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The heterogeneity of breast cancer plays a major role in drug response and resistance and

has been extensively characterized at the genomic level. Here, a single-cell breast cancer

mass cytometry (BCMC) panel is optimized to identify cell phenotypes and their oncogenic

signalling states in a biobank of patient-derived tumour xenograft (PDTX) models repre-

senting the diversity of human breast cancer. The BCMC panel identifies 13 cellular pheno-

types (11 human and 2 murine), associated with both breast cancer subtypes and specific

genomic features. Pre-treatment cellular phenotypic composition is a determinant of

response to anticancer therapies. Single-cell profiling also reveals drug-induced cellular

phenotypic dynamics, unravelling previously unnoticed intra-tumour response diversity. The

comprehensive view of the landscapes of cellular phenotypic heterogeneity in PDTXs

uncovered by the BCMC panel, which is mirrored in primary human tumours, has profound

implications for understanding and predicting therapy response and resistance.
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Breast cancer is the leading cause of cancer death in women1.
A major challenge for the effective treatment of breast
cancer is inter- and intra-tumour heterogeneity2,3. The

genomic and transcriptomic landscapes have been used to stratify
breast tumours into subtypes with prognostic and/or predictive
value4–10. These studies have relied on bulk tissue and hence
mostly failed to adequately capture intra-tumour heterogeneity,
which underlies drug resistance and relapse.

Intra-tumour heterogeneity is a prominent feature of human
cancers11–18 and it was first proposed to result from genetic
evolution following Darwinian laws in 197619. Advances in
genomic technologies and single-cell sequencing have robustly
confirmed this hypothesis11,16–18,20. But tumour evolution can
also be non-genomic and generate phenotypic heterogeneity21,22,
which has been more difficult to study. The introduction of
novel single-cell methodologies, such as mass cytometry or
cytometry with time-of-flight (CyTOF) analysis, allows high-
throughput multi-parametric analysis of cellular heterogeneity23.
Mass cytometry has provided unprecedented insights into
normal tissue function24,25 and tumour biology, including the
malignant cell-autonomous compartment and/or the tumour
microenvironment26–30. In particular, mass cytometry has been
used to characterise breast cancer at the single-cell level in
suspension28 and in intact tumour tissue29,31,32. These studies
first highlighted the cellular phenotypic heterogeneity of human
breast cancer and also showed how this correlates with its
genomic and transcriptomic landscapes. Significant limitations of
these studies included not mapping cellular phenotypes to sig-
nalling states and not testing their value as predictive biomarkers
for therapy response or resistance.

We and others have shown that PDTXs faithfully recapitulate
the inter- and intra-tumour genomic and transcriptomic het-
erogeneity seen in human cancers33–35, but whether this holds at
the level of the cellular phenotype is not known. PDTXs have
also been shown to perform robustly as a translation platform to
accelerate drug development, allowing both high contents in vitro
drug screens and in vivo testing of efficacy36,37. Notably, our
genomic and transcriptomic profiling of the breast cancer models
mostly failed to identify reliable predictive biomarkers37, imply-
ing that the highly variable drug responses we observed may
be determined by other factors such as cellular phenotypic
diversity.

We sought to investigate the extent of cellular phenotypic
variability both between and within breast cancer PDTX models,
and whether this is a determinant of drug response. To system-
atically map the landscape of cell phenotypes and activation states
in PDTXs, we developed a mass cytometry panel targeting both
cell lineage and oncogenic signalling and measured protein
expression profiles in over 400,000 cells from 53 PDTX models.
We identified 13 cell phenotypes, spanning a phenotypic spec-
trum predominantly defined by lineage (luminal versus basal-like
and epithelial-to-mesenchymal) but also showing distinct sig-
nalling states. Integration with genomic data revealed that
xenografts originating from different breast cancer subtypes
showed highly variable and distinctive cellular compositional
profiles. Analysis of high-throughput in vitro drug screening data
further showed that pre-treatment cell phenotypes are key
determinants of treatment response, in some instances out-
performing genomic markers. Mass cytometry also revealed drug-
induced phenotypic dynamics both in vitro and in vivo. We then
defined spatial architectures of cell phenotypes in imaging mass
cytometry (IMC) data from both xenograft models and a cohort
of human primary tumours29, corroborating the validity of
PDTXs as in vivo models of human disease and therefore pro-
viding a roadmap toward clinical translation.

Results
Development and validation of a BCMC panel. We developed a
panel of 33 antibodies, selected to profile markers relevant to
breast cancer, and also to separate cells of murine and human
origin38–40. As detailed below, 30 of the 33 antibodies were
validated and used for downstream analysis (Fig. 1a, Supple-
mentary Table 1 and ‘Methods’ section). The 30 antibodies (with
CD31 and PDGFRα pooled in the same channel) were grouped
into 4 subpanels (Supplementary Table 1 and ‘Methods’ section):
(a) human tumour compartment (HTC, n= 11); (b) mouse
stroma compartment (MSC, n= 7); (c) oncogenic signalling
activation (OSA, n= 10); and (d) cell cycle and apoptosis (CCA,
n= 5). Three antibodies (CD44, Vimentin, CD49f) common to
the HTC and MSC subpanels have a degree of cross-species
reactivity.

The human tumour compartment subpanel was validated in a
collection of well characterised human breast cancer cell lines41

(Nsamples= 7, Ncells= 20,846, Supplementary Table 2, raw data
processing strategy in ‘Methods’ section and Supplementary
Fig. 1a). The expression of human tumour compartment markers
(Fig. 1b) was concordant with the known features of the tested
cell lines: SK-BR-3 had the highest expression of Her2; MCF7,
CAMA-1, T47D and ZR-75-1 had the highest expression of
luminal proteins (ER and Keratin 8/18); MDA-MB-231 and
MDA-MB-468 expressed the highest levels of basal/mesenchy-
mal markers (EGFR and/or Vimentin) (Fig. 1b). A 2D
t-distributed stochastic neighbour embedding (tSNE) map
(Fig. 1c, d) revealed clear separation into three phenotypic
‘territories’ reminiscent of the main breast cancer subtypes:
Luminal (MCF7, CAMA-1, T47D and ZR-75-1), Her2-enriched
(SK-BR-3) and Basal-like (MDA-MB-231 and MDA-MB-468)
(Fig. 1c, d and Supplementary Fig. 1b).

The mouse stroma compartment subpanel was designed to
identify the main murine stroma cell types present in PDTXs42,43

(i.e. leukocytes, fibroblasts and endothelial cells). The ability to
discriminate between human and mouse cells was evaluated using
peritoneum from NSG mice (mPE), a mouse mammary tumour
cell line (4T09) and two human breast cancer cell lines (MCF7,
MDA-MB-231). Despite the cross-species reactivity of some
antibodies (Supplementary Table 2), using the ensemble antibody
panel accurately segregated cells into human and mouse
phenotypic spaces, as evidenced by the tSNE map (Fig. 1e, f,
Ncells= 26,154).

The specificity of the oncogenic signalling activation and cell
cycle and apoptosis subpanels was tested in MCF7 cells treated for
1 h with vistusertib (AZD2014), a selective ATP-competitive
mTORC1/2 inhibitor44–46, and with palbociclib (PD0332991)47,48,
a CDK4/6 inhibitor (Ncells= 36,582, Fig. 1g). Expected changes were
observed in the expression of specific oncogenic signalling activation
markers (Fig. 1g and Supplementary Fig. 1c, d): vistusertib- p-S6
(S235/S236), p-S6(S240/S244), p-4E-BP1(T37/T46); palbociclib-
p-Rb (S807/811)49.

Overall, these experiments validated the performance and
robustness of the breast cancer mass cytometry (BCMC) panel
described here.

Characterisation of a biobank of breast cancer PDTXs using
the BCMC panel. As reported by us and others the genetic intra-
tumour heterogeneity of human breast cancer patients16–18 is well
preserved in their matching PDTXs37,50. The emerging pheno-
typic diversity of breast cancer28,29,31,32 has not been quantified
in PDTXs, which as pre-clinical models are the only platform
where drug testing and response dynamics can be comprehen-
sively analysed. The BCMC panel was used to characterise
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53 PDTX samples which capture the diversity of breast cancers
observed in the clinic37: 37.7% ER+Her2−, 11.3% Her2+, and
49.0% triple-negative; 3 of 5 PAM50 intrinsic subtypes; and 8 of
11 genomic driver-based IntClust subtypes (Fig. 2a and Supple-
mentary Table 3). Example immunohistochemistry (IHC) images

of PDTXs and their matched originating tumours are presented
in Supplementary Fig. 2a to highlight their remarkable similarity.
The PDTX samples were processed in 3 batched experimental sets
(randomised for ER and HER2 status) with two PDTXs (STG139
and AB551) being used as a reference set in all 3 batches to test
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experimental reproducibility. In total, over 400,000 PDTX cells
were analysed by mass cytometry (Supplementary Fig. 2b–e and
‘Methods’ section).

