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SUMMARY
Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predom-
inant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we
performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, rep-
resenting early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, pro-
teomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and
hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagen-
esis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females
and over-representation of environmental carcinogen-like mutational signatures in older females. A prote-
omics-informed classification distinguished the clinical characteristics of early stage patients with EGFR
mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning
clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic interven-
tion. This multi-omic molecular architecture may help develop strategies for management of early stage
never-smoker lung adenocarcinoma.
INTRODUCTION

Lung cancer remains the most common malignancy and the

leading cause of cancer mortality worldwide (Bray et al., 2018)

and has been mainly attributed to direct tobacco exposure

(Bach, 2009). However, its incidence in never-smokers remains

a significant health problem globally, especially in East Asia
226 Cell 182, 226–244, July 9, 2020 ª 2020 Elsevier Inc.
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and most predominantly among women; the non-smoking-

related etiology and carcinogenesis remain poorly understood

(Jemal et al., 2018; Sun et al., 2007). In Taiwanese population,

never-smoker patients are predominant (53%), especially

among females (93%) (Tseng et al., 2019). Additionally, early

onset is a distinct feature of lung adenocarcinoma (LUAD) in

East Asia, particularly among never-smokers (Kawaguchi et al.,
creativecommons.org/licenses/by-nc-nd/4.0/).
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2010). Genetic factors and exposure to environmental carcino-

gens may present risk factors contributing to these population

differences (Samet et al., 2009). For instance, in Taiwan, air pollu-

tion has been shown to correlate with the incidence of lung can-

cer in never-smokers (Tseng et al., 2019). To complement the

advances in precision therapy for advanced stage, early detec-

tion and prevention may create better clinical and economic

benefits for patients and LUAD management. Thus, it is crucial

to understand the early processes and progression of oncogen-

esis, as well as the contributing factors associated with endoge-

nous and environmental mutagens underlying the unique char-

acteristics of non-smoking LUAD in East Asia.

Significant unmet clinical needs remain in early stage LUAD.

About 20%of stage I patients still relapse after surgical resection

worldwide (Sawabata et al., 2010). At the molecular level, EGFR

activating mutations, comprising mainly L858Rmutation and the

E746_A750 exon 19 deletion, occur much more frequently in

East Asia (>50%, especially in never-smoker females) (Yang

et al., 2020; Shi et al., 2014). Although patients bearing EGFR

mutations benefit from targeted therapies using tyrosine kinase

inhibitors, most of them eventually develop resistance (Toma-

sello et al., 2018). Distinctly, patients with EGFR-L858Rmutation

display shorter overall survival and a higher tendency to develop

malignant pleural effusion and cancer metastasis compared to

patients with EGFR exon 19 deletion (Kelly et al., 2018). A

more comprehensive understanding of the molecular remodel-

ing associated with oncogenic EGFR mutations in early stage

will help to devise more effective therapeutic approaches.

The mutational spectrum of LUAD has been extensively

explored by several genomic studies, mostly representing smok-

ing-predominant cohorts (Campbell et al., 2016; Cancer

Genome Atlas Research, 2014; Imielinski et al., 2012). These

studies generated comprehensive catalogs of somatic muta-

tions in Western populations and mutational subtypes associ-

ated with smoking. Multi-dimensional ‘‘omics’’ strategies en-

compassing proteome and phosphoproteome profiling of

cancer tissues, in conjunction with genomic analysis, have eluci-

dated new disease subtypes and signaling pathways, as well as

potential targets for therapeutic development (Gao et al., 2019;

Vasaikar et al., 2019; Zhang et al., 2016). Although the genomic

profiles of lung cancer in Chinese patients were recently reported
(Luo et al., 2018; Wang et al., 2018a; Zhang et al., 2019), a

comprehensive proteogenomic profiling that can inform on the

etiology and unique features of never-smoker and early onset

of LUAD in East Asia is currently lacking.

In this study, we performed comprehensive genomic, tran-

scriptomic, proteomic, and phosphorylation analysis of pa-

tient-matched early stage LUAD tumors, the predominant type

of non-small cell lung cancer (NSCLC), and normal adjacent tis-

sues (NATs) obtained from Taiwanese patients representative of

the East Asian population. This integrated proteogenomic view

revealed the molecular attributes associated with early events

and non-smoking-related processes in LUAD, serving as a

resource to the cancer community to further delineate the under-

lying biology and address the unmet clinical needs. Another

large, deep scale proteogenomics study of lung adenocarci-

noma in a geographically diverse set of patient samples appears

in this issue (Gillette et al., 2020).

RESULTS

Proteogenomic Landscape of East Asian Lung
Adenocarcinoma Highlights Demographic Differences
and Progression Landmarks
To characterize the proteogenomic landscape of lung adenocar-

cinoma in East Asia, whole exome sequencing (WES), RNA-seq,

proteomics, and phosphoproteomics data were collected from

patient-matched tumor and NAT from 103 treatment-naive pa-

tients from Taiwan. The clinicopathological characteristics of pa-

tients and tumors are summarized in Table S1A. The prospective

cohort consisted of 42% male and 58% female patients, 83%

non-smokers, and had a median age of 63 years. This cohort

(henceforth TW) is distinct from previous lung cancer genomics

studies composed of more than 70% of smokers (Campbell

et al., 2016; Cancer Genome Atlas Research, 2014; Imielinski

et al., 2012). Histologically, 89% of the tumors were adenocarci-

noma, and 80%were at early stages IA and IB (Table S1B). In the

adenocarcinoma group (n = 91), a total of 23,145 nonsynony-

mous somatic single nucleotide variants (SNVs, Table S1C)

were identified. At the transcriptional level, a total of 30,155

RNAs were quantified (Table S1D). Using isobaric labeling (Fig-

ure S1A), more than 10,000 unique proteins and 20,000
Cell 182, 226–244, July 9, 2020 227

mailto:was@tmu.edu.tw
mailto:tsung@iis.sinica.edu.tw
mailto:chenjs@ntu.edu.tw
mailto:slyu@ntu.edu.tw
mailto:jyoti.choudhary@icr.ac.uk
mailto:jyoti.choudhary@icr.ac.uk
mailto:hychen@stat.sinica.edu.tw
mailto:pcyang@ntu.edu.tw
mailto:yujuchen@gate.sinica.edu.tw
https://doi.org/10.1016/j.cell.2020.06.012


A C E

F

D

B

Figure 1. Genomic Landscape of the Asian LUAD Cohort
(A) Mutation colormap of common cancer genes and percentages of single nucleotide variants (SNVs) per patient in the Taiwan cohort.

(B) The percentages of SNVs in the TCGA cohort.

(C) Clustergrams of gender-enriched mutations (top panel), age-related RBM10 mutations in females (middle panel), and smoking-associated mutations

(bottom panel).

(D) Clustergrams of mutually exclusive mutated genes.

(E) Correlation plot of the mutation frequencies observed in the Taiwan cohort compared to previously published cohorts.

(F) Bar plots of mutational frequencies for genes with significant difference between the Taiwan cohort and previously published LUAD studies.

See also Figure S1.
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phosphosites were quantified (Figures S1B–S1D; Table S1E–

S1G). Two reference samples from a pool of tumor and normal

tissues and a pool of late stage tumors that were included in all

batches showed a mean correlation of 0.88 and 0.83 for the pro-

teome and phosphoproteome respectively, confirming high

technical reproducibility (Figures S1E and S1F).

Genomic profiles of genes implicated in cancer according to

the Cancer Gene Census (COSMIC) are shown in Figure 1A

and Table S1C. EGFR mutations occurred in most patients

(85%) as expected, followed by mutations in TP53 (33%)

and RBM10 (20%). The overall proportions of SNVs were

different between TW and TCGA (the Cancer Genome Atlas)

cohorts (p = 0.0005, Figure S1G), with cytosine to thymine

(C>T) transition being the most frequent in the TW cohort (Fig-

ure 1A, bottom panel) and smoking-related cytosine to

adenine (C>A) transversion being the most frequent in the

TCGA cohort (Figure 1B). Non-smokers in the two cohorts

showed similar proportions of C>T transitions (Table S1H).

In contrast, the smoking related C>A transversions are signif-

icantly prominent in the TCGA cohort (p = 0.0053, Table S1I),

especially in smokers (p < 0.0001). Most interestingly, no sig-
228 Cell 182, 226–244, July 9, 2020
nificant difference in C>A transversions was observed be-

tween smokers and non-smokers in the TW cohort (Table

S1I). These observations suggest less significant smoking-

related features, implicating other factors contributing to the

genomic landscape of TW cohort.

Notably, RBM10 and EGFR-L858Rmutations were frequent in

females, whereas KRAS and APC were often mutated in males

(Fisher’s exact test, p < 0.05; Figure 1C, top panel). KRAS and

ATM were prominent mutations among patients with smoking

history (p < 0.01; Figure 1C, bottom panel). Notably, RBM10mu-

tations were more prevalent in older females (Figure 1C,

middle panel) and coincided with downregulation of both RNA

(p = 0.021) and protein (p = 0.036) levels, which was not signifi-

cant in males (Figure S1H). The frequently mutated genes were

tested for mutual exclusivity that may indicate novel synthetic

lethality or distinct clonal evolution (Hua et al., 2016). In addition

to the expected mutual exclusivity between EGFR and KRAS

mutations (p < 0.01) (Suda et al., 2010), RBM10 mutations

were mutually exclusive with TP53, KRAS, XIRP2, and

ZNF804B mutations (p < 0.05, Figure 1D). Correlation analysis

across studies using mutation frequencies from cBioPortal
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(Cerami et al., 2012) further reflects the distinct profile of our

cohort (Figure 1E). The EGFR andRBM10, as well as two cell-cy-

cle-related genes (CDC27 and RB1) have much higher mutation

frequency in our cohort, whereas somatic mutations in TP53,

KRAS, andKEAP1weremore prevalent in the other three studies

(Figure 1F). Even comparing non-smokers in the TW and TCGA

LUAD cohorts, several genes had significantly different mutation

frequencies (Table S1J). For example, top-ranking genes EGFR,

RBM10, and RNF213 have significantly higher frequencies (3.7-

to 5.9-fold) in TW cohort, while KRAS mutation occurs more

frequently (4.5-fold) in TCGA cohort. Somatic mutations on

ATP2B3 and TET2 also occur more frequently in TW cohort.

The results indicate differences of cancer genomes for the

never-smokers between TW and TCGA LUAD. RNA-seq, prote-

omics, and phosphoproteomics data were integrated to devise a

multi-omics taxonomy. Principal-component analysis (PCA) us-

ing row-mean scaled data (log2-transformed) showed a clear

separation of the tumor and normal tissues at both the RNA

and protein levels, as well as distinct clusters of the reference

samples, confirming the absence of batch effects and revealing

the higher variation of tumor compared to NAT (Figure 2A). The

RNA-to-protein correlation using log2T/N (tumor/normal) values

was moderate to low with sample-wise and gene-wise median

Spearman correlations of 0.31 and 0.14, respectively (Figures

2B and 2C; Table S2A). Only 22% proteins displayed significant

positive correlations with the cognate RNA (Spearman, Benj.

Hoch. false discovery rate [FDR] < 0.05; Figure 2C). Enrichment

analysis showed a pathway-dependent RNA-to-protein correla-

tion, with basic cellular functions poorly corresponding to RNA

(Figure 2D; Table S2B). Additionally, pathway enrichment anal-

ysis using the protein median log2T/N values across patients re-

vealed the overall regulation trends (Figure 2E; Table S2C).

Taken together, these analyses indicate transcriptionally modu-

lated upregulation of DNA replication, glycolysis, glutathione

metabolism, and immune-related pathways, while upregulation

of DNA repair, protein processing and transport pathways, and

downregulation of cell-adhesion-related pathways were more

apparent at protein level. Focusing on the NSCLC pathway,

most proteins and their phosphorylation sites were differentially

regulated. Though protein expression of EGFR, ERBB2, Ras,

and PKC were downregulated, many of their downstream

signaling protein nodes such as JAK3, STATs, PI3K, AKT,

MEK, EML4, PLCG2, and STK4 were consistently upregulated,

likely mediated by phosphorylation of these kinases and known

oncogenes (Figure 2F; Table S2D). The phosphorylation sites on

the Raf/MEK/ERK axis displayed high inter-patient variation

based on the standard deviation of the regressed phosphoryla-

tion values across patients, indicating patient-specific regulation

of the MAPK pathway (Figure 2F; Table S2E).

