number of 
mutations Number of patients Variants 

DIS3 2 1 D479E, M667L 
DUSP2 1 1 Splice donor variant 
EGR1 1 1 Q95R 
EP300 1 1 I997V 
IRF4 1 1 S332G 

KLHL6 1 1 V337M 
KMT2B 1 1 P204H 
NRAS 2 2 Q61R; Q61H 

SAMHD1 1 1 F363L 
TET2 1 1 P363L 

TRAF3 1 1 Splice donor variant 
ZFP36L1 1 1 L82S 
ZNF292 1 1 I1740V 
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Figure Legends 

 

Figure 1: The mutational spectrum of amyloidosis resembles MM and MGUS. A: 

Boxplot suggesting AL has more mutations than MGUS but not a statistically different 

number than MM. B: Frequencies of select driver mutations in AL, MGUS and MM. C: 

Clustering of driver-mutation frequencies  
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