Two orthogonal methodologies (reverse-phase protein arrays,
RPPA, and IHC) were used to further assess the mass cytometry-
based measurements (Supplementary Table 1 and ‘Methods’
section). For the 12 markers in common, mass cytometry and
RPPA protein measurements were positively correlated (with
exceptions: c-Myc, p21 and PR) (Supplementary Fig. 3a). Mass
cytometry-based protein expression of ER, Her2 and PR was also
higher in IHC positive versus negative cases (statistically
significant for ER and Her2) (Supplementary Fig. 3b). These
observations, in combination with the above cell line experiment
results, led us to exclude the 3 markers that performed poorly
(i.e. PR, c-Myc and p21).

Unsupervised hierarchical clustering based on the median mass
cytometry-based expression of the 30 markers across the 53
PDTXs, showed models mostly grouped based on ER and
HER2 status, PAM50 and IntClust subtypes. It also revealed
PDTXs originating from the same patient (STG139, AB521 and
AB555) and different passages of the same PDTX (STG282,
VHIO098) mostly clustered together (Fig. 2b, in bold). Impor-
tantly, clustering using only the oncogenic signalling activation
markers showed the same, confirming cell signalling stability
across biological replicates and their robust measurement by the
BCMC panel (Supplementary Fig. 3c).

In summary, these data demonstrated the analytic validity of
the BCMC panel and the approach was able to capture inter-
model PDTX phenotypic diversity.

Single-cell correlation patterns of protein markers reveal
complex functional modularity. The correlation of BCMC
markers across all cells from all models (Ncells= 405,827, Fig. 2c)
was used to characterise single-cell functional diversity in PDTXs.
Amongst the human tumour compartment markers, EpCAM and
E-Cadherin showed a strong positive correlation (ρ= 0.57) and
together with CD24, marked human luminal epithelial tumour
cells38–40 (Fig. 2c and Supplementary Fig. 2d). Conversely,
vimentin was negatively correlated with characteristic luminal
markers (Keratin 8/18) and positively correlated with other epi-
thelial basal/myoepithelial markers, such as CD49f, EGFR and
CD4438–40 (ρKeratin8/18=−0.4, ρEGFR= 0.29, ρCD44= 0.26)
(Fig. 2c and Supplementary Fig. 3d). A Density Resampled Esti-
mate of Mutual Information (DREMI) score has been proposed51

and previously used30 in mass cytometry experiments to quantify
the influence of ‘protein X’ levels on ‘protein Y’ levels. We
computed all pairwise DREMI scores for all non-mouse markers
(Supplementary Fig. 3e), supporting the patterns observed by
correlation analysis. Importantly, this included high DREMI
scores between functionally correlated phosphoproteins (i.e. p-S6

(S235/S236) and p-S6 (S240/S244), p-Rb (S807/811) and p-c-Jun
(S63), p-p38 (T180/Y182) and p-MAPKAPK2 (T334)). The tSNE
visualisation further illustrated particular ‘hotspot’ phenotypic
areas of segregated luminal (e.g. Keratin 8/18+) or basal/myoe-
pithelial cells (e.g. CD44+) (Fig. 2d).

Amongst oncogenic signalling activation markers, the patterns
reflected canonical signalling pathways (e.g. p-S6, p-4E-BP1 and
p-NDRG1), with correlation values mimicking the relative
positioning within the signalling pathway cascade (Fig. 2c and
Supplementary Fig. 1d). Visualising protein expression at the
single-cell level onto the tSNE map revealed further functional
granularity (Fig. 2d and Supplementary Fig. 3d). This included
seeing rare cell populations where only some of the effectors are
activated (e.g. p-S6 and p-4E-BP1, in blue squares), which was
reported previously to give rise to differential intra-tumour drug
sensitivity52. No mutual correlation was observed between mTOR
(e.g. p-S6) and MAPK signalling (Fig. 2c, d), confirming that in
the majority of breast cancer cells these signalling pathways are
not significantly co-activated. Importantly, ER and HER2 were
not strongly correlated with signalling effectors, suggesting that
mTOR and/or MAPK activation are to some extent independent
of the ER or HER2 status of individual cancer cells (Fig. 2d).

Altogether these data show that while the single-cell level
patterns of correlation between cell type and signalling markers
reflect the expected functional modularity of breast cancer
epithelial cells, these patterns are more complex than what has
been previously gleaned from the bulk level analysis.

Cellular phenotypes of xenografts identified by mass cyto-
metry. To identify cellular phenotypes across the PDTXs, mass
cytometry measurements from equal numbers of cells per model
were inputted into PhenoGraph27, an unsupervised clustering
algorithm (Ncells= 78,400). To identify the main protein corre-
lates of cellular phenotypes, all subpanels were included for
clustering. The parameter setting and clustering robustness of
PhenoGraph were extensively tested (Supplementary Fig. 4a, b
and ‘Methods’ section). The analysis led to the identification of 13
Cell-Clusters (CCs), corresponding to 11 human epithelial
tumour cell and 2 murine stromal cell phenotypes (Fig. 3a). The
CC identity was assigned based on the expression of human and
murine proteins (Fig. 3a, b) and it was clearly distinct in phe-
notypic space visualised by tSNE (Fig. 3b). The 11 epithelial
human tumour CCs were mostly comprised of cells expressing
known human global tissue and/or epithelial markers, such as
CD298 and EpCAM24,39. Based on human tumour compartment
marker expression, cells were classified as luminal-like (L1 to L5,
37.8% of total cells), basal-like (B1, 20.7% of total cells),
mesenchymal-like (M1 to M3, 26.8% of total cells) and other
phenotypes (O1 and O2, 6% of total cells) (Fig. 3a).

Fig. 1 Development of a mass cytometry antibody panel for breast cancer. a Experimental workflow. Cell suspensions: Single-cell suspensions from PDTX
samples or cell lines were derived as described in “Methods” and fixed in 4% PFA (in black) in batches of up to 20 samples; barcoding: individual samples
were barcoded with the combination of the 6 palladium isotopes to enable multiplexing of up to 20 samples; cell staining and cytometry with time-of-flight
(CyTOF): cell suspensions were stained with the breast cancer mass cytometry (BCMC) panel and then run through the Helios CyTOF platform. Protein
markers were organised in 4 subpanels: HTC (human tumour compartment), MSC (mouse stroma compartment), OSA (oncogenic signalling activation)
and CCA (cell cycle and apoptosis). b MC-based intensity distribution of HTC markers in a collection of 7 breast cancer cell lines (Ncells= 20,846).
Horizontal lines (grey) represent overall median values across the samples. c tSNE plots of 7 breast cancer cell lines (as per panel b). Each spot represents
a cell, coloured as per cell line of origin. All BCMC markers were included in the analysis. d tSNE plots as in c. Cells are coloured by the intensity of selected
HTC markers, namely EGFR, HER2 and Keratin 8/18. All marker intensities are reported in Supplementary Fig. 1b. e tSNE plot of cells from 4 distinct
samples: (i) 4T09, a mouse mammary tumour cell line, (ii) mPER, murine peritoneal tissue from NSG mice, (iii) the human breast cancer cell lines MCF7
and (iv) MDA-MB-231 (Ncells= 26,154). All BCMC markers were included in the analysis. f MC-based intensity distribution of selected HTC and MSC
markers for cell lines in e. Horizontal lines (grey) represent overall median values across the samples. g Heatmap showing Earth Mover’s Distance (EMD)
of OSA and CCA markers in MCF7 cells treated for 1 h with either vistusertib (1μM) or palbociclib (1μM) compared to the same cells in DMSO as a control
(Ncells= 36,582). Expected changes in a subset of markers are indicated for each compound.
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L1-L5 were epithelial luminal-like tumour cells enriched for
expression of E-Cadherin, CD24, ER and Keratin 8/1824,39

(Fig. 3a). L1 to L4 expressed HER2, with L1 showing the lowest
expression of ER (Fig. 3a). The expression of oncogenic signalling
activation and/or cell cycle and apoptosis markers showed
distinct patterns across luminal-like cells: L3 and L4 had overall
decreased signalling activation (p-Akt, p-S6, p-4E-BP1) compared

to L1, L2 and L5 (OSAhigh-luminal cells). L4 and L5 had the
highest expression of CCA markers (in particular Ki67 prolifera-
tion marker and p-Rb, linked to both proliferation and
apoptosis53), which co-occurred with MAPK signalling activation
(p-ERK, p-p38), as was previously reported54 (Fig. 3a).

The majority of the non-luminal epithelial cancer cells were
basal-like (B1) or mesenchymal-like (M1–M3) (Fig. 3a), and had

Fig. 2 Characterisation of protein expression in breast cancer PDTXs using the BCMC panel. a Histological and molecular features of the 53 PDTX
models profiled by mass cytometry. Neg: IHC determined Negative, Pos: IHC determined positive, MUT: mutation present, WT: wild-type. b Heatmap of
median expression of all proteins tested by BCMC panel across 53 PDTXs with their associated histological and molecular features on the right panels.
PDTXs used as experimental set reference samples or originating from the same patient are represented in bold. The marker subpanel is colour coded as in
Fig. 1a. c Heatmap of the pairwise Spearman’s correlation coefficient values of all markers across all PDTX cells (Ncells= 405,827). The marker subpanel is
colour coded as in Fig. 1a. d tSNE plots showing single-cell level expression of all BCMC markers across 49 PDTXs (Ncells= 78,400). tSNE areas, where
mutual exclusivity of 4 mTOR pathway effectors is present, are indicated by blue boxes. The marker subpanel is colour coded as in Fig. 1a.
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the highest expression of CD49f and EGFR. M2 and M3 cells also
expressed low E-cadherin and EpCAM and high levels of
Vimentin, suggestive of epithelial-to-mesenchymal transition
(EMT)39. M1 cells had a pattern of marker expression and
location on the tSNE map suggesting an intermediate state between
basal-like and mesenchymal-like (Fig. 3a, b). M1-3 had similar
human tumour marker expression but diverse oncogenic signalling

activation patterns, with OSAhigh M1 and M3 showing distinctive
signalling: M1 had low p-Akt and p-NDRG1 and high p-p38 and
M3 had high PI3K/mTOR effectors and high p-ERK (Fig. 3a).