To elucidate the molecular dynamics of tumor progression, we

classified patients into three groups; IA, IB, and RII stages; and

performed differential expression analysis at both protein and

RNA levels using ANOVA. Differentially expressed proteins and

RNAs (p < 0.05) were further divided into two clusters by k-means

clustering, and enrichment analysis of biological terms and Gene

Ontology biological process (GO-BP) was performed for the clus-

ters with progressive up- or downregulation across stages (Fig-

ures 2G and 2H). Several key processes and terms such as
DNA replication, canonical glycolysis, proteasome, antibacterial

humoral response, glycosyltransferase, and actin filament organi-

zationwere common between the twomolecular levels (Figures 2I

and 2J). Proteins that function in cell-to-cell communication,

signaling, and plasma membrane such as integrins, G-protein

coupled receptors, ion channels, adaptive immunity, and antigen

presentation presented an overall negative regulation trend during

progression (Figure 2I). In contrast, proteins in glycolysis, DNA

replication, stress response, and protein processing, turnover,

and trafficking processes were upregulated in the later stages.

The upregulation of DNA replication and repair processes, as

well as the loss of cilium assembly genes, were most prominent

at the RNA level (Figure 2J). Lung cancer is a very heterogeneous

disease at a cellular and histological level. Thus, it is noted that tu-

mor heterogeneity may partially contribute to these differences.

Nevertheless, these results highlight the importance of multi-

omics integration to identify dysregulation of molecular homeo-

stasis during tumor progression.

In summary, our results reveal a demographically distinct

genomic landscape with different driver alteration frequencies. Its

proteogenomic characterization shows that cellular transformation

toward amore advancedcancer stage is characterized by an over-

all RNA-to-protein activation of replication with a parallel negative

regulation of the proteome components involved in plasma mem-

brane signaling and communication. Furthermore, the identified

proteomic and RNA signatures represent the hallmarks of biolog-

ical process remodeling that occurs during tumor progression.

The Impact of Genomic Alterations in the Proteome
of NSCLC
Next, we delineated the direct and indirect consequences of

genomic aberrations in our cohort at the transcriptome and prote-

ome levels. Using customized protein databases incorporating

somatic mutations of individual patients, 337 mutated peptides

corresponding to 319 proteins were identified (q-value < 0.01,

FDR < 1%). Among these, variant isoforms of 15 cancer driver

genes were identified, such as TP53BP1 D358E, RNF213

E1272Q, and D1331G, and KRAS G12C mutations in the top-

ranking genes (Figure S2; Table S2F). Truncating mutations in

RBM10 showed a systematic negative effect on both RNA and

protein levels, whereas missense mutations in KRAS, LABM1,

and PIK3CA were associated with increased protein expression

only, possibly through increased stability (centered log2T/N

values, t test p < 0.003; Figure 3A; Tables S3A and S3B). Elevated

phosphorylation of EGFR S1064 and Y1197 has been reported in

response to EGF in lung cancer cells (Zhang et al., 2015). Although

the impact of mutations in EGFR protein abundance was not

conclusive, EGFR activating mutations (L858R and Del19) corre-

lated with increased phosphorylation of S1064 and Y1197 (Fig-

ure 3B) (Tam et al., 2009), reflecting the activation of mutated

EGFR in the patients. We also performed phospho-correlation

analysis using the phosphorylation log2T/N values normalized to

the corresponding protein log2T/N by linear regression and filtered

by Spearman’s p values. Downstream activation of the MAPK

signaling can be evidenced by the positive correlation of EGFR-

pY1197 with MAP2K2-pT394 (Koch et al., 2016), which further

correlates with its substrate MAPK3-pT198/pT202 (Figure 3C),

in turn with pMAPK1 and other downstream phosphoproteins
Cell 182, 226–244, July 9, 2020 229
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Figure 2. Molecular Variation, Proteogenomic Relationships, and Tumor Progression Hallmarks
(A) Principal-component analysis (PCA) of the protein and RNA log2-scaled values across the LUAD patients and reference samples.

(B) Boxplot of sample-wise RNA-to-protein correlations. Scale bar shows the Spearman correlation. In the box plots, the central line represents median, bounds

of box represent the first and third quartiles, and the upper and lower whiskers extend to the highest or the smallest value within 1.5 3 interquartile range (IQR).

(C and D) Histogram (C) and KEGG pathways enriched for higher or low gene-wise RNA-to-protein correlations (D, Benj. Hoch. FDR < 0.05).

(E) KEGG pathway enrichment analysis using the median log2T/N values of proteins (Benj. Hoch. FDR < 0.05).

(F) NSCLC pathway adapted from KEGG. The pie charts show the percentage of patients with up- or downregulation of the respective protein using log2T/N

values. Selected phosphosites are shown and color coded according to their variation across patients using the standard deviation of regressed log2T/N

phosphorylation values.

(G and H) Line plots and boxplots of selected gene sets with up- or downregulation trend during tumor progression at (G) protein level and (H) RNA level (ANOVA,

p < 0.05).

(I and J) Scatterplot of significantly enriched UniProt keyword and Gene Ontology annotations with up- and downregulation trend based on their median

abundance per pathology stage at (I) protein level and (J) RNA level.

See also Figure S2.
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(RSK2, cPLA2, and STMN1, Figure S3A). Using their median rela-

tive abundance as a signature of MAPK pathway activity, patients

were ranked from high to low MAPK signaling (Figure 3D). This
230 Cell 182, 226–244, July 9, 2020
indicated that theMAPK signaling pathway is commonly activated

among both EGFR-WT (wild-type) and mutated patients with

different degrees of activation. Patients without EGFR activating
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Figure 3. Impact of Mutations on the Proteome and Phosphoproteome of LUAD

(A) Heatmaps showing the direct effect of mutations on their encoded RNA and protein expression levels (centered log2T/N).

(B) Boxplots illustrating the effect of EGFR activating mutations on EGFR phosphorylation (t-test, p < 0.05).

(C) Scatterplots of co-phosphorylation within the EGFR-MEK-ERK axis (Spearman’s rank, p < 0.05).

(D) Ranked co-phosphorylation signature of the MAPK cascade aligned with clinical features.

(E) Two-dimensinal plot representing eQTLs and pQTLswith variants (x axis) and associated genes (y axis). The size of the points is increasingwith the confidence

of the association.

(F) Heatmap of the relative abundance of cell-cycle-related proteins (top panel) and KIT protein (bottom panel) that were significantly associated with TP53

mutations.

(G) Scatterplot of the MAPK pathway score and KIT relative abundance across patients (Spearman’s rank, p = 0.00078).

(H) Heatmap of phosphosites related to DNA condensation, recombination, and DNA damage response proteins positively associated with TP53 mutations

(t-test, p < 0.05).

(I) Summary of key TP53 mutation associations.

See also Figure S3.
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mutations frequently coincided with lowMAPK signaling. Three of

four EGFR-WT cases with higher MAPK activity harbored KRAS

mutations (Figure 3D). It is noted that low MAPK signaling was

observed for most tumors with EGFR mutations that also harbor

TP53 mutations (Figure 3D). Variation of MAPK pathway activity

was observed within never-smokers with different EGFR acti-

vating mutations and is also influenced by TP53 mutations (Fig-

ure S3B). Anti-correlation between TP53 mutation and MAPK

pathway activity has been observed in the TCGA cohort (Cancer

Genome Atlas Research, 2014). Additionally, late stage tumors

with lymph node metastasis showed lower MAPK activity (Fig-

ure 3D). Further studies are required to determine whether this dy-

namic MAPK pathway profile is associated with different clinical

outcomes of these patients with EGFR activating mutation.

Wealso interrogated the indirect effects of somaticmutations at

the RNA and protein levels by quantitative trait locus (QTL) anal-

ysis using centered log2T/N values (Table S3C and S3D). A total

of 359 variant-RNA and 87 variant-protein interactions (FDR <

0.1) were identified, which indicated TP53 locus on chromosome

17 as an eQTL and pQTL hotspot (Figures 3E and S3C). Both

eQTLs and pQTLs showed a strong positive association of TP53

mutations with cell cycle genes, including six subunits from the

minichromosome maintenance complex (MCM) and TOP2A at

the protein level (Figures 3F and S3D). Although the mechanism

underpinning the TP53-MCM association is unclear, the modula-

tion of MCM levels on chromatin by mutant TP53 has been re-

ported (Qiu et al., 2017). TP53 deficiency can sensitize cells to

Topoisomerase II inhibitors (Yeo et al., 2016); therefore, the

observed TP53-TOP2A association may reflect opportunity for

synthetic lethality in NSCLC. In line with this hypothesis, using

public drug response data, we found that lung cancer cell lines

bearing TP53 mutations were more sensitive to etoposide (Wil-

coxon test, p = 0.021; Figure S3E) (Corsello et al., 2019; Ghandi

et al., 2019). A pQTL between TP53 mutations and lower abun-

dance of the KIT oncogene could potentially explain the low

MAPK activity (Figure 3F, bottom panel, and Figure 3G) (Du and

Lovly, 2018). Additionally, TP53mutations were positively associ-

ated with higher phosphorylation of proteins involved in DNA

condensation and recombination and DNA damage proteins

(p < 0.05, Figure 3H), representing potential therapeutic targets

(Tomkinson et al., 2013; Wang et al., 2018b). Higher phosphoryla-

tion of ABRAXAS1-pS406 and UIMC1-pS101 (Wang et al., 2007;

Kim et al., 2007) may indicate a higher degree of DNA damage in

the TP53mutant tumors. A summary of the TP53 associations that

may guide future studies and therapeutic opportunities is shown

in Figure 3I and Tables S3E and S3F. In summary, our results

show coordinated protein phosphorylation within the MAPK

cascade, which is partially explained by EGFR and KRAS muta-

tions and negatively correlates with tumor staging and TP53mu-

tations. TP53mutations were also linked to DNA replication, con-

trol of DNA topological states, and response to DNA damage.

Mutational Profiles Associated with Endogenous and
Environmental Mutagens and Proteogenomic Impact
The frequencies of mutated trinucleotide sequence motifs were

analyzed using non-negative matrix factorization (NMF) (Brunet

et al., 2004; Lee and Seung, 1999), and five mutational profiles

were identified (Figure 4A). To reveal the potential contribution
232 Cell 182, 226–244, July 9, 2020
of endogenous and exogenous mutagens in these profiles,

cosine similarity analysis against mutational signatures in human

cancer (Alexandrov et al., 2013a, 2013b;Mayakonda et al., 2018)

and environmental agents in vitro (Kucab et al., 2019) was per-

formed. For comparison, the same enrichment analysis was per-

formed in the TCGA cohort, where three mutational profiles were

identified (Figure S4).

The mutational signatures best matching to those in the TW

cohort were (1) deamination of 5-methylcytosine, (2) APOBEC

cytidine deaminase, (3) exposure to tobacco mutagens from

COSMIC, and (4) dibenz[a,j]acridine (DBAC) from Kucab et al.

Thesemutational profiles also mapped to the signatures of (1) al-

kylating agent dimethylhydrazine (DMH), (2) simulated solar radi-

ation (SSR), and (3) 1,8-dinitropyrene (1,8-DNP) with lower

scores (Figure 4A; Table S4A). The APOBEC and tobacco COS-

MIC signatures, as well as the signatures of dibenzanthracenes

(DBA), DMH, and SSR, were also obtained in the three muta-

tional profiles of the TCGA cohort (Figure S4). DBAC and DBA

are polycyclic aromatic hydrocarbons (PAHs) produced by the

incomplete burning of organic matter. More importantly, 1,8-

DNP (Nitro-PAH) found in particulate emissions from combustion

products (https://pubchem.ncbi.nlm.nih.gov), and N-Nitroso-

pyrrolidine (a nitrosamine, with lower similarity score), commonly

derived from tobacco, food, and drink (Gushgari and Halden,

2018), were uniquely enriched in the TW cohort (Figure 4A).

The results are in line with the previous epidemiological evidence

on the high regional exposure of these two categories of carcin-

ogens in Asia (Jakszyn and Gonzalez, 2006; Yan et al., 2019).

The APOBECmutation signature is attributed to the polynucle-

otide cytosine deaminases protein family (apolipoprotein B

mRNA-editing enzyme catalytic polypeptide-like). The APOBEC

signature was based on C>T and C>G mutations surrounding

TCW sequence associated with various cancer types (Alexan-

drov et al., 2013a; Cho et al., 2018; Roberts et al., 2013). To relate

APOBEC signature with clinical features, patients were dichoto-

mized into APOBEC-high and -low signature groups based on

enrichment scores (Roberts et al., 2013). The analysis revealed

that 44% of the patients had high APOBEC signature and

over-representation in females (57%) compared to males

(25%) (p = 0.0045, Table S4B). Based on the clinico-demo-

graphics of >50,000 lung cancer patients in the Taiwan Cancer

Registry from 2011–2015, a trend of early onset is seen in the

bimodal distribution of younger (peak at 58–61 years) and older

patients (peak at 70–76 years). Thus, 60 year was used as a

threshold for age classification in this study. It is noted that fe-

males with high APOBEC signature and WT EGFRwere younger

compared to females with low APOBEC signature and EGFR

activating mutations (mean age 52.9 and 66.3 years, respec-

tively, p = 0.038, Figures 4B and 4C). Specifically, APOBEC-

high signature was predominantly present in 74% younger

females (%60 years) and in all females without EGFR mutation,

whereas no similar trend was observed in male patients (Fig-

ure 4D; Table S4C). Notably, neither gender- nor age-specific

differences were observed in the TCGA cohort (Table S4D).