Two CCs (MHC Class I+, CD298−) represented the mouse
stroma (8.6% of total cells) (Fig. 3a): S1, composed of endothelial
cells and fibroblasts (CD31/PDGFRα+, Vimentin+, CD49f+), and
S2, composed of mouse leukocytes and myeloid cells (CD45+)43.
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The murine cell types identified are an underrepresentation of the
true stromal heterogeneity resulting from the limited number of
markers employed (Fig. 1e, f). PDTXs originating from the same
patient (STG139, AB521 and AB555) and different passages of
the same PDTX (STG282, VHIO098) showed similar stroma
content and composition (Fig. 3a). In accordance with previous
studies37,50, this indicates that while the human stroma is quickly
replaced by murine stroma in PDTXs, the mouse stroma content
remains remarkably stable across passages.

In summary, clustering analysis of BCMC data using all
markers revealed the main cellular phenotypes in breast cancer
xenografts, driven by both breasts epithelial cell differentiation
markers and signalling activation states.

Cellular phenotype diversity is variable across PDTXs. Indivi-
dual PDTXs had variable and distinctive cellular composition
across both the human tumour and mouse stroma compartments
(Fig. 3c). Unsupervised clustering of the PDTX models based on
CC composition revealed 4 main phenotypic groups: one where
xenografts contained mostly basal-like B1 cells, one where
xenografts contained mostly mesenchymal-like epithelial cells,
and two groups where xenografts were mostly composed of
luminal-like cells. Notable exceptions were HCI002, STG335 and
AB892, which exhibited both luminal and non-luminal pheno-
types at similar prevalence (Fig. 3c). The prevalence of mouse
stroma (S1, S2) was also variable across models but consistent
between xenografts originating from the same patient (AB555,
AB551, STG139, STG282, VHIO098, VHIO169), suggesting that
tumour cells modulate the host murine stroma in a model-
dependent fashion (Fig. 3c). Five models showed over 25%
stroma content (S1+S2 CCs) but with no obvious link with their
human tumour phenotype.

The cellular phenotypic heterogeneity of each PDTX model
was quantified using the Simpson’s score (Fig. 3d) and ranged
from low, where most cells were phenotypically similar, to high,
where several CCs had a sizable prevalence in a given model
(Fig. 3c, d). This is illustrated by the tSNE plots of representative
examples of high (HCI002, STG335, AB892) or low (AB555_M1/
M2 and HCI006) phenotypic heterogeneity models, respectively
(Fig. 3d). HER2+ models (defined by IHC or IntClust5) tended to
have low phenotypic heterogeneity (p < 0.05), while intClust 9–10
models (generated from poor prognosis tumours6,55) had high
phenotypic heterogeneity (Supplementary Fig. 4c). In contrast,
the extent of intra-model cellular phenotypic heterogeneity was
not associated with ER status, mutation of the top two
breast cancer driver genes (TP53 and PIK3CA) or PDTX tissue
of origin (primary versus metastatic). Similarly, we found no
clear association between phenotypic heterogeneity and the
relative amount of mouse stroma or genomic heterogeneity

(quantified by mutant-allele tumour heterogeneity, MATH,
score56) (Supplementary Fig. 4c).

Remarkably, tSNE plots revealed that inter-tumour (between
models) phenotypic heterogeneity is mostly driven by human
tumour compartment markers, whereas intra-tumour (within the
model) phenotypic heterogeneity is mostly driven by oncogenic
signalling activation markers (Fig. 3e and Supplementary
Fig. 4d–f). The average coefficient of variation (CV) per model
and marker subpanel revealed cell cycle and apoptosis had the
highest variability, oncogenic signalling activation intermediate
levels and human tumour compartment the lowest (Fig. 3f).

These results taken together indicate a wide-range of inter- and
intra-tumour cellular phenotypic heterogeneity across PDTXs,
and this novel feature showed preferential associations with
known breast cancer molecular subtypes. Interestingly, inter- and
intra-tumour cellular phenotypic heterogeneities appear to be
driven by different mechanisms, with oncogenic signalling being
the main driver of the intra-tumour phenotypic heterogeneity in
breast cancer.

Imaging mass cytometry reveals the spatial distribution of cell
phenotypes in xenografts. The spatial distribution of both
tumour cells and the microenvironment is structured and has
clinical implications29,32. To characterise the spatial architecture
of CCs, we performed imaging mass cytometry (IMC) in a subset
of PDTXs (8 models), with a panel of 10 antibodies that over-
lapped with the BCMC panel (Fig. 4a, Supplementary Table 1 and
‘Methods’ section). Clustering using the IMC-based expression of
the 10 markers across the 8 PDTX tissue samples analysed
showed the low phenotypic distance between replicates (Supple-
mentary Fig. 5a). A novel machine learning approach, cross-mass
cytometry (MC) cell-classifier, was developed to map CCs iden-
tified by mass cytometry to their tissue-based IMC counterparts
(Fig. 4a and ‘Methods’ section). Centroids of each CC computed
per-model on the mass cytometry training data showed a high
correlation (median ρ= 0.67) with the corresponding centroid
after the classification of segmented cells in IMC. Conversely,
centroids from non-matching CCs did not tend to correlate (ρ=
−0.17, Fig. 4b). These results indicate the IMC methodology and
the cross-MC cell-classifier were both robust. The validity of the
classifier was also supported by the observation that cells from
each CC (e.g. S2 in AB630, M1 in STG139) showed non-random
spatial organisation (Fig. 4c). This was studied within each PDTX
by two-point autocorrelation analysis57, revealing spatial clus-
tering was measurable to some extent for all CCs and models.
Finally, mouse stroma CCs (S1, S2) showed very similar spatial
distribution across all models irrespective of ER and HER2 status
(Supplementary Fig. 5b).

In summary, major cellular phenotypes within breast cancer
xenografts have defined spatial organisation providing an extra

Fig. 3 Identification and distribution of major cell phenotypes in breast cancer PDTXs. a Median expression intensity of all proteins tested by BCMC
panel across 13 PhenoGraph-defined cell-clusters (CCs). Top barplot represents the prevalence of each CC across all PDTXs. The marker subpanel is
colour coded as in Fig. 1a. b tSNE plot of cells from 49 PDTXs coloured based on PhenoGraph-defined CCs (Ncells= 78,400, Nmarkers= 29). Highlighted are
the following cellular phenotypes or CCs: mouse stroma (orange), mesenchymal (green), luminal (blue), basal (red) and other mixed/epithelia (pink).
c Barplots summarising the prevalence of each of the 13 CCs in all PDTX models ordered based on hierarchical clustering. Histological and molecular
features are indicated in vertical bars to the right. PDTXs used as experimental set reference samples or originating from the same patient are represented
in bold. d Simpson’s score based on 11 human CC proportions across all PDTXs. tSNE density plots of cell distribution for selected models with high and low
phenotypic heterogeneity (PH) are shown. tSNE density plots for all the other models are shown in Supplementary Fig. 4d. e tSNE density plots of cell
distribution for 3 PDTX models; dimensionality reduction was carried out including either HTC (upper panel; in grey) or OSA (lower panel, in blue) protein
markers. See Supplementary Fig. 3e, f for the complete set of models. f Box plots of the average coefficient of variation (CV) computed per model (n= 49)
for HTC (human tumour compartment), OSA (oncogenic signalling activation) or CCA (cell cycle and apoptosis) subpanel markers. Pairwise comparisons
using two-sided Student’s t-test (pHTC-OSA < 2.2e−16, pHTC-CCA < 2.2e−16, pOSA-CCA= 0.035). In the box plots, the lower and upper hinges correspond to
the first and third quartiles. The upper and lower whisker extends from the hinge to the largest value no further than 1.5 * IQR from the hinge. Data beyond
the end of the whiskers are plotted individually.
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dimension (tumour architecture) to intra-tumour phenotypic
heterogeneity.

Cell phenotypes associate with breast cancer molecular fea-
tures. The PDTX biobank represents a powerful pre-clinical

platform with the public availability of multidimensional mole-
cular and drug-response data (https://caldaslab.cruk.cam.ac.uk/
bcape/), either previously reported37 or generated as part of this
study (Supplementary Table 3 and ‘Methods’ section). We could
therefore correlate these features with the cell phenotypes
identified here.