These results suggest the potential and unique contribution of

APOBEC mutagenesis to the early onset of non-smoking

LUAD in females. Survival analysis on the TCGA cohort revealed

that low APOBEC signature is associated with prolonged overall

https://pubchem.ncbi.nlm.nih.gov
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Figure 4. Identification of APOBEC and Carcinogen Mutational Signatures in Taiwan LUAD Cohort

(A) Trinucleotide motif frequency plots and enriched mutational signatures for five mutational profiles identified in TW cohort.

(B) Categorization of patients into five groups based on APOBEC signature, gender, and EGFR mutation status.

(C) Boxplots showing the age differences between the five groups (Kruskal-Wallis test, p = 0.0192, and pairwise comparisons of post-hoc analysis, p = 0.038 and

p = 0.049).

(D) Percentages of patients with high APOBEC signature in male and female groups.

(E) Survival analysis for patients in APOBEC-high and -low signature groups in TCGA and immunotherapy cohorts (log-rank test).

(F) The relative percentage of each mutational signature profile and the corresponding clinical features of individual patients. Bar-chart presenting the number of

predicted neoantigen for each patient.

(G and H) Boxplots showing the attribution of nitro-PAHs signature for (G) age and (H) EGFR mutation status of female patients (Wilcoxon rank-sum test,

p = 0.0176 and p = 0.0032, respectively).

(I) Chromosome view visualizing the localization of key oncogenes or tumor suppressors (outer ring) and neighboring regions enriched among the five carcinogen

signatures (inner rings).

See also Figure S4.
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survival in all patients (p = 0.014), all females (p = 0.005), and fe-

males without EGFR-activating mutations (p = 0.017, Figure 4E).

Notably, high APOBEC signature was associated with a margin-

ally significant prolonged progression-free survival for an

advanced NSCLC cohort treated with combination immuno-

therapy (PD-1 and CTLA-4; Figure 4E) (Hellmann et al., 2018).

Despite the promise of immunotherapy, patients with EGFR or

ALK mutation have poor response compared to WT patients

(Mhanna et al., 2019). The EGFR-WT female group in our cohort

has APOBEC-high signature, which may be in line with current

knowledge that EGFR-WT patients are better candidates for

immunotherapy. Our findings suggest that high APOBEC signa-

ture may help identify patients, such as young EGFR-WT female

patients that are anticipated to respond to immunotherapy.

We further aligned patient characteristics with mutational

signature groups, including prediction of tumor antigen load. Tu-

mor antigens play an important role in T-cell-mediated antitumor

immunity (Jiang et al., 2019). To explore the neoantigen land-

scape in our cohort originating from somatic mutations, we per-

formed neoantigen load analysis using POLYSOLVER and

NetMHC (v4.0; Andreatta and Nielsen, 2016). The numbers of

neoantigens were variable across patients (Figure 4F).

Comparing the APOBEC and carcinogen-like signatures, tumors

enriched for alkylating agents-like signature showed more neo-

antigens (Kruskal-Wallis rank sum test, p < 0.0001). These may

be referred to as hot tumors, since they have more neoantigens

likely to be recognized by T cells and are more amenable to im-

munotherapies. The percentages of mutational profiles IV, III,

and I matching the PAHs, Nitro-PAHs, and Alkylating agents,

respectively, were higher in tumors from patients with smoking

history (Figure 4F). Conversely, tumors predominantly withmuta-

tional profiles II (radiation-like) and V (nitrosamine-like) positively

correlated with APOBEC signature. A ‘‘mixed group’’ (25.8% of

all patients) with undefined signature was composed of never-

smokers without APOBEC signature, whereas 95% of the pa-

tients in this group had EGFR activating mutation (Table S4E).

Notably, in female patients, the distribution of mutation profile

III (Nitro-PAHs signature) was overrepresented in the older group

(p = 0.0176, Figure 4G), as well as in females with EGFR acti-

vating mutations (p = 0.0032, Figure 4H).

To identify chromosomal regions that may be more suscepti-

ble to mutagenesis by the five environmental factors, chromo-

some-wise enrichment analysis (Mayakonda et al., 2018) was

performed by overlaying the somatic mutations on the carcin-

ogen signatures. Results showed that chromosomal regions

enriched for the carcinogen signatures overlapped with the

genomic locations of oncogenes or tumor suppressor genes

such as TP53, ERBB2, MYC, and APC (Figure 4I). For example,

both Nitro-PAHs and Nitrosamine-like signatures were enriched

in the chromosome 7p, which is the broader genomic location of

EGFR gene. The regions of TP53 (Chr.17p) and RB1 (Chr.13q)

were enriched in nitro-PAHs signature, whereas chromosome

12p, where KRAS is located, was enriched with PAHs and alky-

lating agent signatures (Figure 4I). Whether these patterns repre-

sent susceptibility to higher frequency of driver mutations in East

Asia remains to be investigated.

Next, we interrogated the source and consequences of the

APOBECmutational signature at the proteome and phosphopro-
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teome levels. At protein level, six members of the APOBEC3

family, reported to associate with APOBEC mutagenesis (Roper

et al., 2019), were identified in at least 30%of the patients. These

were frequently upregulated in the tumors (Figure 5A) and

showed greater upregulation in female compared to male pa-

tients, although this difference was not recapitulated at the

RNA level (Figure 5B). APOBEC3F and APOBEC3G showed

the most significant gender-specific differences (p < 0.05).

Pathway analysis in female patients revealed a number of pro-

teins involved in DNA repair and replication more abundant in

the tumors with high APOBEC signature (Figures 5C and S5A;

Table S5A). In addition, relative log2T/N values of these proteins

showed positive correlation with the APOBEC3 members, espe-

cially with 3B, 3D, 3F, and 3G (Figure 5C). Higher expression of

base excision repair (BER) proteins in APOBEC-high females,

including MBD4, APEX1, FEN1, and POLD2, implicates a role

of BER in counteracting APOBEC-induced mutagenesis. Phos-

phosites on proteins in DNA damage and repair processes,

such as ATR-T1989 (Liu et al., 2011) and UIMC1-S101 (Kim

et al., 2007), were also differentially regulated between the

APOBEC-high and -low groups (ANOVA, p < 0.05, Figure S5B).

Kinase enrichment analysis (Weidner et al., 2014) identified

AurB, CK2, CDK1, and CDK2 as the top-ranking activated ki-

nases in the APOBEC-high female group (Figure 5D; Table

S5B). The activation of CDK1, CDK2, and AurB offers actionable

intervention candidates for female patients with high APOBEC

signature (Lin et al., 2018; Maslyk et al., 2017; Mross et al., 2016).

To assess the functional impact of carcinogen signatures, we

performed 1D-annotation pathway enrichment analysis (Cox

and Mann, 2012) using the log2T/N values of mRNA, proteomic,

and phosphoproteomic data of individual patients (Benj. Hoch.

FDR < 0.05). The mean values of omics data within each en-

riched pathway from individual patients was compared among

different carcinogen groups (Figure 5E; Table S5C). Tumors

harboring PAH or nitro-PAH signatures showed significant

enrichment for pathways associated with metabolism and

detoxification of chemical carcinogens (Kruskal-Wallis rank

test, p < 0.05, Figure 5E), including the AHR and Cytochrome

P450 pathways, known to contribute to carcinogenesis by PAH

(Moorthy et al., 2015). The nitro-PAH and nitrosamines-like

groups were dominated by DNA repair, ERBB/MAPK pathway,

and TLR/RIG-1 T cell signaling, which potentially link to the tu-

mor initiation, cell proliferation, EMT malignant progression,

and immune modulation in early carcinogenesis (Figures 5E

and 5F; Table S5D) (Moorthy et al., 2015).

Our findings implicate a potential role of the APOBEC signa-

ture in the manifestation of lung cancer at an early age in

never-smoker females, possibly influencing disease outcome.

Additionally, signatures akin to those caused by exogenous car-

cinogens in vitro and relevant carcinogenesis and oncogenesis

pathways were observed predominantly in older females. Taken

together, these findings uncover distinct age-related mutagen-

esis mechanisms in our female patients.

Proteomic Subtypes Resolve the Heterogeneity in Early
Stage Lung Adenocarcinoma
Unsupervised consensus clustering (Wilkerson and Hayes,

2010) was used to classify the adenocarcinoma patients of
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Figure 5. Altered Signaling Pathway Associated with APOBEC and Carcinogen Signatures

(A) Percentage of patients with up- or downregulated (red and blue respectively) protein abundance of APOBEC enzymes.

(B) Expression comparison of APOBEC family at mRNA and protein levels in female and male patients (Welch’s t-test and pairwise comparison, p < 0.05).

(C) Heatmap showing relative abundance and Spearman’s correlation between APOBEC family and DNA repair and replication molecules at mRNA and protein

levels in females (Welch’s t-test and pairwise comparison, p < 0.05).

(D) Kinase enrichment using the regulated phosphosites between APOBEC-high and -low groups and substrates of kinases with predicted activation

(ANOVA, p < 0.05).

(E) Pathway enrichment analysis using the log2T/N values of mRNA, proteomic and phosphoproteomics data (Benj. Hoch. FDR < 0.05) of individual patients. The

mean log2T/N values of each pathway were color coded (Kruskal-Wallis rank test, p < 0.05).

(F) Overview of significantly enriched pathways associated with APOBEC and carcinogen signatures. The log2T/N ratio was indicated either between APOBEC-

high and -low female cohort or among five mutational signatures.

See also Figure S5.

ll
OPEN ACCESS

Cell 182, 226–244, July 9, 2020 235

Resource



A E

F

B

C

H

D G

Figure 6. Proteomic Subtypes of the East Asian LUAD Cohort

(A) Heatmap of differentially regulated proteins among the three proteomic subtypes (ANOVA, FDR < 0.05) annotated with clinical features.

(B) Boxplot of the tumor mutational burden per proteomic subtype (Wilcoxon rank-sum test, p < 0.05).

(C) Refined staging classification informed by proteomics. Clinical annotations are color coded as in (A).

(D) Boxplot of the mutational burden per refined staging classification (Wilcoxon rank-sum test, p < 0.05).

(E and F) Survival plots in IA (E) and IB (F) patient groups with wild-type EGFR and with EGFR-L858R or Del19mutations in an independent retrospective cohort of

209 patients (log-rank test).

(G) Boxplots for a panel of proteins with differential regulation between the refined classes (ANOVA, FDR < 0.05). The central line represents median, bounds of

box represent the first and third quartiles, and the upper and lower whiskers extend to the highest or the smallest value within 1.5 3 IQR. Their presence in serum

is annotated from Plasma Proteome Database (PPD), Human Proteome Atlas (HPA), Ingenuity Pathway Analysis (IPA), and drug targets are annotated from FDA-

approved drug targets, Therapeutic Target Database (TTD), The Drug-Gene Interaction database (DGIdb), and ChEMBL.

(H) Summary of the characteristics of the ‘‘late-like’’ class in stages IA and IB.

See also Figure S6.
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our cohort into molecular subtypes. We identified three proteo-

mic, three RNA, and four phosphoproteomic subtypes after

excluding small or unstable clusters (Figure S6A). In addition

to the inherent differences in the multi-omics profiles contrib-

uting to the subtyping results, it is noted that variations in can-

cer cellularity in tumors for the multi-omics analysis cannot be

excluded. Alignment of the proteomic subtypes with clinical

features revealed a strong separation by tumor staging, as

well as by driver mutations (Figure 6A; Tables S6A and S6B).

Subtype 1 comprised the largest group, over-representing

late stage tumors (RII), tumors with visceral pleural invasion,
236 Cell 182, 226–244, July 9, 2020
TP53 mutations, and the highest mutational burden (Figure 6B).