Fig. 4 Imaging mass cytometry reveals the spatial distribution of cell phenotypes in xenografts. a Schematic representation of model-specific cross-
mass cytometry cell-classifier (Nsamples= 15, Nmarkers= 10, Ncells= 99,336). From mass cytometry (MC) data, a model-specific cell-cluster (CC) classifier
was trained and applied to imaging mass cytometry (IMC) from tissue microarray (TMA) segmented cells from the same model in order to classify cells
into one of the CCs. b Distribution of MC-IMC centroid correlations (matching CC centroids in red; non-matching CC centroids in grey). Median values of
matching and non-matching CC centroids are indicated by dashed vertical lines. c Examples of mapping of MC CCs to IMC data for AB551_M3a,
AB630_M1 and STG139_T1a. From left to right: tSNE plot based on MC profiling coloured as in Fig. 3b; IMC image coloured for a subset of relevant markers
representative of distinct CCs; pseudo-image with segmented cells labelled according to the classifier coloured as in Fig. 3b; two-point autocorrelation
analysis results for each CC quantifying the deviation from a random cell distribution as a function of distance. Data are presented as mean values ± SD.
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The prevalence of breast cancer subtypes varied across CCs
(Fig. 5a). Two dominant phenotypic classes emerged: the luminal
CCs, which were mostly cells from ER+, Luminal B, IntClust
1 and 8 PDTXs, and the non-luminal CCs (B1, M1–M3), which
were mostly cells from ER−, Basal-like, IntClust 9 and 10 PDTXs.
Cells from IHC−HER2+PDTXs were almost exclusively luminal-
like (L1–L4), but cells from PAM50 Her2-enriched and intClust
5 PDTXs were mostly L3 and to a lesser degree L4, while cells

from intClust 1 PDTXs were mostly L1/L2 and to a lesser degree
L4. This shows that breast cancers classified by IHC as HER2+

have distinct cellular phenotypic profiles depending on their
genomic subtype.

We next asked whether known breast cancer driver genes6,7

with mutations (Supplementary Fig. 6a) or commonly occurring
copy number aberrations (CNAs) in the PDTXs analysed, were
overrepresented within each of the CCs (Fig. 5b, Supplementary
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Fig. 6b, Supplementary Table 3, and ‘Methods’ section). Expected
associations were found: non-luminal CCs were enriched in TP53
mutant models, while luminal CCs L2, L4, L5 were enriched in
PIK3CA-mutant models. Activating PIK3CA mutations were
highly prevalent in L5 luminal-like cells, which are characterised
by activation of Akt-mTOR signalling (see above, Fig. 3a).
Inactivating MAP3K1 mutations were mainly associated with L3
(Fig. 5b), a luminal-like cell phenotype with decreased levels of
MAPK effectors (p-c-JUN and p-p38) (Fig. 3a). L3 is also
enriched in models with mutations in a range of ER-related
epigenetic regulators (GATA3, KMT2C) and DDR-related genes
(CHEK2, BRCA1/2). Conversely, L2 is mostly enriched in models
with CNAs in chromosomes 8, 16 and 17, which are prevalent in
ER+ breast cancer (Fig. 5b). These findings of some epithelial
luminal-like cell phenotypes mostly associated with SNVs while
others are mostly associated with CNAs have also been recently
reported by us in primary human breast cancers29.

To integrate mass cytometry and mRNA expression we
correlated the prevalence of each CC with the expression of each
gene measured by RNA-seq (Supplementary Fig. 6c). Correlation-
ranked genes were tested for ‘hallmark’ gene set enrichment58 and
the results mostly supported the BCMC-based phenotype labels
(Fig. 5c and Supplementary Fig. 6c). In particular, the prevalence
of L2-L5 luminal-like cellular phenotypes, irrespective of
oncogenic signalling, cell cycle and apoptosis protein expression,
was associated with high expression of Oestrogen response genes,
while the opposite trend was observed for M1–M3 and O1
cellular phenotypes. Positive enrichment for Interferon response
genes was shared between luminal-like and B1 CCs, while EMT
genes were highly expressed in models with a high prevalence of
B1 and M1-3 CCs. Mesenchymal-like CCs were also associated
with higher expression of cell cycle-related genes, with an
opposite association observed in luminal CCs (Fig. 5c).

These findings not only supported the molecular identity of the
different BCMC-defined cellular phenotypes but also revealed
the major breast cancer genomic and transcriptomic features that
are associated with their enrichment. They also highlight how
proteomic and phosphoproteomic information complements and
adds to genetic and transcriptomic profiling.

Cell phenotypes predict drug responses. We next asked whether
cellular phenotypes are predictive of drug response and primary
drug resistance, quantified by the area under the drug-response
curve (AUC)37, obtained from in vitro drug screening data in a
subset of the models (all data, both previously published or newly
generated, is deposited at https://caldaslab.cruk.cam.ac.uk/bcape/).
Clustering of the correlation values (Fig. 5d) revealed the major
phenotypic classes of CCs (luminal and non-luminal) had mostly
opposite drug-response profiles (Fig. 5d). In particular, a high
proportion of L1-L5 cells tended to have a positive association

with response to targeted kinase inhibitors (e.g. GDC-0032,
GDC-0941, Sorafenib) and resistance to chemotherapy or DDR
agents, whereas a high proportion of M1-3 cells correlated
with resistance to targeted kinase inhibitors and response to
chemotherapy and DDR agents (e.g. AZD1775, AZD7762, KU-
55933) (Fig. 5d, e). In addition, this analysis allowed deconvo-
luting the drug-response correlation of specific CCs within the
main luminal and non-luminal groups (Fig. 3a). For example, B1
CC prevalence has substantially different drug-response profiles
(e.g. epirubicin, cisplatin, AZ960, AZD1775, AZD7762) from
M1-3 CCs, and these cell types separate basal-like/IntClust9-10
non-luminal models in two distinct clusters (Figs. 3c and 5e, f).
Likewise, amongst the Luminal CCs, L2/L3 and L4 had distinct
associations with response to two PI3K-inhibitors (GDC-0032/
taselisib and GDC-0941/pictilisib) and L4 CC was the single
luminal cell phenotype that significantly correlated with Lapatinib
sensitivity (Fig. 5d). Consequently, response to a single drug could
be jeopardised by such functional heterogeneity in tumours clas-
sified into the same genomic subtype.

Given the heterogeneity of cell phenotype composition within
each model (Fig. 5f), we thought to incorporate the full
phenotypic profile of a xenograft into an ensemble predictive
model. For this purpose regularised linear regression models were
used with CC-to-CC log-ratios tested as candidate variables to
predict AUC. This approach was carried out for a subset of 15
compounds with response data in at least 18 models. For 6 of the
15 compounds (camptothecin, cisplatin, epirubicin, JQ1,
AZD7762 and BMS-754807) it was possible to predict the AUC
values (R2 > 0.5) based on an optimum subset of CCs determined
by cross validation (Fig. 5g, Supplementary Fig. 6d and ‘Methods’
section). This phenotypic ensemble approach appeared to
outperform single CCs to predict drug response in several cases
(e.g. camptothecin, JQ1 and BMS-754807).

Overall, these findings illustrate that the phenotypically distinct
tumour cells present in pre-treated models associate with
variability in drug response within a tumour. The relative
proportions of tumour cell phenotypes constitute one added
layer of inter-tumour heterogeneity and intra-tumour cellular
phenotypic composition is predictive of drug treatment sensitivity
or primary resistance.

Cell phenotypes display treatment-induced intra-tumour
dynamics. Cellular phenotypes are known to be plastic59, parti-
cularly under stress or other selective pressures, including drug
treatment. We analysed the dynamics of tumour cell phenotypes
in vitro (short-term treatment with vistusertib for 2 h). Single-cell
suspensions of 4 PDTX models with a range of CC compositions
(Fig. 3c) were treated in vitro with the mTOR inhibitor vistusertib
(Fig. 6a) and analysed with mass cytometry. These models
showed a range of responses to vistusertib (Supplementary

Fig. 5 Integration of PDTX cell phenotypes with molecular features and drug-response data. a Prevalence of different breast cancer subtypes as defined
by IHC ER and HER2 status, PAM50 and IntClust subtypes across the 11 human cell-clusters (CCs) indicated in colour as in Fig. 3b. b Prevalence of somatic
mutations in major breast cancer mutation-driver genes and copy number aberrations (CNAs) across the 11 human CCs. Yellow bars-significant
enrichment (two-sided hypergeometric test, adjusted p < 0.01). Only aberrations with a prevalence >0.25 in at least 1 CC are shown (for a full list see
Supplementary Fig. 6b). c Gene set Enrichment Analysis using the ‘Hallmark’ collection. Enrichment analysis was run for each CC after ranking all genes by
their correlation with the CC prevalence. Significant enrichment (FDR < 0.01) is indicated by a black dot. Normalised enrichment score and positive/
negative associations are indicated by the circle size and colour, respectively. For each CC, the top 5 gene sets with the highest positive enrichment and top
5 with negative enrichment were selected. The resulting list of unique gene sets is shown. d Heatmap of Spearman’s correlation between human CC
prevalence and drug-response area under the drug-response curve (AUC) in a subset of PDTXs (10 ≤ n ≤ 22). A two-sided p-value < 0.05 is indicated by
an asterisk. e Scatter plots of single CC prevalence against AZD7762 AUC (association for L4: Spearman correlation ρAZD7762=−0.64, p= 0.003, two-
sided; association for M3: Spearman correlation ρAZD7762= 0.56, p= 0.009, two-sided). f tSNE plots of cells belonging to the 11 human CCs highlighting
the proportion of M3 CC in 3 models (STG335_T1, HCI001_T1, HCI010_M1) with increased sensitivity to chemotherapy/DDR drugs (e.g. AZD7762).
g Heatmap summarising the coefficient values assigned to each CC log-ratio by fitting regularised linear models to predict the response (AUC) to each
compound (rows). R2 of the model score vs observed AUC are annotated on the right (asterisk indicating R2 > 0.5).
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Fig. 7a) and displayed effects on the level of oncogenic signalling
activation effectors consistent with previously reported findings49

(Fig. 6b and Supplementary Fig. 7b). Mass cytometry (Ncells=
461,634, Supplementary Fig. 7c) uncovered the effect of the
treatment at single-cell level revealing vistusertib treatment
affected only cells with a specific oncogenic signalling state (e.g.
p-S6 high, 4E-BP1 high), and also induced sub-population- and

model-specific changes (e.g. p-ERK induction in STG143_T1;
lack of p-S6 (S240/S244) inhibition in STG139_M1) (Fig. 6c,
indicated in blue squares). mTOR inhibition by vistusertib caused
an apparent dispersion of cellular phenotypic states, suggestive of
plasticity and phenotypic equilibrium59 (Fig. 6d). This pheno-
typic plasticity correlated with an increase in the average varia-
bility of oncogenic signalling activation (Fig. 6e). We applied the
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cross-MC cell-classifier (Fig. 4a) to map all cells in the vistusertib-
treated models to defined CCs (Supplementary Fig. 7d) and
quantified their dynamics after drug exposure (Fig. 6f). In the 3
ER+/Her2− models, the main effect was a decrease in ER
+/OSAHigh CCs (L1 by 30% in VHIO244; L2 by 99% in STG335
and STG143; L5 by 33% in STG143). In contrast, in the ER
−/Her2− model STG139 there was a minimal decrease in CC M3
(ER−/Vimentin+/OSAHigh), despite high expression of the
oncogenic signalling effectors targeted by vistusertib.

These findings illustrate the intra-tumour cellular phenotypic
heterogeneity is dynamic upon drug treatment. These differential
phenotypic dynamics could be as important as clonal
dynamics and contribute significantly to the development of
drug resistance, as previously proposed60,61.

Xenograft cell phenotypes can be mapped onto primary human
tumours and associate with survival. We have previously
demonstrated that breast cancer PDTXs are remarkable models of
both inter-tumour and intra-tumour heterogeneity at the histo-
logical and genomic levels37, and hence we hypothesised that the
tumour cell phenotypic heterogeneity described here (and pre-
dictive of drug sensitivity/resistance) could also reflect what is
found in human primary tumours. We, therefore, mapped the 11
tumour CCs identified in the PDTXs onto spatially-resolved IMC-
derived single-cell data from 481 primary human breast cancers
from the METABRIC cohort29 (Fig. 7a, Supplementary Fig. 8a, b
and ‘Methods’ section). There were 12 mass cytometry antibodies
in common between the two studies and using our machine
learning approach (Fig. 4a, Methods), we mapped the segmented
single cells from IMC onto one of the eleven CCs with only a
minority of cells (0–10%) left unclassified (Supplementary Fig. 8a
and ‘Methods’ section). Cancer cells in patients had a spectrum of
phenotypic heterogeneity, as measured by Simpson’s score, similar
to that observed in PDTXs (Supplementary Fig. 8b). Remarkably,
human primary tumours showed similar phenotypic composition
across comparable subtypes (e.g. B1 and M1-3 CCs enriched in
ER−/Basal-like/IntClust10 tumours and Luminal CCs mostly
absent in IntClust4ER− and IntClust10) (Fig. 7a, Supplementary
Fig. 8c). Similar to what was observed in xenografts (Fig. 4 and
Supplementary Fig. 5), in human primary breast cancers the CCs
displayed spatial organisation, with non-random distribution
within tumour tissue (Supplementary Fig. 8d). The cancer cell
phenotypic composition of tumours from the METABRIC cohort
was also significantly associated with patient outcome (Fig. 7b).

In summary, we have shown the cellular phenotypes identified
in PDTXs appear to also be present in human primary breast
cancers, displaying similar correlations with molecular subtypes
and associating with patient survival.

Discussion
Tumour heterogeneity is one of the hallmark features of breast
cancer and has major implications for treatment response and
resistance5,6,62. Most studies to date have focused on genetic
diversity16–18,63,64 and only a handful have analysed non-genetic

(phenotypic) diversity28,32. To date, a single study has analysed
breast cancer cellular phenotypic heterogeneity (using IMC) in the
context of genomic and transcriptomic landscapes but making no
correlations with a therapeutic response or drug resistance29. Here
we have significantly extended this work by characterising the
single-cell phenotypes of patient-derived tumour xenografts and
correlating these with the genomic and transcriptomic profiles of
these models, where we also tested drug responses to compounds
either used currently to routinely treat patients or under clinical
development. So rather uniquely, the PDTX biobank we have
developed allows the integration of genetic16,17,65 and non-
genetic28,32 diversity, with drug screening data that is continually
accrued and made publicly available (https://caldaslab.cruk.cam.
ac.uk/bcape/)39. We demonstrate the cellular phenotypic ‘foot-
prints’ derived from mass cytometry form a distinctive feature that
is not fully captured by genomic or transcriptomic stratification
and constitute improved predictive biomarkers of drug response
and resistance. A prime example is a novel finding that triple-
negative breast cancers, where genomic stratification has failed to
identify biomarkers for this hard to treat aggressive subtype6,55,62,
are clearly separated into two major groups based on their
dominant malignant cell type (basal-like CC B1 vs mesenchymal-
like CCs M1-3), with rather distinct drug-response profiles to
conventional chemotherapy (cisplatin, epirubicin, camptothecin)
or to drugs targeting the DNA damage response (AZD1775- Wee1
inhibitor, AZD7762- CHEK1/2 inhibitor, KU-55933- ATM inhi-
bitor). A second example is the data with PIK3-inhibitors (GDC-
0032/taselisib and GDC-0941/pictilisib), where genomics is a poor
predictor of response37 and here we show a prevalence of luminal-
like CCs is most strongly correlated with response.

We also show mass cytometry can be used to track the
dynamics of malignant cell phenotypes after therapy exposure.
The proof-of-principle data on dynamics in response to short-
term (2 h) exposure to vistusertib highlighted another previously
unnoticed aspect of oncogenic target inhibition: the luminal-like
CCs with high expression of the PI3K-AKT-MTOR pathway
effectors (pS6, 4E-BP1) were mostly affected, as compared to
mesenchymal-like CCs with similar or higher levels of effector
expression. This diverges from the classical oncogene addiction
paradigm: target activation by over-expression or mutation
forecasts response to targeted treatment. Instead, it suggests cell
states can be the main determinants of response. Others have
shown mass cytometry can be used to determine IC50s and
AUCs66. We, therefore, suggest mass cytometry could replace
current methods (e.g. cell viability assays) for pre-clinical targeted
inhibitor testing and be used to improve clinical predictive bio-
markers. The overall approach of combining genomics with
single-cell phenotypes will also impact parallel efforts using breast
cancer organoids66 or cell lines67,68.

Finally, our data illustrate not only how defined cell pheno-
types may confer selective sensitivity to treatment, but also how
diverse cell phenotypes with distinct drug sensitivities co-exist
within the same tumour and display dynamics under therapy
exposure. Remarkably, this phenotypic diversity (measured by
Simpson’s score) does not correlate with genetic intra-tumour

Fig. 6 Intra-tumour cellular phenotypic dynamics induced by mTOR inhibition. a Schematic representation of the experimental setting. Single-cell
suspensions of 4 PDTX models were treated with vistusertib (dosed from 0.1 to 10 μM) for 2 h and analysed using the breast cancer mass cytometry
(BCMC) approach. b Heatmap of Earth Mover’s distance of OSA markers in the 4 PDTX models treated with vistusertib (dosed from 0.1 to 10 μM)
compared with DMSO control. c tSNE plots in untreated and vistusertib-treated (10 μM) conditions. The intensity of each oncogenic signalling activation
(OSA) subpanel marker is indicated by the colour gradient. Two model-specific responses (p-ERK induction in STG143_T1 and lack of inhibition of p-S6 in
STG139_M1) are indicated by blue boxes. d Cell density plots of tSNE analysis from panel c. e Average Coefficient of Variation (CV) for OSA markers in
untreated and treated (10 μM) conditions in the 4 tested PDTX models. Pairwise comparisons using two-sided t-test (p= 0.016). f Cell-cluster (CC)
dynamics in each PDTX model upon vistusertib treatment (dosed from 0.1 to 10 μM). The model-specific cross-MC cell-classifier was applied to classify
cells into each CC. Unclassified cells are indicated in grey.
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heterogeneity (measured by the MATH index). These findings
have major implications for pre-clinical drug screening and for
clinical translation, suggesting a new approach for developing
rational combination therapies: the targeting of both distinct
genomic clones and distinct phenotypic cell populations69. It also
opens the intriguing possibility of using mass cytometry to
directly profile tumour biopsies obtained from patients under-
going therapy, since we have shown here the cell phenotypes
identified in patient-derived xenografts can be identified in pri-
mary human tumours in patients, and hence assess rapidly
whether a given treatment is likely to be effective or futile for an
individual patient.