Subtype 2 is a smaller group consisting of early stage patients

(mostly IA and IB) without EGFR-L858R mutations. Subtype 3

showed an over-representation of early stage (stage IA) largely

lacking TP53 mutations. We identified 1,514 differentially regu-

lated phosphosites between the subtypes (regressed log2T/N

values, ANOVA, FDR < 0.1) showing enrichment for pathways

in cancer, PI3K-AKT signaling pathway, and cell cycle (Kyoto

Encyclopedia of Genes and Genomes [KEGG], Fisher’s exact

test, Benj. Hoch. FDR < 0.1, Figure S6B). Interestingly, phos-

phosites from key pathways showed an overall higher



Figure 7. Weighted Gene Co-expression Network Analysis (WGCNA) and Association of Matrix Metalloproteinase Expression with Clinical

Outcome

(A) Protein correlation network of 3,014 nodes and 44,665 edges. Nodes are color coded according to module membership. Representative enriched biological

terms are shown for distinct modules.

(B) Density plots of the pairwise protein-protein and RNA-RNA correlations for the interactions shown in the network of (A).

(C) Overlay of the RNA-to-protein correlation on the network nodes.

(D) Overlay of the median-centered log2T/N values per proteomic subtype on the network.

(E) Heatmap of differentially regulated modules between the refined classes.

(legend continued on next page)
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phosphorylation in subtype 3 (Figure S6B), which would impli-

cate a signaling signature that is activated early during tumor

development. Specific examples are shown in Figure S6C,

and druggable protein hits are denoted. Additionally, tyrosine

phosphorylation on proteins involved in immune signaling

were also in higher levels in subtype 3, suggesting enhanced

regulation of immune signaling in the early stages (Figure S6D).

Grouping by stage was less evident in the RNA clustering,

although features such as poor pathological differentiation

and angiolymphatic invasion were correlated more significantly

(Figure S6E). At the phosphoproteome, we found a good sep-

aration by the APOBEC signature (phosphorylation subtypes

1 and 2, Figure S6E), possibly reflecting widespread alterations

in signaling. Overall, the RNA and phosphorylation subtypes

showed only partial overlap with the proteomic subtypes (Fig-

ure S6F), stressing the complementarity of multi-omic tumor

profiling in patient classification efforts.

Notably, the proteome-based classification revealed that a

number of early stage tumors were clustered together with

late stage tumors in subtype 1 (Figure 6A). We propose that

proteomic profiles could be leveraged to inform pathological

staging and devised a refined classification representing the

stage IA and IB patients found in proteomic subtype 1 as

distinct classes; stage IA ‘‘late-like’’ and stage IB ‘‘late-like,’’

respectively (Figure 6C). Compared to stage IA tumors, stage

IA late-like tumors were enriched for patients with smoking his-

tory and slightly higher mutational burden (Figure 6D). Almost

all stage IB patients with visceral pleural invasion (P1-3) were

in the stage IB late-like class. Most importantly, at stage IB, tu-

mors with EGFR-L858R mutation were prominently clustered

into the proteomically annotated late-like group compared to

stage IB tumors without this driver mutation. Additionally, the

stage IB late-like class was enriched for TP53 mutations

compared to the stage IB tumors found in proteomic subtypes

2 and 3 (Figure 6C). Specifically, all stage IB patients with dual

EGFR-L858R/TP53 mutant tumors are found in the late-like

class (Figure 6C).

To evaluate whether the refined classification can have clinical

implications, we examined whether patients with EGFR-L858R

have different outcome compared to the EGFR-Del19 patients

in an independent retrospective cohort encompassing treat-

ment-naive, completely resected pathologic stage IA (n = 143)

and IB (n = 65) LUAD patients, comprising predominantly

never-smoker (74%) and female (61%) patients, with survival

data (Table S6C and S6D). Patients diagnosed at stage IA

show no difference in overall survival between the L858R and

Del19 EGFR mutation groups (Figure 6E). However, at stage

IB, patients with EGFR-L858R had a significantly inferior overall

survival compared to the Del19 patients (p = 0.028, Figure 6F).

These results confirm that the proteomics-based five-stage
(F) Protein nodes with known drug inhibitor (source: DGIdb) are highlighted on the

are magnified.

(G) Heatmap of the top differentially regulated matrisome proteins with protein-ty

(H) Boxplots illustrating the abundances of MMP2, MMP7, MMP11, MMP12, an

bounds of box represent the first and third quartiles, and the upper and lower wh

(I) Kaplan-Meier plots for MMP11, MMP7, and MMP2 from immunohistochemist

See also Figure S7.
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molecular classification distinguishes the diverse clinical trajec-

tories of patients with EGFR-L858R, likely diverging at stage IB.

This is consistent with their reported higher tendency of cancer

metastasis and shorter overall survival compared to Del19muta-

tions (Tsai et al., 2018; Wu et al., 2013).

Lastly, using differential expression analysis, we defined a

panel of biomarker candidates to discriminate early stage from

early late-like or late stage tumors (log2T/N values, ANOVA,

FDR < 0.05, Figure 6G). To explore their potential as serum bio-

markers or therapeutic targets, we provide annotations from

various resources including Plasma Proteome Database (PPD),

Human Proteome Atlas (HPA), Ingenuity Pathway Analysis

(IPA), FDA-approved drug targets, Therapeutic Target Database

(TTD), Drug-Gene Interaction database (DGIdb), and ChEMBL. A

summary of the characteristics of the late-like class is shown in

Figure 6H.We propose that proteomics-based classification can

categorize early stage NSCLC patients into groups associated

with clinical outcome, beyond the level of clinical staging and

genomic driver mutations.

Protein Network Characterization of Proteomic
Subtypes Identify Candidate Biomarkers and Druggable
Targets
To explore the biological characteristics of our cohort in an unbi-

ased proteome-wide manner (Lapek et al., 2017; Roumeliotis

et al., 2017; Ryan et al., 2017), weighted correlation network

analysis (WGCNA) (Langfelder and Horvath, 2008) was per-

formed using the centered log2T/N values of 9,072 proteins

(Table S7A). We distinguished 279 modules of which 195

showed significant enrichment for Gene Ontology, KEGG, and

CORUM (the comprehensive resource of mammalian protein

complexes) annotations (Fisher’s exact test, Benj. Hoch.

FDR < 0.05, Table S7B). We applied filters to trim the input and

constructed a network of 3,014 nodes and 44,665 edges (Fig-

ure 7A; Table S7A). The mean Pearson correlation of all edges

was 0.63, and 28% were known STRING (Search Tool for the

Retrieval of Interacting Genes/Proteins) interactions (Szklarczyk

et al., 2019) with score >0.4. Notably, the respective correlations

at the RNA level were lowwith a broad distribution (median 0.19),

even when the comparison was restricted to known associations

(median 0.25, Figure 7B), indicating that this network is a distinct

attribute of the proteome. The RNA-to-protein correlation is

shown in Figure 7C and depicts nodes with tighter transcriptional

regulation. Superimposing the relative protein abundances per

proteomic subtype on the network highlights functional differ-

ences (Figure 7D).

Using the module eigengenes, 29 smaller subnetworks were

identified with differential regulation between the three proteo-

mic subtypes (Figure S7A). A gradual increase in abundance of

proteasome, cell cycle, and endoplasmic reticulum networks
network with orange. Druggable protein subnetworks with median log2T/N >0.5

pe annotations.

d MMP14 in the different refined classes. The central line represents median,

iskers extend to the highest or the smallest value within 1.5 3 IQR.

ry staining data.
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was observed from subtypes 3 and 2 to subtype 1, comprising

advanced stage tumors. Subtype 2 had a distinct profile with

higher abundance of peroxisome, cell junction, adhesion, signal

transduction, aminoacyl-tRNA biosynthesis, TRAPP complex,

and chromatin modification networks. Signatures with higher

levels in subtype 3 included cytokine-mediated signaling

network, cilium, cell adhesion and extracellular matrix organiza-

tion, cell junction, and endocytosis (networks 17–21 in Fig-

ure S7A). A significant number of protein modules were also

differentially regulated between the refined classes (Figure 7E).

We interrogated the networks to identify subnetworks that distin-

guish stage IB tumors from the stage IB late-like tumors (Fig-

ure S7A), highlighting molecules with roles in communication

and microenvironment modulation, as well as a variety of other

functions.

We found that two modules include immune-cell-specific pro-

teins such as the transcription factors IKZF1, IKZF3, NFATC1,

and NFATC2 (networks 25 and 26 in Figure S7A) and have higher

expression in subtype 3, representing early stage tumors.

Indeed, both modules contained proteins with predominantly

strong expression in B cells, T cells, and natural killer (NK) cells,

according to the Human Proteome Map database (Figure S7B)

(Kim et al., 2014). To investigate this observation, CIBERSORT

analysis on RNA-seq data for all tissues (Newman et al., 2015)

was performed. Tumors separated from NATs with several im-

mune cell types co-existing in about half of the tumors and

several tumors presenting low levels of immune infiltration (Fig-

ure S7C). The protein network and RNA-based approaches

were significantly correlated (Figure S7D), distinguishing pa-

tients with high or low immune-cell-related protein abundances

(Figure S7E). Interestingly, patients with primary tumor located

at the right side of lung present higher immune expression

compared to those at the left side (p = 0.0379). Antigen process-

ing and presentation (MHC class II) was also higher in subtype 3

(network 27). It remains to be investigated whether the immune

infiltration correlates with patient outcome or response to immu-

notherapy. Given the important role of tumor microenvironment

(TME) in tumor development and progression, we further used

the ESTIMATE algorithm (Yoshihara et al., 2013) to deconvolute

the contribution of stromal cells in the tumors using the RNA-seq

data (Table S7C). To identify potential protein biomarkers for

immunohistochemical validation of the TME, patients were clas-

sified into two groups with high and low stromal scores (<first

and >third quartile), and differential protein expression was

computed (Figure S7G). Among the top hits, CILP was identified

with 2.6-fold higher abundance in the high stroma group (-

ANOVA, p = 0.00396, Figure S7H). The CILP protein was identi-

fiedwith an average of 31 peptides andwasmapped to amodule

associated with extracellular matrix organization, representing a

promising stromal cell target candidate for further development

using immunohistochemistry or mass-spectrometry-based

assays.

To identify potential drug targets, all druggable proteins on the

network were mapped based on known inhibitors cataloged in

the Drug Gene Interaction Database (Figure 7F; Table S7D)

(Cotto et al., 2018). A small subnetwork of 65 upregulated pro-

teins (median log2T/N > 0.5) was identified that includes several

matrix metalloproteinases (MMP2, MMP11, MMP12, and
MMP14, Figure 7F; Table S7E), suggesting significant regulation

of the matrisome. Focusing on the most regulated matrisome

proteins (Naba et al., 2012), basement membranes and ECM-

affiliated proteins were found mostly downregulated, whereas

ECM regulators, including MMPs and Cathepsins, were upregu-

lated (Figure 7G). These findings likely reflect the modulation of

TME, with MMPs functioning as key players (Naba et al.,

2012). MMP7, MMP11, andMMP12 showed themost significant

upregulation in the late and late-like classes in subtype 1 (Fig-

ure 7H). Overexpression of MMPs to regulate lung malignancies

and their use as therapeutic targets has been reported (Merchant

et al., 2017). To evaluate their potential also as biomarker candi-

dates, immunohistochemistry staining for selected MMPs was

performed in the tumors of another independent retrospective

cohort of 117 early stage patients with survival data. The results

showed that strong expression of MMP11 and MMP7 signifi-

cantly associated with poor overall survival (Figures 7I and

S7F; Table S7F), suggesting their potential prognostic value.

MMP11 has been previously found overexpressed in NSCLC

(Kettunen et al., 2004) and recently reported as a key lung can-

cer-promoting gene (Yang et al., 2019); however, its protein-level

regulation during progression has never been explored. Taken

together, we propose MMP11 as a candidate with potential as

a biomarker for early detection and treatment of NSCLC for

further validation in a larger cohort.

DISCUSSION

Epidemiological studies showed that lung cancer in East Asia is a

distinct disease characterized by high prevalence of never-

smokers, especially among females, with significantly more

frequent EGFR activating mutations compared to Caucasian co-

horts. Although advances have been made in targeted therapy

and immunotherapy for patients in the late stage, early detection

and prevention may substantially improve the clinical outcome

with economic benefits for patients. However, there are many

challenging unmet clinical needs in early stage NSCLC, including

relapse after surgical resection for �20% stage I patients world-

wide and poor overall survival (Sawabata et al., 2010). Moreover,

patients with different EGFRmutations (L858R and Del19) expe-

rience different treatment outcomes, different tendencies for

malignant pleural effusion, and cancer metastasis. Thus, there

is an urgent need to uncover the early processes and progres-

sion of oncogenesis, dysregulated molecular pathways, and

contributing factors underpinning the distinct features of NSCLC

patients in East Asia, which could suggest prognostic bio-

markers and novel drug targets. Here, we present the first pro-

teogenomic landscape of East Asian LUAD by deep profiling of

tumor and adjacent normal tissues. Our analysis provides a

comprehensive insight into the multilayer molecular architecture

of early stage LUAD in never-smokers, encompassing somatic

mutations, endogenous and exogenous environmental muta-

tional signatures, proteomic subtypes, phosphorylation alter-

ations, and protein co-variation networks capturing functional

associations.

The genomic landscape revealed significant differences be-

tween our cohort and previous studies comprising mostly

smokers, especially in the mutational profiles of known cancer
Cell 182, 226–244, July 9, 2020 239
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genes. Even among non-smokers, significantly different muta-

tion frequencies of top-ranking genes indicate different driver

alterations between TW and TCGA LUAD cohorts. A notable

example is theRBM10 gene, a LUAD tumor suppressor (Hernan-

dez et al., 2016; Zhao et al., 2017) reported more frequently

mutated in males (Cancer Genome Atlas Research, 2014), yet

it was found more frequently mutated in the older females of

our cohort. RBM10 was observed in a co-regulation network en-

riched for RNA splicing functions, suggesting that significant loss

of RBM10 protein due to mutations could impact its interactions,

leading to impaired RNA splicing. The proteogenomic relation-

ships further revealed how genomic features orchestrate the

proteome and phosphoproteome in LUAD. The positive correla-

tions of TP53 mutations with cell cycle genes and phosphopro-

teins involved in DNA topology regulation and DNA damage

response are consistent with known synthetic lethal interactions

(Yeo et al., 2016). Co-regulated phosphorylation of MAPK

pathway proteins was observed and distinguished patients

with high activation associated with EGFR and KRASmutations,

while low activation coincided with TP53mutations, especially in

later stages. These findings may provide insight on the role of

TP53 in regulating key pathways in NSCLC.

In this non-smoking cohort, 5 mutational profiles resembling

those of endogenous mutagens and environmental agents

were identified with distinct age- and gender-related attributes,

which was not observed in the TCGA cohort. The high propor-

tion of C>T transitions was linked to the APOBEC mutational

signature, which is significantly enriched in females at younger

age or with EGFR-WT. Recent work reported that APOBEC

mutational signatures are the major factors driving early-onset

squamous cell carcinomas (Cho et al., 2018). Our results sug-

gest that APOBEC mutagenesis may be a key factor contrib-

uting to the early onset of LUAD in females. Additionally, our

data revealed increased protein and phosphorylation abun-

dance of APOBEC enzymes and DNA repair pathways in fe-

males with high-APOBEC signature, highlighting opportunities

for targeted therapeutics. Furthermore, we provide preliminary

indication for the potential contribution of environmental agents

in the age- and gender-dependent mutagenesis mechanisms,

in line with the epidemiological studies on their cancer risk

and regional exposure (Loh et al., 2011; Yan et al., 2019).

Compared to the TCGA cohort, Nitrosamine and Nitro-PAHs

signatures were prominent only in the TW LUAD. In addition

to positive correlation with APOBEC signature, the Nitrosamine

signature was significantly enriched in stage IB, EGFR muta-

tions, female, older age, and non-smokers (Table S2E). The

Nitro-PAHs signature was higher in male, older age, and ex-

and non-smokers, and inversely correlated with APOBEC

signature. The mixed group negatively correlated with APOBEC

signature, while positively associated with EGFR mutations, fe-

male, older age, and non-smoker. These results suggest that

different mutational processes contribute to the LUAD in

never-smoker East Asian patients in age-, gender- and

EGFR-mutation-dependent manner. Further exploration in a

larger patient cohort and body fluids may offer complementary

approaches to early detection and prevention. Nevertheless,

mutational signatures are dependent on carcinogens of

regional relevance and can be tissue and cell type dependent,
240 Cell 182, 226–244, July 9, 2020
which may affect the similarity of associated carcinogen signa-

ture. Further studies are warranted to investigate the contribu-

tion of environmental carcinogens in promoting tumorigenesis

in different regions and populations.

Our findings provide insight for development of new thera-

peutic strategies for NSCLC in East Asia. The association be-

tween higher APOBEC mutational signature and prolonged

progression-free survival on the immunotherapy cohort (Hell-

mann et al., 2018) suggests the potential utility of APOBEC

signature to identify patients who may respond to immuno-

therapy, particularly young female patients with EGFR-WT

tumors. The main goal of genomic diagnostic profiling is to

elucidate driver mutations that predict therapeutic efficacy.

Beyond genetic testing, proteome subtyping reveals the molec-

ular heterogeneity of same-stage tumors, differentiating

aggressive clinical features among patients in clinically defined

early stage. Interestingly, we found that although proteomics

subtypes largely recapitulated pathological staging, key

genomic features could alter the proteomic taxonomy of spe-

cific tumors. The striking finding of significant enrichment of

EGFR-L858R in stage IB late-like subtype prompted further

validation in another retrospectively collected cohort, which

confirmed that the two main EGFR activating mutations,

L858R and Del19, were associated with the different outcome

of EGFR-L858R/Del19 mutations for stage IB patients. Our pro-

teomics-based classification resolved the heterogeneity in

EGFR mutations and enhanced patient stratification. For Stage

IB NSCLC, the effect of adjuvant chemotherapy is still equiv-

ocal and only considered for patients with high-risk factors,

including poorly differentiated tumors, vascular invasion,

tumor >4 cm, and visceral pleural involvement. Based on our

findings, EGFR mutation testing at stage IB might be helpful

for patient stratification to distinguish the high-risk stage IB pa-

tients for closer follow-up and possibly adjuvant therapy.

Lastly, de novo construction of protein networks not only pro-

vided a holistic view of the biological features determining each

molecular subtype, but also rationalized the selection of poten-

tial drug targets and biomarkers. The integrated network re-

vealed the presence of several immune cell types co-existing

in tumor samples with heterogeneous immune cell abundances

and a significant role of matrix metalloproteinases in lung cancer

progression. Using an independent retrospective cohort, we

showed that this druggable protein class is associated with dis-

ease outcome. Overall, this study revealed the molecular archi-

tecture and hallmarks of tumor progression in early stage

LUAD and may enable a path of precision medicine to manage

non-smoking lung cancer in East Asia.
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MMP-2 antibody Santa Cruz Biotechnology, Inc. Cat# sc-53630; RRID: AB_784594

MMP-7 antibody Santa Cruz Biotechnology, Inc. Cat# sc-80205; RRID: AB_1126314

MMP-11 antibody Santa Cruz Biotechnology, Inc. Cat# sc-58381; RRID: AB_2144725

Biological Samples

Tumor and adjacent normal tissues National Taiwan University Hospital This study

Blood samples National Taiwan University Hospital and

Taichung Veterans General Hospital

This study

Chemicals, Peptides, and Recombinant Proteins

Ni-NTA silica resin QIAGEN Cat No. 31014

Novocastra Epitope Retrieval Solution pH 6 Leica Cat No. RE7113

Critical Commercial Assays

AllPrep DNA/RNA/miRNA Universal Kit QIAGEN Cat No. 80224

QIAamp DNA Blood Mini Kit QIAGEN Cat No. 51106

Qubit dsDNA BR Assay Kit Thermo Fisher Cat No. Q32853

Qubit dsDNA HS Assay Kit Thermo Fisher Cat No. Q32854

DNeasy PowerClean Cleanup Kit QIAGEN Cat No. 12877-50

TruSeq DNA PCR-Free Library Prep Kit Illumina Cat No. 20015963

TruSeq Stranded Total RNA Library Prep

Human/Mouse/Rat

Illumina Cat No. 20020597

SureSelect XT2 Library Prep Kit Agilent Cat No. 5500-0131

SureSelect XT2 Pre-Capture Box1 Agilent Cat No. 5190-4076

SureSelect XT2 Human All Exon

V6+COSMIC

Agilent Cat No. 5190-9311

TMT10plex Isobaric Label Reagent Set,

3 3 0.8 mg

Thermo Fisher Cat No. 90111

UltraVision Quanto Detection System

HRP DAB

Thermo Fisher Cat No. TL-125-QHD

Pierce� BCA Protein Assay Kit Thermo Fisher Catalog: 23225

Deposited Data

30 validated cancer signatures COSMIC https://cancer.sanger.ac.uk/cosmic/

signatures_v2

54 carcinogen signatures Kucab et al., 2019 https://pubchem.ncbi.nlm.nih.gov

TCGA lung adenocarcinoma Campbell et al., 2016; Cancer Genome

Atlas Research, 2014; Imielinski et al., 2012

https://genome.ucsc.edu/

COSMIC onco-driver and

suppressor gene data

COSMIC https://cancer.sanger.ac.uk/census

Mutational Signatures (v2 - March 2015) COSMIC https://cancer.sanger.ac.uk/cosmic/

signatures_v2

TCGA lung adenocarcinoma with

APOBEC signature

TCGA https://xenabrowser.net/

Software and Algorithms

FastQC (v0.11.7) https://www.bioinformatics.babraham.ac.

uk/projects/fastqc/

Trimmomatic (v0.36) Bolger et al., 2014 http://www.usadellab.org/cms/?

page=trimmomatic
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BWA (v0.7.17) Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

GATK 4.0 Van der Auwera et al., 2013 https://software.broadinstitute.org/gatk/

STAR2 (STAR-2.6.0c) Dobin et al., 2013 https://portal.rc.fas.harvard.edu/apps/

modules/centos7/STAR/2.6.0c-fasrc01

htseq-count algorithm Anders et al., 2015 https://htseq.readthedocs.io/en/

release_0.11.1/

edgeR Robinson et al., 2010 https://bioconductor.org/packages/

release/bioc/html/edgeR.html

trimmed mean of M-values

(TMM) algorithm

Robinson and Oshlack, 2010 http://bioinformatics.sph.harvard.edu/

bcbioRNASeq////////reference/tmm.html

Non-negative matrix (NMF) algorithm Brunet et al., 2004 https://cran.r-project.org/web/packages/

NMF/index.html

cBioPortal Cerami et al., 2012 https://www.cbioportal.org/

APOBEC enrichment Roberts et al., 2013 http://www.bioconductor.org/packages/

devel/bioc/vignettes/maftools/inst/doc/

maftools.html#1_introduction

Proteome Discoverer 2.1 Thermo Fisher https://www.thermofisher.com/order/

catalog/product/OPTON-30945?

SID=srch-srp-OPTON-30945

Mascot (version 2.3.2) Matrix Science http://www.matrixscience.com/

SEQUEST Eng et al., 1994 http://proteomicswiki.com/wiki/index.php/

SEQUEST

MS Amanda Dorfer et al., 2014 http://ms.imp.ac.at/?goto=msamanda

ptmRS Taus et al., 2011 https://omictools.com/ptmrs-tool

psych R package RDocumentation https://www.rdocumentation.org/

packages/psych/versions/1.8.12

customProDB (R package) Wang and Zhang, 2013 http://bioconductor.org/packages/

release/bioc/html/customProDB.html

SPSS 15.0 IBM https://www.ibm.com/au-en/products/

spss-statistics

GRC37/hg19 NCBI https://www.ncbi.nlm.nih.gov/assembly/

GCF_000001405.13/

SwissProt human protein database

(version 2016.05, 20213 entries)

UniProt https://www.uniprot.org/statistics/

Swiss-Prot

PHOXTRACK Weidner et. al. 2014 http://phoxtrack.molgen.mpg.de/

LIMIX (for QTL) Chen et al., 2016 https://limix.readthedocs.io/en/

stable/qtl.html

ConsensusClusterPlus (R package) Wilkerson and Hayes, 2010 https://bioconductor.org/packages/

release/bioc/html/

ConsensusClusterPlus.html

Perseus 1.6 Tyanova et. al. 2016 http://www.perseus-framework.org

WGCNA library (R package) Langfelder and Horvath, 2008 https://cran.r-project.org/web/packages/

WGCNA/index.html

Cytoscape Shannon et. al. 2003 http://www.cytoscape.org

Morpheus Broad Institute https://software.broadinstitute.org/

morpheus/

ESTIMATE algorithm Yoshihara et al., 2013 https://sourceforge.net/projects/

estimateproject/

POLYSOLVER Shukla et al., 2015 https://software.broadinstitute.org/

cancer/cga/polysolver

NetMHC (v4.0) Andreatta and Nielsen, 2016 http://www.cbs.dtu.dk/services/NetMHC/
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to andwill be fulfilled by the LeadContact, Yu-Ju Chen (yujuchen@

gate.sinica.edu.tw).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Genomics and proteomics data reference in this study will be available in publicly accessible NIH-designated data repositories and

portals including the database of Genotypes and Phenotypes (dbGaP) (accession number: phs001954.v1.p1) and the NCI Prote-

omics Data Commons (PDC, accession number: PDC000219 and PDC000220), along with demographic and clinical data. Raw

data files and the processed data for proteomic and phosphoproteomic analyses reported in this paper are uploaded to the NCI Pro-

teomics Data Commons and can be accessed at: https://pdc.cancer.gov/pdc/study/PDC000219 and https://pdc.cancer.gov/pdc/

study/PDC000220

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical Specimens
There are three clinical cohorts collected for proteogenomics analysis, MMPs clinical validation and EGFR-subtype survival analysis.