Methods
Breast cancer cell lines. Breast cancer cell lines (CRUK Cambridge Institute Cell
Biorepository Bank) were cultured in DMEM (Gibco, Invitrogen). All media were
supplemented with 10% heat-inactivated fetal bovine serum (FBS) and 100 U/ml
penicillin (Gibco, Invitrogen). Cells were split every 2–3 days and kept in a
humidified cell culture incubator at 37°C with 5% CO2. Metadata associated with
the cell lines used in this study are presented in Supplementary Table 2.

Breast cancer PDTX samples and specimen characteristics. Breast cancer
patient-derived tumour xenografts (PDTX) were part of the CRUK Cambridge
Institute Breast Cancer Functional Genomics Laboratory biobank and were
established from the implantation of live human breast cancer tumour samples and
propagated in highly immunodeficient mice (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ
or NSG) as previously described in more detail37 (Supplementary Table 3).
Tumours were implanted in mice at least 5 weeks old. All mice were housed in
Individually Ventilated Caging, in a positive pressure system and maintaining a
temperature between 19° and 23°, 55% humidity (+ or −10%) and 20 total air
changes per hour. All use of human samples and xenograft generation is covered by
the appropriate human ethics framework in the UK, and all animal work is per-
formed under the Home Office regulatory framework (project licence number:
P1266F82E). The research was done with the appropriate approval by the National
Research Ethics Service, Cambridgeshire 2 REC (REC reference number: 08/
H0308/178) and informed consent was obtained from all patients. Xenografts are
available upon request.

ER and HER2 status, as well as ASMA and CD31 (human and mouse), were
determined by IHC on TMAs of FFPE PDTX tissues37. Briefly, tissue samples from
cancer patients and PDTXs were fixed in 10% neutral buffered formalin, embedded
in paraffin and subsequently used to extract 0.6 mm cores for TMAs construction.
TMA immunohistochemical staining was performed on 3-μm-thick sections that
had been de-waxed and rehydrated on the automated Leica ST5020 slide stainer.
The staining was performed using Polymer Refine Detection System (Leica
Biosystems). Then, antibody staining was performed after an appropriate antigen
retrieval treatment (detailed in Supplementary Table 1). For all antibodies,
dilutions were prepared in Bond Primary Antibody Diluent (Leica Biosystems) and
the signal enhanced using DAB Enhancer (Leica Biosystems). After staining,
sections were dehydrated, cleared in xylene on the automated Leica ST5020 and
mounted with the Leica coverslipper.

Classification of breast cancer molecular subtypes (i.e. PAM50, IntClust) was
performed using either microarrays37 or RNA-Seq data, with the TCGA-BRCA
dataset as a reference4. FPKM counts from RNAseq were transformed using the
voom function from the limma package alongside library size normalisation70. The
batch correction was then performed, both to account for experimental batches
within our biobank and those between our biobank and the TCGA dataset. The
biomaRt package was used to map gene Ensemble IDs to HUGO and Entrez IDs,
and the iC10 and PAM50 classifications were generated using the iC10 and genefu
packages, respectively71.

The numbers and metadata associated with the PDTX samples are presented in
Supplementary Table 3, including the actual passages used for all mass cytometry
experiments described throughout the manuscript. Each PDTX sample ID
structure [XXXXXXX_A0a] encodes its origin: ‘XXXXXXX’- ID of the originating
human explant patient sample; ‘A’- type of human sample (T: primary, M:
metastasis); ‘0’—digit indicating originating explant sample when multiple from
the same patient was implanted; ‘a’—indicating replicate samples originating from
the same PDTX/passage; any ‘R’ indicating a replicate sample.

Cell line and PDTX in vitro treatment with targeted inhibitors. For mass
cytometry experiments in Fig. 1g, MCF7 breast cancer cell line was treated with
palbociclib (CDK4/6 inhibitor) or vistusertib (mTORC1/2 inhibitor) (provided by
AstraZeneca) at a final concentration of 1 μM for 1 h (Fig. 1g). The dose of the
compound and cell lines were determined by previous studies with the same
compounds49 to achieve similar inhibitory effects in the levels of specific OSA and
CCA signalling effectors (e.g. p-S6 and p-4E-BP1 inhibition by vistusertib and p-Rb
inhibition by palbociclib) (Fig. 1g). For the experiment reported in Fig. 6, PDTXs
(n= 4; STG139_M1, STG143_M1, STG335_T1, VHIO244_M1) were treated with

Fig. 7 Xenograft cell phenotypes mapped onto primary human tumours.
a Barplots summarising the prevalence of each of the 11 human CCs in 481
METABRIC cases analysed by IMC. Samples are ordered based on
hierarchical clustering of phenotypic profiles. Molecular data in vertical bars
to the right. b Kaplan–Meier curves by quartile of values predicted with a
regularised Cox model fitted to associate the phenotypic profile (as CC
prevalence log ratios) with patients’ survival. DEFS distant event-free survival.
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vistusertib at increasing dosage (4-fold dose from 0.1 to 10 μM) for 2 h. The
starting and fold-change in dose were determined by previous mass cytometry
studies72. Then, cell suspensions were processed for CyTOF as described in the
‘Methods’ section below.

For high-throughput drug-response experiments in Fig. 5d, patient-derived
tumour cells were treated in vitro with the indicated compounds for 7 days at
which point viability was measured by Cell-Titer-Glo (CTG) (Promega) and area
under the drug-response curve (AUC) was calculated as previously described37.
Briefly, the observed response was computed as 100 − (100 ∗ (intensity-negative
control)/(positive control − negative control)). Quality Control was performed
comparing response values in plates and screenings done on similar dates. Isotonic
regression using the R function isoreg was fit to the set of technical replicates of
given drug response for a given sample. The area under the curve (AUC) was
computed on the model fits using the trapezoid rule with the R package flux.

Previously published data were integrated with newly generated data using
comparable compound libraries for a total of 724 good quality data points. A note
of caution should be made for Tamoxifen since 4OH-tamoxifen is the actual active
compound and the presence of phenol red in the media has been reported to affect
in vitro drug-response studies73.

Preparation of single-cell suspensions for CyTOF. PDTX tissue samples were
cryopreserved in heat-inactivated fetal bovine serum (FBS) with 10% DMSO in
liquid nitrogen. Samples were thawed rapidly into RPMI (Gibco, Invitrogen) and
mechanical and enzymatic dissociation was performed using the soft tumour
dissociation protocol on a GentleMACS Dissociator and the human tumour dis-
sociation kit (Miltenyi) according to manufacturer instructions (∼40 min, starting
from thawing the cryopreserved tissue to creating single-cell suspensions). After
tissue dissociation, single-cell suspensions were filtered through 70 μm meshes (BD
Biosciences) and transferred into RPMI (Gibco, Invitrogen).

For breast cancer cell lines, single-cell suspensions were prepared by trypsin
treatment (Gibco, Invitrogen) of the adherent cultures for 5 mins at room
temperature followed by one wash of the single-cell suspensions with complete
media (as described in ‘Breast cancer cell lines’ section).

The number of viable cells in the single-cell suspensions was assessed using Vi-
Cell XR Cell Counter (Beckman Coulter) (median viability of 73.6%). Then, cells
were exposed to the intercalator Rhodium (103Rh), a live-dead exclusion marker for
CyTOF (201103, Fluidigm). After washing using the Cell Staining Buffer (CSB,
Fluidigm), about 1 × 106 cells per sample were re-suspended and fixed in 0.5 ml
Hank’s buffered salt solution (Gibco, Invitrogen) with paraformaldehyde (PFA) at
a final concentration of 2% and incubated for 10 minutes at room temperature.
Subsequently, 2 ml of CSB was added, the sample was centrifuged at 800 × g for 3
min, supernatants were discarded, and the cell pellets were washed twice before
suspension in CSB and stored short-term at 4 °C until the next step.

Antibodies for mass cytometry and IMC. Metal-labelled antibodies were as
commercially available or purchased in carrier-free PBS to be conjugated to metal
isotopes. Antibody conjugation used the Maxpar Antibody Labelling kit (Fluidigm)
as per manufacturer’s instructions (herein referred as ‘custom’) (Supplementary
Table 1). Details on the antibody identifiers, validation process and dilution used
for each antibody are reported in Supplementary Table 1. Mass cytometry mea-
sured 41 parameters/channels: 33 antibody markers (32 channels), 7 heavy metal
barcodes, 1 intercalator as intact single-cell inclusion marker (191Ir and 193Ir), 1
intercalator as dead cell exclusion marker (103Rh).