The Research Ethics Committees of Academia Sinica, National Taiwan University Hospital (NTUH) and Taichung Veterans General

Hospital (TCVGH) approved the study and all patients provided written informed consent. For proteogenomics analysis, lung cancer

and adjacent normal tissues and blood samples were prospectively collected from 108 patients from NTUH between July 2016 and

July 2018. Clinical information of individual patients including age, gender, smoking status, histology, stage, EGFR status and primary

tumor location is listed in Table S1A. The inclusion criteria recruited newly diagnosed, treatment-naive patients undergoing primary

surgery for lung adenocarcinoma. For validation of MMP expression by IHC, 134 FFPE specimen tissues were retrospectively

collected from NTHU (Stage IA, n = 24; Stage IB, n = 75, Stage II, n = 18, Stage III-IV, n = 17, Table S7E). For comparison of clinical

outcome between the EGFR-L858R and EGFR-Del19 patients at late-like stage, 208 patients were recruited from TCVGH (Stage IA,

n = 143; Stage IB, without adjuvant chemotherapy, n = 65). The clinical information regarding patient history, status of surgery along

with relevant diagnostic information and survival records were also obtained from TCVGH.

For proteogenomics analysis, after gross examination, non-necrotic tumor and adjacent normal tissues were excised from re-

sected tumor specimens. Only tissues with weight greater than 40 mg were divided into two cyrotubes and stored in liquid nitrogen

less than 30 min after resection. Paired adjacent normal tissues were taken from the most distant site relative to the tumor bolder.

Finally, the H&E staining and pathology reports were utilized to identify and qualify lung adenocarcinoma cases with at least 60%

tumor cell nuclei and less than 20% necrosis for this study. The patients treated with neoadjuvant chemotherapy or molecular target-

ing therapy were excluded for this study. Clinicopathological parameters, including age, gender, smoking status, tumor site, tumor

size, tumor stage, EGFR mutation status, and clinical treatment were collected. Pathological staging was based on the American

Joint Committee on Cancer 8th edition stage (Amin et al., 2017). The EGFR mutations were detected by MALDI-TOF MS performed

by ISO15189-certified TR6 Pharmacogenomics Lab (PG Lab), National Core Facility for Biopharmaceuticals (NCFB) of NTU as pre-

viously described (Su et al., 2012). The lung cancer TNM (tumor, node, andmetastasis) staging was done according to the 7th edition

of the American Joint Committee on Cancer (AJCC) staging system.

To compare the clinical outcome of EGFR mutant patients, we compare the disease-free survival (DFS) and overall survival (OS)

among different EGFRmutation subtypes and wild type in complete surgical resected stage IA and IB lung adenocarcinoma patients

diagnosed and treated at TCVGH in Taiwan. To be eligible for the validation study, patients were required to have pathological confir-

mation of lung adenocarcinoma and pathological stage IA and IB disease after surgical resection and had a clear survival follow-up.

Patients were excluded if they had advanced disease, active second malignancy, or any condition that may influence the outcome

evaluation, such as irregular follow-up, neoadjuvant treatment with chemotherapy or EGFR-TKI. Clinical data included patients’ age,

gender, smoking status, tumor stage, the Eastern Cooperative Oncology Group performance status (ECOG PS), EGFRmutation sta-

tus, treatment history, and outcome variables.

METHOD DETAILS

Genomic and Transcriptomic Analysis
Whole Exome Sequencing and mRNA Sequencing

Genomic DNA and total RNA were isolated from frozen tumor and adjacent normal tissues using AllPrep DNA/RNA/miRNA Universal

Kit (QIAGEN), simultaneously. Genomic DNA in blood buffy coat was isolated using QIAamp DNA Blood Mini Kit (QIAGEN). DNA and

RNA quality was confirmed using Bioanalyzer 2100 (Agilent Technologies) and Nanodrop 2000 spectrometer (ThermoFisher). Whole
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exome sequencing (WES) were performed using 400 ng of purified genomic DNA by DNeasy PowerClean Cleanup Kit (QIAGEN) from

tumor, adjacent normal tissues and buffy coat for library preparation, respectively. SureSelectXT2 target Enrichment System (Agilent

Technologies) was used for exome hybrid capture of WES followed by paired-endmultiplexed sequencing. The library preparation of

mRNA sequencingwas performed on 1 mg of total RNAwith DNase I treatment using TruSeq Stranded Total RNASample Preparation

Kit (Illumina). The concentrations of all libraries were quantified by Qubit assays (Thermo Fisher) and the sizes of libraries were

measured by Agilent TapeStation (Agilent). The paired-end sequencing was performed using HiSeq 4000 (Illumina). The average

mappable depth was 150X for WES, and the averaged mappable reads of RNA sequencing reached 50 million paired reads.

Sequencing Reads Data Preprocessing

Sequencing reads data was checked for quality and adaptor/primer sequence contamination first by FastQC (v0.11.7). Adaptor se-

quences and unqualified bases were trimmed by Trimmomatic (v0.36) (Bolger et al., 2014). The threshold was average quality < 20

per sliding window with 4-base. After trimming, reads with length < 36 bases were dropped out.

Somatic Variants Detection

Trimmed paired-end reads were further aligned to human reference genome GRC37/hg19 by BWA (v0.7.17) (Li and Durbin, 2009).

Because of systematic technical error from sequencingmachines, reads’ base quality scores were recalibrated byGATK 4.0 (Van der

Auwera et al., 2013) and then somatic mutations were detected by MuTect2 (embedded in GATK).

Mutual Exclusivity Analysis of Mutation

Mutually exclusive mutated gene pairs were identified with the MEGSA tool (Hua et al., 2016) in RStudio. For this analysis we used 39

genes with frequency > 10% and 18 genes mapping to KEGG pathways (Frequency > 5%). The settings included: nSimu = 100,

nPairStart = 10, maxSize = 3.

Mutation frequency in TW and Previous Studies

Mutation frequencies for three previous lung adenocarcinoma studies (Campbell et al., 2016; Cancer Genome Atlas Research, 2014;

Imielinski et al., 2012) were downloaded from the cBioPortal (Cerami et al., 2012; Gao et al., 2013). The frequencies of all genes were

compared with those from the TW cohort using Spearman’s correlation similarity matrix. Note that 58% of the cases included in

Campbell et al. were part of the Imielinski et al. and The Cancer Genome Atlas studies.

RNA Gene Expression

Trimmed paired-end reads were also mapped to human reference genome GRC37/hg19 by STAR2 (STAR-2.6.0c) (Dobin et al.,

2013). Ensemble GRC37 gene annotation and the htseq-count algorithm (Anders et al., 2015) were used to quantify gene expression

by raw read counts. In order to adjust different sequencing throughputs between samples, trimmed mean of M-values (TMM) algo-

rithm (Robinson and Oshlack, 2010) from edgeR (R package) (Robinson et al., 2010) were used and CPM (count-per-million) was

used as gene expression unit. Genes with CPM < 1 and not detected in at least 2 samples were excluded. Next, log2 transformation

and quantile normalization were applied before data analysis.

Mutational Signature Analysis
Mutational Signature and Carcinogen Signatures

Based on the single nucleotide substitution and its’ adjacent bases pattern of samples, frequencies of 96 possible mutation types for

each sample could be estimated. Non-negative matrix factorization (NMF) algorithm was used to estimate the minimal components

that could explain maximum variance among samples. Then each component was compared to mutation patterns of 30 validated

cancer signatures reported from the COSMIC database and of 54 carcinogen signatures reported from Kucab et al. (Kucab et al.,

2019) individually to identify cancer-related mutational signatures and carcinogen signatures. Cosine similarity analysis (Alexandrov

et al., 2013b; Mayakonda et al., 2018) was used to measure the similarity between component and signatures, which ranged from

0 to 1, indicating maximal dissimilarity to maximal similarity. After decomposing matrix of samples’ 96 substitution classes into 5 sig-

natures, contribution of signatures in each sample could be estimated.

Estimation of APOBEC Enrichment Score

Deaminase effects of APOBEC were preferentially found in TCWmotif, especially resulted in C to G or C to A substitution. Based on

these characteristics, APOBEC enrichment score was calculated using the method reported by Roberts et al. (Roberts et al., 2013).

Briefly, within 20bp of mutated bases, enrichment score for each sample is estimated by the overrepresented level of C>T and C>G

substitutions within TCWmotifs over all C>T andC<G substitutions and compared to the frequency of TCW in the background. Score

estimation was also accounted reverse strand effects. Samples with enrichment score > 2 were grouped into the APOBEC en-

riched group.

Sample Preparation for Proteomic and Phosphoproteomic Analysis
Preparation of Reference Tissue Samples

Two reference tissue samples were prepared for quality control in each TMT batch experiment. The first reference sample was

pooled from a total of 25 pairs of tumor tissue and adjacent normal tissues from early stage patients and label with TMT-126

(described below). Because this study focused on the early stage lung adenocarcinoma, the second reference sample was prepared

by pooling 15 tumor tissues from late-stage patients and labels on of TMT-131 channel.
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Protein Extraction and Tryptic Digestion

For TMT 10-plex proteomic and phosphoproteomic experiments, fresh frozen paired tumor and adjacent normal tissues (< 50mg for

each) were sliced into small pieces and washed by ice-cold PBS at least three times to remove blood. Sliced tissue specimens

were re-suspended in 10-fold volume (10 mL for 1 mg tissue) of lysis buffer containing 100 mM Tris-HCl (pH 9.0), 12 mM sodium

deoxycholate, 12 mM sodium lauryl sulfate, EDTA-free protease cocktail inhibitors, and phosphatase cocktail inhibitors and homog-

enized by Precellys 24 homogenizer (Bertin Technologies). The homogenized samples were heated at 95�Cwith vortexing at 750 rpm

for 5 min and sonicated for 10 min (30 s on, 30 s off) using Bioruptor Plus (Diagenode, Denville, NJ). Residual debris was removed by

centrifugation (16,200 x g for 30 min at 4�C). Then, methanol/chloroform protein precipitation was performed on the supernatant as

follows: 1 volume of sample, 4 volumes of methanol, followed by an equal volume of chloroform were sequentially added with thor-

ough mixing upon each addition. Then, three volumes of ultrapure water were added with intensive vortexing. After centrifugation

(10 min at room temperature, at 16,200 x g), the upper aqueous phase was removed without disturbing the interface and 3 volumes

of methanol were added with thorough vortexing. Followed by centrifugation at 16,200 x g for 10 min at room temperature, the su-

pernatant was removed, and the white protein precipitate was allowed to air dry. The protein precipitate was resuspended in diges-

tion buffer containing 8 M urea, 50mM TEABC, EDTA-free protease inhibitors and phosphatase inhibitors. The protein concentration

was determined using BCA Protein Assay following the manufacturer’s protocol (Thermo Scientific).

For tryptic digestion, 450 mg proteins from individual sample spikedwith an internal standard protein (yeast ALD4 protein, Sigma) at

a ratio of 1:250 (w:w) was reduced by 5 mM dithiothreitol at 29�C for 30 min and alkylated with 10 mM iodoacetamide at 29�C for

45 min in the dark. The samples were diluted with 1-fold volume of 50 mM TEABC and reacted with Lys-C at a ratio of 1:100

(w:w, Lys-C:protein) at 29�C for 3 h. The samples were further diluted with 3-fold volume of 50 mM TEABC for trypsin digestion

with a ratio of 1:50 (w:w, trypsin:protein) for 18 h at 29�C. The proteolytic digestion was stopped by adding 10% TFA to a final con-

centration of 0.5% in the sample. The digested peptides were desalted by SDB-XC StageTip protocol described previously (Dimaya-

cyac-Esleta et al., 2015) followed by BCA assay for measuring peptide concentration.

TMT 10-plex Labeling

Desalted peptides from each sample were labeled with TMT10plexTM isobaric label reagents according to the manufacturer’s in-

structions (Thermo Scientific) with a ratio of 0.8 mg reagent to 100 mg peptides. Synthetic b-casein standard phosphopeptide

(FQpSEEQQQTEDELQDK) was spiked into tryptic peptides with a ratio of 1:250,000 (w:w) before TMT 10-plex labeling. For each

set of TMT 10-plex, 126 and 131 channels were used to label the reference samples as described above. Four pairs of tumor and

adjacent normal tissues were labeled with the other eight channels (adjacent normal tissues labeled with 127N, 128N, 129N, and

130N; tumor tissues labeled with 127C, 128C, 129C, and 130C). Two units of each TMT channel were freshly dissolved in anhydrous

acetonitrile (ACN) with a ratio of 0.8:41 (w:v, mg:mL); 82 mL of each TMT channel in ACN was further added into 200 mg peptides dis-

solved in 200 mL of 100 mM TEABC. After incubation for 1 h at room temperature, the reaction was quenched by adding 16 mL of 5%

hydroxylamine and incubated for 15 min. 2.5% of TMT-labeled peptides from each channel was taken out and subjected to LC-MS/

MS analysis for determining labeling efficiency before pooling. Pooled 10 channels of TMT-labeled peptides were desiccated by

Speed-Vac for High-pH RPLC fractionation.

Peptide Fractionation by High-pH RPLC

To increase the profiling depth of proteome and phosphoproteome, peptide fractionation was performed by high-pH reverse phase

liquid chromatography (RPLC). Pooled and dried TMT 10-plex labeled peptides were re-dissolved in 600 mL of 5 mM ammonium

formate (pH 10) and 2% ACN, and loaded on a 4.6 mm x 250 mm Zorbax 300 Å Extend-C18 column (Agilent, 3.5 mm bead size)

at a flow rate of 0.5 mL/min on Waters alliance e2695 LC instrument coupled with 2489 UV/Visible detector and fraction collector

III. Solvent A (2% ACN, 5 mM ammonium formate, pH 10) and a nonlinear increasing percentage of solvent B (90% ACN, 5 mM

ammonium formate, pH 10) were used for peptide separation. A 120-min LC gradient run started with 100% solvent A for 10 min,

then increased linearly to 12% B in 4 min, 40% B in 63 min, 60% B in 7 min, 90% B in 15 min, and maintained at 90% B for

8 min. Peptides were separated and collected every minute for a total of 96 fractions from 11 to 106 min and combined into 24 frac-

tions with a stepwise concentration strategy. Following desalting with SDB-XC StageTip, 10% of each fraction were aliquoted and

dried by vacuum centrifugation for proteome analysis. The remaining 90% of concatenated fractions were further combined into 12

fractions, dried with Speed-Vac and stored at �80�C until phosphopeptide enrichment.

Phosphopeptide Enrichment

The phosphopeptide enrichment was performed by home-made immobilized metal ion affinity chromatography (IMAC) StageTip

capped at one end with a 20-mm polypropylene frits disk (Agilent, Wilmington, DE, USA) enclosed in the narrow end of tip fitting.

For preparation of IMAC StageTip, 10 mg of Ni-NTA silica resin (QIAGEN) was dissolved in 225 mL of 6% acetic acid and loaded

onto StageTip by centrifugation (3,300 x g for 3 min at RT). The Ni2+ ions were removed with 200 mL of 50 mM EDTA using centrifu-

gation (300 x g for 4min). The StageTip was then activatedwith 200 mL of 100mMFeCl3 and equilibrated with 200 mL of loading buffer

(6% acetic acid, pH 3.0) prior to sample loading. Fractionated peptides were reconstituted in 0.5% acetic acid (pH 3.0) and loaded

onto the IMAC StageTip with centrifugation (300 x g, 2 min). After successive washes with washing buffer A (80% ACN, 1% TFA) and

washing buffer B (0.5% acetic acid), the bound peptides were eluted twice with 80 mL 200 mM NH4H2PO4 and desalted using RP

StageTips.
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LC-MS/MS Analysis
Proteome Analysis

For proteome analysis, LC-MS/MS analysis was performed with a Thermo Scientific UltiMate 3000 RSLCnano system (Thermo

Fisher Scientific) coupled to a Q Exactive HF (Thermo Fisher Scientific). The fractionated peptides were separated using Thermo Sci-

entific PepMap C18 50 cm x 75 mm ID column (Thermo Fisher Scientific) with a 5%–28% ACN gradient in 0.1% FA over 200 min at a

flow rate of 250 nL/min. The spectra of full MS scan (m/z 375-1600) were acquired in the Orbitrapmass analyzer at 120,000 resolution

for a maximum injection time of 50 ms with an AGC target value of 3e6. Up to 15 precursors were selected for MS2 analysis with an

isolation window of 0.7 Th and dynamic exclusion timewas set to 20 s. Precursors were fragmented by HCD using a normalized colli-

sion energy of 33% and analyzed using the Orbitrap at 60,000 resolution for a maximum injection time of 120 ms with AGC target

value of 1e5. Precursor ions with unassigned charge state as well as charge state of 1+, or superior to 7+ were excluded from frag-

mentation selection.

Phosphoproteome Analysis

For phosphoproteome analysis, LC-MS/MS analysis was performed with a Thermo Scientific UltiMate 3000 RSLCnano system

(Thermo Fisher Scientific) coupled to an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific). Enriched phospho-

peptides were dissolved in 1% formic acid and separated using Thermo Scientific PepMap C18 50 cm x 75 mm ID column (Thermo

Fisher Scientific) with a 5%–28% ACN gradient in 0.1% FA over 200 min at a flow rate of 250 nL/min. The full MS spectra (m/z 375–

1,600) were acquired in Orbitrap at 120,000 resolution with an AGC target value of 4e5 charges for amaximum injection time of 50ms.

Precursors for MS2 analysis were selected using a Top10 method with an isolation window of 0.7 Th. MS2 precursors were frag-

mented by HCD using a normalized collision energy of 36%. The AGC target value was set to 5e4 and the dynamic exclusion

was set to 20 s. MS2 spectra were acquired in Orbitrap with a maximum injection time of 150 ms at a resolution of 60,000. Precursor

ions with the charge state of unassigned, 1+, or superior to 7+ were excluded from fragmentation selection.

Mass Spectrometry Data Analysis
Database Search

All MS raw files from the same batch were processed together with Proteome Discoverer (ver. 2.1) by Mascot (ver. 2.3.2) and

SequestHT engines (Eng et al., 1994) against the SwissProt human protein database (version 2016.05, 20,213 entries), combined

with the spiked internal standard ALD4 protein from yeast (SwissProt: P46367) for proteome analysis andwith b-casein protein (Swis-

sProt: P02666) for phosphoproteome analysis. For phosphoproteome analysis, MS Amanda (Dorfer et al., 2014) was also included in

Proteome Discoverer. The tolerance for spectra search allowed 10 ppm mass tolerance for precursor, 0.1 Da for product ions, and

trypsin enzyme specificity with up to 2 missed cleavages. All search engines considered static carbamidomethylation (+57.022 Da)

on Cys residues and TMT modifications (+229.163 Da) on the peptide N terminus and Lys residues, as well as dynamic oxidation

(+15.995 Da) on Met residues, deamidation on Asn and Gln residues (+0.984Da), and acetylation on protein N terminus (+42.016

Da), while the phosphorylation on Ser, Thr and Tyr residues (+79.966Da) was additionally included as dynamic modification for phos-

phoproteome analysis. The minimal peptide length was set as 7 residues. The false discovery rate (FDR) of peptide and protein were

all set as 1%. For phosphosite localization, the ptmRS (Taus et al., 2011) was used to determine phosphosite confidence and the

phosphosite probability > 0.75 is considered as confident phosphosites.

Quantification of Global Proteome Data

The quantification analysis was performed at the protein level by Proteome Discoverer. The protein abundance was calculated from

the sum of peptide abundance with quan value corrections and co-isolation threshold filtering < 50%. The protein-level TMT signal-

to-noise (S/N) values of each batch were exported from Proteome Discoverer 2.1 and unique protein groups were consolidated in a

single table containing all samples (columns = samples, rows = proteins). Protein S/N values were normalized by column-median to

correct for equal loading across samples. The normalized S/N values were log2-transformed and the row-mean was subtracted from

each protein for each batch separately to obtain log2-scaled values. The log2-scaled values were further transformed to column

z-scores for Principal Component Analysis (PCA) in RStudio. Additionally, log2T/N values were computed using the normalized

S/N values, which were further transformed to column z-scores and centered at zero (row-wise) to obtain the centered-log2T/N

values. All normalization steps were performed in Perseus 1.6 (Tyanova et al., 2016).

Quantification of Phosphoproteome Data

The quantification analysis for phosphoproteome data was performed at phosphopeptide level by Proteome Discoverer. The TMT

S/N values of phosphopeptides mapping to the same site were aggregated by median values. Phosphosite S/N values were normal-

ized by column-median to correct for equal loading across samples and log2T/N values were computed. These were further trans-

formed to column z-scores and centered at zero to obtain the centered-log2T/N values. All normalization steps were performed in

Perseus 1.6 (Tyanova et al., 2016). To analyze the phosphorylation changes, the log2T/N value of each phosphosite was corrected

for the respective protein log2T/N value using linear regression to obtain net phosphorylation changes.

Quality Control Evaluation

To evaluate the data quality of every batch of proteomics and phosphoproteomics datasets, we used proteins (n = 7,673) or phos-

phopeptides (n = 3,505) commonly identified in all proteomics or phosphoproteomics experiments for pairwise Pearson correlation
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coefficient analysis. The log2(TMT126/TMT131) ratio derived from column z-score transformed intensity were used to generate pair-

wise scatterplots for Pearson correlation and histogram of each proteomic and phosphoproteomic analysis by using psych R

package.

Identification of Variant Peptides

Based on the detected somatic mutations in each patient and UCSC gene annotations, somatic mutations of each patient were an-

notated for their genomic locations and their impact on protein functions was predicted by customProDB (R package) (Wang and

Zhang, 2013). Accordingly, we retrieved the nonsynonymous mutations in each patient and generated patient-specific mutated pro-

tein sequences. For variant peptide identification, we combined themutation protein sequences from patients in the same batch as a

combined customized mutation database.

All MS raw files were processed using ProteomeDiscoverer (ver. 2.1) with SequestHT search engines against the SwissProt human

protein database (version 2016.05, 20,213 entries), combined with batch-specific mutated protein database derived from the WES

data from 4 patients in the same batch. The tolerance of all spectra allowed ± 10 ppm mass tolerance for precursor, +/� 0.1 Da for

product, and up to 2 missed cleavages for trypsin enzyme specificity. All search engines considered static carbamidomethylation

(+57.022 Da) on Cys residues and TMT modifications (+229.163 Da) on the peptide N terminus and Lys residues, as well as dynamic

oxidation (+15.995 Da) on Met residues, deamidation on Asn and Gln residues (+0.984 Da), and acetylation on protein N terminus

(+42.016 Da). Peptide identification stringency was set at a maximum FDR of 1% and a minimum peptide length as 7 residues. Pep-

tide spectral matches (PSMs) were validated using percolator based on q-values at 1%.Unique proteins with < 1%FDRwere consid-

ered as positive identifications. The PSMs of identified variant peptides were manually confirmed. We also cross-checked the TMT

reporter intensity in the variant PSM and the patient-derived variant database to identify the variant-carry patient. The identified

variant peptides that had isobaric substitutions were excluded.

Multi-omic Data Analysis
Identification of pQTL and eQTL

We tested for associations between the RNA and protein relative abundances against a set of 88 variant genes, filtered for at least 5

events across the adenocarcinoma patients using eQTL and pQTL analysis. Patients with hypermutation profiles and proteins with

missing values were excluded. Genes on X, Y andmitochondrial chromosome were also excluded. We finally used 27,768 RNAs and

6,997 proteins for the QTL mapping. Both datasets were quantile normalized to a Gaussian distribution before fitting a model. All

associations were performed by LIMIX (Chen et al., 2016) using a linear regression test. Let the quantitative measurements be y,

xs corresponds to somatic variants in binary format. The linear regression model is as follows:

y = 1m+ xsbs+c; where c � ð0; sIÞ:
Here bs denotes the effect size of the tested variant, m is the intercept and j is the residual noise.

Kinase Activity Prediction

Inference and prediction of putative kinase activity associated with high APOBECmutation signature is performed from the phospho-

proteomic data using PHOXTRACK (Weidner et al., 2014). In brief, the phosphopeptide entries quantified in more than 50% of pa-

tients were used and their mean of log2(APOBEC-high/APOBEC-low) was subjected into PHOXTRACK analysis with the criteria of

1000 permutations, at least 5 phosphosites per kinase, and unweighted statistic p-value < 0.05.