The mass cytometry antibody panel (n= 33) was designed so that HTC and
MSC markers had a minimal overlap due to antibody cross-species reactivity (n=
3; CD44, Vimentin, CD49f). To strengthen the separation between the two
subpanels, a mouse-specific MHC-Class I and a human-specific CD298 were
used42,43. Each antibody was titrated in CyTOF using breast cancer cell lines and
NSG tissue (Fig. 1b–f, Supplementary Fig. 1b, c and Supplementary Table 1; data
are shown for one antibody concentration). An additional round of antibody
validation was performed correlating CyTOF median expression values with IHC
and RPPA data from the same cohort of PDTXs (Supplementary Fig. 3a, b). Three
antibodies were excluded from downstream analysis due to poor performance in
orthogonal comparisons (c-Myc, p21, PR). While the ER antibody is human-
specific, we observed cross-reactivity with mouse endothelia/fibroblast (S2) sub-
population in both IMC and mass cytometry platforms.

The IMC antibody panel (n= 10) was designed so that it included at least 1
antibody in each subpanel: (a) HTC, n= 7; (b) MSC, n= 2 (1 in common with
HTC subpanel); (c) OSA, n= 1; and (d) CCA, n= 2. There was a limited number
of antibodies, especially for OSA, that was optimal for formalin-fixed paraffin-
embedded (FFPE) tissue used for IMC.

Sample processing and antibody staining for CyTOF. Fixed single-cell suspen-
sions of PDTXs and breast cancer cell lines were individually subjected to per-
meabilization and palladium barcoding using the Cell-ID™ 20-Plex Pd Barcoding Kit
(102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd) as per manufacturer’s instructions
(201060, Fluidigm). After barcoding, up to 20 samples were pooled into one tube.
First, cell suspensions were incubated with a mix of the extracellular antibodies in
CSB for 30min at room temperature (Supplementary Table 1). Three washes with

CSB were followed by incubation of cells with 100% ice-cold methanol at 4 °C for
10 min. Three washes with 5-fold volumes of CSB were followed by incubation with
a mix of the intracellular antibodies (Supplementary Table 1) in CSB for 30min at
room temperature. Three washes with CSB were followed by incubation of cells with
the intercalator Iridium (191Ir and 193Ir) (201192, Fluidigm), an intact single-cell
inclusion marker, according to manufacturer’s instructions. Finally, cell suspensions
were washed three times with CSB following ddH2O and EQ four-element cali-
bration beads (140/142Ce, 151/153Eu, 165Ho and 175Lu) were added to the sample as
per manufacturer’s instructions (201078, Fluidigm). The samples were run on the
HELIOS instrument at a concentration of 0.6–1 × 106 cells per ml.

Mass cytometry data pre-processing. Raw data were normalised with the EQ
Calibration beads and individual sample de-convolution (using the barcodes) was
performed with the commercially available software (Fluidigm). Initial data quality
and gating for intact single and alive cells were determined using traditional
cytometry visualisation with software available from Cytobank70 (Supplementary
Fig. 1a). In-gate events were imported in R/Bioconductor (v. 3.5), arcsinh trans-
formed and filtered based on the median marker signal to remove cells with
extremely low or high median values (±2 × IQR). Samples with a low number of
events were discarded and cosine normalisation was applied. Downsampling was
performed before tSNE and clustering analysis. A summary of samples and the
number of events for all the experiments are reported in Supplementary Table 4.

In the ‘PDTX characterisation’ and ‘PDX target engagement’ experiments,
where more than one batch had to be combined, reference samples were included
in each batch (STG139, AB551 and STG335, respectively) and the absence of
significant bias was verified by tSNE analysis and signal distribution evaluation
(Supplementary Figs. 2c, d, 7b, respectively).

Clustering analysis and heterogeneity quantification. PhenoGraph27 was used
for clustering analysis to identify major phenotypic cell populations as imple-
mented in R package cytofkit (v. 1.12). In this graph-based clustering algorithm,
only one parameter k has to be defined, which is the number of nearest neighbour
cells to be considered. We explored a range of k values and for each value, we
repeated the clustering procedure 100 times sampling each time 90% of the cell
population. This way, it was possible to compute the Adjusted Rand Index (ARI)28

for each pair of cluster labels generated. By looking at the ARI distributions and the
average number of clusters identified (Supplementary Fig. 4a, b), we opted to use
k= 250, giving a median ARI= 0.87, which indicate high cluster stability. A fur-
ther increase of k only marginally affected the ARI score, while hampering the
ability to identify low prevalence populations.

The proportion of each cluster in each model was calculated, becoming the input to
compute the Simpson’s score for each model. Only the 11 human cell clusters were
considered in this analysis. Association of the Simpson’s score with PDTX molecular
features was tested using a two-sided t-test. Intra-tumour marker variability was
quantified by computing for each model the average CV for each marker subpanel.
Differences in average CV distributions were evaluated by a two-sided t-test.

Other statistical analyses. tSNE analysis was run for downsampled datasets using
the Rtsne (v. 0.15) R package.

Earth Mover’s Distance (EMD) was computed using the EMDomics (v. 2.12) R
package to quantify distribution differences between two conditions74. EMD was signed
by the difference of the median intensity between treated and control samples.

k-Nearest neighbours density resampled estimation of mutual information
(kNN-DREMI) was computed using the Python package scprep75 (v. 1.0).

Generation and analysis of RPPA data. RPPA data were generated as previously
reported76 for the same PDTXs (Supplementary Table 3). Pearson’s correlation
analysis between mass cytometry and RPPA data for 12 markers was carried out
(Supplementary Fig. 2a).

Tissue sample processing for IMC staining. Tissue microarrays (TMA) were
prepared using duplicate 0.6 mm cores extracted from formalin-fixed paraffin-
embedded (FFPE) PDTX tumour blocks. TMA sections were baked for 2 hours at
60 °C and incubated in xylene overnight. After sections were rehydrated in xylene/
ethanol (1:1), they were rehydrated in a graded alcohol series. The antigen retrieval
step was performed by placing the slides in a pre-heated Tris-EDTA buffer (pH 9)
for 30 min at 95 °C. After cooling, sections were incubated in water followed by 1×
Tris-buffered saline (TBS) (pH 7.5). After sections were incubated in blocking
buffer (3% BSA and 0.5% Triton-X-100 in 1X TBS) for 45 min at room tem-
perature, they were incubated with primary antibody mix (Supplementary Table 1)
overnight at 4 °C. After two washes using TBS-Tween for 5 min, sections were
incubated in secondary antibody mix (Supplementary Table 1) for 3 h at room
temperature. After two sequential washes using TBS-Tween and then 1× TBS for
8 min, sections were incubated with the intercalator Iridium (191Ir and 193Ir)
(201192, Fluidigm) according to manufacturer’s instructions. Finally, sections were
dried under airflow and stored at room temperature until measurements were
performed.
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IMC image acquisition. IMC images were acquired with a beta prototype unit of
the laser module from Fluidigm coupled to a Helios mass cytometer. The TMA
sections were processed in a single batch over two days. All images were acquired at
200 Hz, laser diameter 1μm and laser ablation energy 4Db. Metadata associated
with the PDTX samples are presented in Supplementary Table 3.

IMC image and data analysis. IMC images were analysed using an IMC image
processing pipeline, a platform developed for high-throughput analysis of biolo-
gical images as part of the Cancer Research UK IMAXT Grand Challenge Project
(Unpublished). The code was written in Python and used the OpenCV, i.e.,
an open-source computer vision and machine learning software library written in
C++. Initially, an image representing the nuclear channel is extracted from the
IMC data cube. This image is then processed and segmented to compute cellular
features such as centroids, shape descriptors, and pixel intensities. For each seg-
mented cell, two mask images were created: one associated with the segmented cell
itself and the other one associated with the cell periphery, i.e., the two-dimensional
zone surrounding the cell. These masks were used, for each detected cell, to
compute pixel intensities associated with all other IMC channels. A final catalogue
was then created which includes extracted information as individual feature col-
umns for all detected cells.

Data from 122,597 segmented cells were imported in R/Bioconductor (v. 3.5),
log2 transformed and filtered to remove outliers with very high or low median
signal (i.e. exceeding median ± 2IQR), with 107,025 cells from 15 images left for
downstream analyses.

Mapping of mass cytometry CCs to IMC and other mass cytometry data and
spatial analysis. To classify IMC segmented cells into one of the CCs identified by
mass cytometry, we developed a model-specific nearest centroid classifier (herein
referred to as Cross-MC Classifier) (Fig. 4a) as implemented in the pamr R package
(v. 1.55). For each model, we selected the CCs with a prevalence >5% and we
trained the classifier in a 10-fold cross-validation setting using only the 10 markers
in common with IMC. Centroids shrinkage was disabled (i.e. threshold = 0). The
trained classifier was then used to predict the CC labels in the IMC data from the
matching model. Posterior probabilities were computed for all CCs in the model
and cells were labelled as unclassified if the delta between the first and second
highest probabilities was less than 0.9. Model-specific centroids were computed for
both mass cytometry (training) and IMC (testing) datasets and Pearson’s corre-
lation analysis was carried out between matching and non-matching CCs to verify
the profile similarity between corresponding CCs (Fig. 4b). The same approach was
used to map the 11 CCs onto drug treatment mass cytometry experiments (‘PDTX
target engagement’) (Supplementary Fig. 7d).

To study the spatial distribution of each CC in IMC data, we applied a two-
point autocorrelation analysis, able to quantify the excess probability of finding one
object within a specified distance of another object against that of a random
distribution. The Davis & Peebles Estimator was computed for each CC with at
least 100 cells and for a range of distances57. A value higher than 1 indicates a
significant deviation from a random spatial distribution.

Mapping of mass cytometry CCs to METABRIC IMC data. From processed IMC
data of a recently published cohort29 (n= 481), epithelial cells based on the original
clustering labels (12 epithelial clusters) were isolated. Twelve markers [CD326/
EpCAM, CD44, E-cadherin, EGFR, ER, HER2, Keratin 8/18, Ki67, p-ERK1/2
(T202/Y204), p-S6 (S235/S236), Vimentin, p53] in common with the current study
were selected. Data were log2 transformed, cosine normalised and scaled. The
nearest centroid classifier as implemented in the pamr R package (v. 1.55) was
trained to classify IMC data into one of the 11 CCs. Posterior probabilities were
computed for all CCs and cells were labelled as unclassified if the delta between the
first and second highest probabilities was less than 0.9. Centroids were computed
for both mass cytometry (PDTX cohort) and IMC (METABRIC cohort) datasets
and Pearson’s correlation analysis was carried out between matching and non-
matching CCs to verify the profile similarity between corresponding CCs (Sup-
plementary Fig. 8a). The prevalence of each CC in each tumour was computed and
heterogeneity quantified by Simpson’s score as described above. Autocorrelation
analysis was applied as described above for all clusters with at least 100 cells in each
tumour. The association of phenotypic composition with patients’ survival was
estimated by regularised Cox regression analysis. To account for the compositional
nature of the cell phenotype data, we took M3 prevalence (non zero in all but one
sample) as a referent to compute log-ratios that were then used as explanatory
variables in a regularised Cox regression model (glmnet [v. 2.0] R package77) where
Lambda was selected by 10-fold cross validation. Predicted survival scores were
divided into quartiles and Kaplan–Meier curves were generated for the four groups
using the Survival R package. Survival differences were evaluated by the log-
rank test.

RNA-Seq, sWGS and WES. RNA-Seq libraries for Illumina sequencing were
prepared using TruSeq Stranded mRNA high-throughput (HT) Sample Prep kit
(RS-122-2103, Illumina) according to manufacturer’s instructions. An input of 500
ng of total RNA per sample was used for library preparation. After 12 cycles of PCR
used at the Enrichment of DNA Fragments step, all libraries were quantified using

KAPA Library Quantification Kit Illumina ROX Low (KK4873, KAPA Biosystems)
and normalised to 10nΜ. Libraries were then pooled in equal volumes and pools
were used for clustering on the HiSeq4000 sequencing platform (Illumina)
according to the manufacturer’s instructions. Sequencing was performed using 50
bp single-end (SE) reads to generate on average 10 million total reads per library.

Sequencing quality was enforced using Trim Galore! (v0.4.2). Then, reads were
aligned to a combined human (hg19) and mouse (mm10) reference genome using
STAR (v2.5.2b)78–80. Reads were then assigned to genes using featureCounts81

(v1.5.2) to give counts, whereby the alignment score is used to distinguish reads as
being sourced from human or mouse80. Genes not expressed, this defined as having
less than one count per million reads in a given sample in more than half of the
biobank, were then removed from the dataset. The Transcript Per Million (TPM)
value of a given gene was calculated and log-transformed.

Shallow whole-genome sequencing (sWGS) and whole-exome sequencing
(WES) libraries were prepared, sequenced and analysed as previously
described37,80. Briefly, WES short reads were aligned using Novoalign (Novocraft,
v. 3.0) with our custom pipeline to remove mouse contamination80. The resulting
BAM files were merged, sorted and indexed using samtools. Duplicates were
marked using Picard tools (v. 2.15) and insertions and deletions (indels) were
realigned using GATK (v. 4.0). GATK HaplotypeCaller was employed for variant
calling, with specific filters applied for single nucleotide variants (SNVs), a
minimum genotyping quality of 20, at least 5 reads at the variant position, a strand
bias Phred-scale p-value < 40 and no presence of homopolymers in the
surrounding region. For indels, we increased the width of the region to detect
nearby homopolymers. Genotypes and variant allele frequencies (VAFs) were
computed from these calls. Variants in intergenic, intronic or ncRNA intronic
positions were discarded. All variants that were present in the 1000 Genomes
database or in any of our normal samples were labelled as germline. Regions
marked as repetitive were also filtered, and insertions that represented a segmental
duplication were removed if they were not present in at least three-fourths of all the
samples for a given model or in 3 of them. Somatic variants that were not filtered
were compiled for each model. Some manual curation was needed for genes like
PI3KCA, where variants from a region of segmental duplication were included after
manual inspection.

Copy number aberrations (CNAs) calls were obtained from low-coverage
sequencing of the pre-capture exome-sequencing libraries (sWGS). The alignment was
performed using bwa with our custom pipeline to remove mouse contamination80. Bam
files were merged, sorted and indexed using samtools. Duplicates were marked using
Picard tools. CNA profiles were obtained using the Bioconductor package QDNaseq,
dividing the genome into regions of 100 Kb. The segmented means of the tumours were
corrected for normal contamination and copy numbers (HOMD, Homozygous
deletions, HETD, Heterozygous deletions, NEUT, neutral copy number, GAIN, single
copy gains and AMP, high-level amplifications), were called based on thresholds on the
segmented mean log2-ratio (−1, −0.4, 0.25, 0.75).

From both sWGS and WES, a total of 40 breast cancer driver genes and 9
chromosomal regions6,7, were considered. A subset of these (29 genes and 9
chromosomal regions), found to be mutated or altered in at least one PDTX model
in this study, were used for downstream analysis.

Metadata associated with the PDTX samples are presented in Supplementary
Tables 3 and 4. All PDTX samples in this study, except AB764, were processed for
RNA-Seq. PDTX samples that were not previously obtained and published37 were
newly processed for sWGS and WES (indicated in Supplementary Table 3).

Mass cytometry-genomics data integration. To evaluate CCs enrichment for
specific somatic mutations or CNAs, we proceeded as follows. For each alteration,
the percentage of cells belonging to models carrying that alteration was computed
for all CCs. Next, we tested for each CC whether or not such percentage was
overrepresented using the hypergeometric test; p-values were adjusted for multiple
testing using Bonferroni’s method.

Mass cytometry-transcriptomics data integration. The proportion of each of
the 11 human CCs in each model was computed and correlated with the expression
levels of genes as measured by RNA-seq. 15462 genes with median log TPM > 0
were included. For each CC, genes were ranked according to the correlation values
and tested for gene set enrichment using the MSigDB collection ‘Hallmarks’58 and
the R package phenoTest (v.1.28). Gene set with FDR < 0.01 were considered
significantly enriched. The top 5 with positive enrichment and the top 5 with
negative enrichment in each CC were selected to generate the heatmap in Fig. 5c.

Mass cytometry-drug-response data integration. The per-model proportion of
the 11 human CCs was computed and correlated (Spearman’s correlation) with the
per-model area under the drug response curve (AUC) values obtained by high-
throughput drug screening as previously described37. Response curves were clus-
tered in 8 groups as previously described37; here, only drugs with less than 33% of
the response curves in either cluster 1 (no response), 7 or 8 (toxic drug) were
included. A minimum of 10 models tested and the presence of both responding
(AUC > 0.2) and resistant (AUC < 0.2) models was also required. A total of 45
compounds passed filtering and were evaluated in a range of 10–22 models, with a
total of 724 good quality data points included in the correlation analysis (Fig. 5d).
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For 15 compounds with at least 18 model tested, we fitted regularised linear
regression models as implemented in the glmnet R package77. To account for the
compositional nature of the cell phenotype data, we took O2 prevalence as a
referent to compute log-ratios that were then used as explanatory variables.
Regularisation parameter Lambda (defining the subset of variables to include) was
selected by 10-fold cross validation. Performance of the fitted models was evaluated
by computing R2 values of model score vs measured AUC.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Mass cytometry and imaging mass cytometry data are available on Zenodo (https://doi.
org/10.5281/zenodo.4445713 and https://doi.org/10.5281/zenodo.4501644). Genomic
and transcriptomic profiles are available through the European Genome-phenome
Archive (EGAS00001001913) upon approval from the Data Access Committee. Drug-
response data are available at https://caldaslab.cruk.cam.ac.uk/bcape/. IMC METABRIC
processed dataset was provided by the authors. TCGA processed transcriptomic data was
obtained from cBioportal (http://cbioportal.org) and ‘Hallmark’ gene sets were
downloaded from the MSigDB (http://software.broadinstitute.org/gsea/msigdb). All the
other relevant data are available from the authors. Source data are provided with
this paper.

Code availability
All analyses were performed using R/Bioconductor packages as described in the
“Methods” section. Reference scripts are available on GitHub (https://github.com/cclab-
brca/BCMC, https://doi.org/10.5281/zenodo.4445719).
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