Consensus Clustering

Unsupervised clustering of the patient samples at the different molecular levels was performed with the ConsensusClusterPlus R

package (Wilkerson and Hayes, 2010) using the top 50% most variable proteins, RNAs and phosphosites based on standard devi-

ation ranking. For the proteomics and RNA data, genes with missing values were pre-excluded whereas for the phosphoproteomics

data with less than 20%missing values, we imputed the missing data from the normal distribution within a range of 20% of the stan-

dard deviation of all values in Perseus 1.6. Patient clusters were derived based on k-means clustering, Euclidean distance and 1,000

resampling repetitions in the range of 2 to 7 clusters. The empirical cumulative distribution function (CDF) plot initially showed optimal

separation between 3 and 4 clusters for all the molecular levels. To assess the stability of the k = 3 and k = 4 consensus clusters we

made silhouette plots in Rstudio using the ‘‘cluster’’ library. In all cases, the clusters at k = 4 were overall more stable except the 4th

RNA cluster which was excluded. The 4th proteome cluster was also excluded due to its small size.

Weighted Correlation Network Analysis

Weighted correlation network analysis was performed with the WGCNA library (Langfelder and Horvath, 2008) in RStudio using the

centered-log2T/N values of 9,072 proteins quantified in at least 80%of the adenocarcinoma patients. A soft threshold at power 5 was

selected based on scale free topology model fit (R2 = 0.8). Module identification was performed with the ‘‘cutreeDynamic’’ function

using the ‘‘tree’’ method and minModuleSize = 5. Functional annotation of the modules was performed with Fisher’s exact test using

GOBP-slim, GOCC-slim, CORUM and KEGG terms in Perseus 1.6 (Tyanova et al., 2016). Protein networks were visualized in Cyto-

scape (Shannon et al., 2003). For concise representation we trimmed the network keeping only the proteins that belonged to the top

enriched terms from each annotation category, edges with correlation weight greater than 0.03 (positive associations only) and al-

lowing less than top 50 interactions per source and target node.
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HLA Genotyping Analysis and Neoantigen Prediction

Alleles with 4-digit HLA class I genes were inferred using POLYSOLVER (https://software.broadinstitute.org/cancer/cga/polysolver)

(Shukla et al., 2015). Based on the somatic mutation information, mutated DNA sequences were translated into mutated peptide se-

quences. Mutated peptide sequences with length 8 to 14 amino acids were further input to NetMHC (v4.0) (http://www.cbs.dtu.dk/

services/NetMHC/) (Andreatta and Nielsen, 2016) to predict corresponding binding affinities with MHC class I genes. The predicted

binding affinity IC50 < 50 nM was denoted as strong binding and IC50 between 50-500 nM was weak binding.

Immune Cell Profiling

Immune cell profiling was performed in CIBERSORT (Newman et al., 2015) using the read count RNA-seq data for adenocarcinoma

tumor and normal adjacent samples against the LM22 signature gene file encompassing 22 immune cell types. The analysis was

done with 100 permutations in relative and absolute modes using internal quantile normalization of the data.

Stromal Scores

Stromal scores were computed with the ESTIMATE package (Yoshihara et al., 2013) in RStudio using quantile normalized RNA read

counts for tumor and adjacent normal tissues.

Survival Analysis

We performed the survival analysis for APOBEC signature in TCGA Cohort Genomic datasets and clinical phenotype of TCGA lung

adenocarcinoma were downloaded from the University of California Santa Cruz genome browser (https://xenabrowser.net/).

APOBEC enrichment scores were estimated based on somatic SNVs. After samples were separated into APOBEC-high or -low

group, overall survival (OS) analysis was performed to compare the two groups for evaluating prognosis of the APOBEC signature.

We also compared the disease-free survival (DFS) and overall survival (OS) among different EGFR genotypes in complete surgically

resected stage IA and IB lung adenocarcinoma patients or MMPs IHC staining. Univariate analyses of patients’ characteristics were

performed using the Fisher’s exact test and the independent t test. The Kaplan–Meier method was used to estimate DFS and OS.

Differences in survival time were analyzed by the log-rank test. The Cox proportional hazard model was used to evaluate the impact

of adjuvant chemotherapy for multivariate analyses of survival time. All statistical tests were carried out using SPSS 15.0 (SPSS Inc.,

Chicago, IL, USA). Two-tailed tests and p values < 0.05 for significance were used.

Immunohistochemical Analysis

To detect the expression of MMP2, MMP7 andMMP11 protein in the tissue by immunohistochemical (IHC) staining, 4-mm-thick sec-

tions from each formalin-fixed, paraffin-embedded (FFPE) tissue block were de-waxed with xylene and rehydrated through a graded

series of ethanol. Antibodies forMMP2 (Clone 4D3, Santa Cruz Biotechnology; dilution 1:50 for 1.5 h), MMP7 (Clone JL07, Santa Cruz

Biotechnology; dilution 1:100 for 1.5 h) and MMP11 (clone SL3.05, Santa Cruz Biotechnology; dilution 1:150 for 1.5 h) were used for

immunohistochemistry. Antigen was retrieved by autoclaving for 10 min at 121�C in Novocastra Epitope Retrieval Solution pH 6 (Le-

ica Biosystems). The UltraVision Quanto Detection System HRP DAB (Thermo Fisher Scientific) was used according to the manufac-

turer’s instructions. Finally, the sections were counterstained with hematoxylin and then mounted.

QUANTIFICATION AND STATISTICAL ANALYSIS

Methods of quantification and statistical analysis for all experiments and omic analyses were described in the Results, figure legends,

and Method Details subsections.

Additionally, biological enrichment for molecules and pathways from multi-omics data was performed in Perseus 1.6 software

(Tyanova et al., 2016) using the 1D-annotation pathway enrichment method (Cox and Mann, 2012) or with Fisher’s exact test. The

enrichment score indicates whether the proteins in a given biological term tend to be systematically up- or downregulated based

on Mann-Whitney U test. The 1D-annotation enrichment method was also applied for the enrichment of KEGG pathways with low

and high mRNA-to-protein correlations. The mean log2T/N values and FDR on the expression of mRNA, proteins, and phosphopep-

tides of individual patients was computed by 1D-annotation pathway enrichment analysis. All enriched pathways were filtered for

Benjamin-Hochberg FDR < 0.05. Next, the patients were annotated with 6 carcinogen signatures, including PAHs, nitro-PAHs, Nitro-

samine, mixed, alkylating agents and radiation. The mean expression value within each enriched pathway from individual patients

was further compared among different carcinogen groups using Kruskal-Wallis rank test and selected with p < 0.05. The enriched

pathways had significantly higher expression in at least one carcinogen cohort.

For the assessment of the impact of mutations on protein and mRNA abundances, analysis of variance (ANOVA) was performed in

Perseus 1.6 using preformatted tables. Permutation-based FDR correction was applied to adjust p values from the ANOVA. Theweb-

based tool Morpheus (https://software.broadinstitute.org/morpheus/) was used for hierarchical clustering and visualization of heat-

maps. For significant protein enrichment, Student’s t test orWelch’s t test, as the unequal variances of testing groups, was performed

to test the difference in continuous variables. All tests were performed by two-tailed test and p-values < 0.05 were considered

significant.
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Figure S1. Proteogenomics Workflow, Quality Control, and Comparison of Somatic Mutation Profiles between TW and TCGA Cohort,

Related to Figure 1

(A) Overview of proteomics experimental design. (B) Bar plots showing the number of identified proteins per TMT batch. (C) Boxplots showing themedian number

of unique peptides identified per TMT batch. (D) Bar plots showing the number of identified and quantified phosphosites per TMT batch. TMT batches with low

phosphoproteome coverage are highlighted with a mark and were excluded from downstream analysis. (E) Pearson’s correlation coefficient between the ratio of

two reference channels (126 versus 131) from each two different batches evaluated with 7673 proteins without missing values are shown in the upper triangular

matrix. Distributions of fold changes derived from two different batches for these proteins are shown in the lower triangular matrix. Plots along the diagonal shows

the distribution of log2 fold changes of these proteins of a single batch. (F) Pearson’s correlation coefficient from each two batch of phosphoproteomics data using

3505 phosphopeptides without missing values. (G) Comparison of the proportion of DNA substitution mutations between TW and TCGA LUAD cohort. Fisher’s

exact test was performed for statistical analysis. (H) Clustergrams of gender-specific RBM10 mutation profile. The somatic mutation, mRNA and protein

expression levels (relative log2T/N ratio) of RBM10 were clustered with gender, age, and EGFR status. Fisher’s exact test was performed for statistical analysis.
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Figure S2. Summary of Sequence Variants Identified in DNA, RNA, and Protein Level, Related to Figure 2

Venn diagram showing the overlap of sequence variants identified at the DNA, RNA and protein levels.
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Figure S3. Impact of Genomic Alterations in the Proteome and Phosphoproteome of Lung Adenocarcinoma, Related to Figure 3

(A) Correlation between phospho-MAPK3 and its downstream phosphoproteins. (B) Ranked co-phosphorylation signature of the MAPK cascade of nonsmokers

with different EGFRmutation status. (C) Manhattan plots of the most confident non-redundant association tests in eQTL and pQTL analysis. (D) Heatmap of cell

cycle related genes associated with TP53 mutations at the RNA level. (E) Drug response of lung cancer cell lines with TP53 mutation from TCGA and COSMIC

hotspot (Wilcoxon rank-sum test, p = 0.021).
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Figure S4. Summary of APOBEC and Carcinogen Signature in TCGA LUAD Cohort, Related to Figure 4

Trinucleotide motif frequency plots and enriched mutational signatures for three mutational profiles identified in the TCGA LUAD cohort.
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Figure S5. APOBEC Signature-Associated Pathways, Related to Figure 5

(A) Pathways enriched with altered mean values between APOBEC-high and -low groups in proteome and phosphoproteome level (Fisher’s exact test, p < 0.05).

(B) Heatmap of phosphorylation sites with differential regulation associated with cell cycle and DNA damage enriched in APOBEC signature (t-test, p < 0.05).

Correlation of log2T/N ratio of these phosphosites with APOBEC family was analyzed by spearman correlation.
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Figure S6. Multi-omic Subtypes, Related to Figure 6

(A) Silhouette plots for the different clusters identified by consensus clustering for proteomics, RNaseq and phosphoproteomics. The clusters selected for

downstream analysis are highlightedwith a dashed outline. (B) Heatmap of differentially regulated phosphosites (columns) between the three proteomic subtypes

using protein-corrected phosphorylation abundances (ANOVA FDR < 0.1). Rows represent patients and larger dot size indicates higher relative phosphorylation.

Only phosphosites from proteins in cancer related KEGG pathways are shown. The respective pathways are shown in the bottom panel. The asterisk indicates

significant enrichment over the non-differentially regulated phosphosites (Fisher’s exact test, Benj. Hoch. FDR < 0.1). (C) Boxplots of representative phosphosites

with upregulation in the early stage subtype 3. The phospho-proteins that can be targeted by known inhibitor (source: DGIdb, http://www.dgidb.org/) are

highlighted with a green mark. (D) Heatmap and boxplot of representative phospho-tyrosine sites with upregulation in the early stage subtype 3. (E) Alignment of

RNA and phosphoproteomics subtypes with clinical features. F) Overlap between proteomics, RNA and phosphoproteomics subtypes. Significantly over-

represented RNA and phosphorylation subtypes in each one of the proteomics subtypes are shown as networks (Fisher’s exact test, p < 0.05).

ll
OPEN ACCESSResource

http://www.dgidb.org/


Figure S7. Differentially Regulated Networks and Immune Profiles between the Proteomic Subtypes, Related to Figure 7

(A) Protein networks with differential regulation between the proteomic subtypes based on eigengene values (ANOVA, FDR < 0.05). The edges in the networks

represent de novo protein correlations and therefore not all nodes correspond to the biological terms shown on top. Protein networks with significant differential

regulation between the IB and IB ‘‘Late-like’’ refined classes are indicated with an asterisk. (B) Tissue protein expression for the proteins found in networks #25

and #26 based on the Human ProteomeMap database (https://www.humanproteomemap.org/). (C) Immune cell profiling based on CIBERSORT analysis based

on the RNA-seq data. The heatmap shows the z-score transformed absolute immune cell abundances across patient tissues. (D) Correlation plot of the mean

(legend continued on next page)
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z-score CIBERSORT results for T, B, NK cells versus the mean eigengene values of immune related networks #25 and #26. (E) Clustergram of immune cells-

related protein profile. Clinical information was clustered by immune high and low cohort. Significant clinical features were further calculated by Fisher’s exact

test. (F) Immunohistochemistry staining for selected matrix metalloproteinases in an independent retrospective Taiwan lung adenocarcinoma cohort. (G) Stromal

scores for classifying patients into two groups with high- and low- stromal scores (< 1st and > 3rd quartile) using quantile normalized RNA read counts for tumor

and normal adjacent tissues. (H) Differential log2T/N values of CILP protein in the high- and low-stroma group (fold-change = 2.6, ANOVA, p = 0.00396).
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