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Abstract  

 

Aim: To assess the clinical relevance of transgenic and patient-derived xenograft models of 

adamantinomatous craniopharyngioma (ACP) using serial magnetic resonance imaging (MRI) and 

high resolution post-mortem micro-computed tomography (μ-CT), with correlation with histology 

and human ACP imaging. 

Methods: The growth patterns and radiological features of tumours arising in 

Hesx1Cre/+;Ctnnb1lox(ex3)/+ transgenic mice, and of patient-derived ACP xenografts implanted in the 

cerebral cortex, were monitored longitudinally in vivo with anatomical and functional MRI, and by 

ex vivo μ-CT at study end. Pathological correlates with haematoxylin and eosin stained sections 

were investigated. 

Results: Early enlargement and heterogeneity of Hesx1Cre/+;Ctnnb1lox(ex3)/+ mouse pituitaries was 

evident at initial imaging at 8 weeks, which was followed by enlargement of a solid tumour, and 

development of cysts and haemorrhage. Tumours demonstrated MRI features that recapitulated 

those of human ACP, specifically, T1-weighted signal enhancement in the solid tumour component 

following Gd-DTPA administration, and in some animals, hyperintense cysts on FLAIR and T1-

weighted images. Ex vivo μ-CT correlated with MRI findings and identified smaller cysts, which 

were confirmed by histology. Characteristic histological features, including wet keratin and 

calcification, were visible on μ-CT and verified by histological sections of patient-derived ACP 

xenografts. 

Conclusions: The Hesx1Cre/+;Ctnnb1lox(ex3)/+ transgenic mouse model and cerebral patient-derived 

ACP xenografts recapitulate a number of the key radiological features of the human disease and 

provide promising foundations for in vivo trials of novel therapeutics for the treatment of these 

tumours. 
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Introduction 

 

Adamantinomatous craniopharyngioma (ACP) is the most common tumour of the sellar region in 

childhood, accounting for approximately 1.2-4% of paediatric intracranial tumours. Peak incidence 

occurs at 5-9 years with a second peak in adults aged 45-60 years (20, 21). Although appearing 

histopathologically benign and classified by the World Health Organisation as grade I (17), ACP is 

often clinically aggressive, demonstrating invasion of the hypothalamus and visual pathways, and 

destruction of the pituitary. Current treatment strategies involve surgery, radiotherapy and cystic 

drainage. Although associated with good 5 year survival, patients frequently suffer severe long term 

morbidity, with pituitary and hypothalamic dysfunction, visual impairment and poor quality of life 

(20).  

 

ACP is an epithelial lesion thought to arise from Rathke’s pouch, the embryonic primordium of the 

anterior pituitary, and is characterised by the formation of a peripheral basal layer of palisading 

epithelium, loose aggregates of stellate cells, nodules of “wet keratin” (anuclear ‘ghost cells’), 

whorl-like cell clusters and cysts containing high levels of protein, cholesterol and calcification 

(19). ACPs present as variably cystic/solid tumours in the intrasellar and/or suprasellar region by 

both magnetic resonance imaging (MRI) and computed tomography (CT) (10). Calcification, 

present in over 90% of ACPs, is detectable by CT, which is therefore widely used for differential 

diagnosis following initial identification by MRI (29).  

 

Mutations in CTNNB1, which encodes β-catenin, predicted to cause the over-activation of the WNT 

pathway, have been identified in the majority of human ACP samples analysed (7, 9, 15, 24). 

Unusually, nuclear-cytoplasmic localisation of activated β-catenin is found in only a small 

proportion of tumour cells, either as small cell clusters, which broadly correlate with epithelial 

whorls, or otherwise dispersed in a minority of cells throughout the tumour (9, 11). We have 
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recently described the 3D structure of human ACP using high resolution micro-CT (µ-CT) imaging 

(2), and corroborated the presence of clusters at the leading invasive edge of tissue invasion (8, 26).  

 

Expression of oncogenic β-catenin in the developing pituitary in Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice 

results in tumours resembling human ACP at the histological and molecular levels (11). Despite 

activation of β-catenin in all pituitary cells in this model, nuclear accumulation is only observed in 

small clusters of cells, analogous to human clusters. Previous studies have shown that these mice 

have a median survival of approximately 11 weeks, with a remarkable variability, and at the time of 

death exhibit large cystic masses beneath the brain (11). To date, the kinetics of tumour 

development in this transgenic mouse model of ACP has not been studied. 

 

A patient-derived xenograft model of ACP has also been established through placement of 

uncultivated human tumour tissue into the cerebral hemisphere of immunodeficient mice (26). 

Lesions propagated in this manner show comparable tissue architecture and express similar 

immunohistochemical markers to the patient tumours, including whorl-like cell clusters with 

nuclear β-catenin accumulation and activated EGFR (26). 

 

In this study we have further characterised tumours arising in the Hesx1Cre/+;Ctnnb1lox(ex3)/+ 

transgenic mouse model of ACP in vivo, describing both their radiological features and patterns of 

growth through longitudinal multiparametric MRI imaging. Using μ-CT we have assessed both 

these murine tumours, and cerebral patient-derived ACP xenografts, ex-vivo in 3D at high 

resolution. Comparison with clinical imaging and pathology demonstrated that both these models 

recapitulate the radiological features of human ACP. 
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Materials and Methods 

 

Hesx1Cre/+;Ctnnb1lox(ex3)/+ transgenic model of ACP 

Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice have been described previously (11). All experiments were 

performed in accordance with the local Animal Welfare and Ethical Review Board, the UK Home 

Office Animals (Scientific Procedures) Act 1986, the United Kingdom National Cancer Research 

Institute guidelines for the welfare of animals in cancer research (30) and the ARRIVE (animal 

research: reporting in vivo experiments) guidelines (16). Eighteen Hesx1Cre/+;Ctnnb1lox(ex3)/+ and 

four wildtype control mice were assessed in this study. 

 

Patient-derived ACP xenograft model 

A fresh surgical specimen from a 56 year old male patient with ACP was retrieved from the 

Department of Neurosurgery at the University Hospital Erlangen. Tumour tissue was verified and 

classified as previously and was found to bear a TCT(Ser)>TGT(Cys) mutation in codon 33 of 

CTNNB1 but no mutation in exon 15 of BRAF (13, 26). A declaration of consent for the patient is 

available, approved by the local ethics committee of the Friedrich-Alexander-Universität Erlangen-

Nürnberg. Procedures were conducted in accordance to the Declaration of Helsinki. 

All experiments performed were authorised by the local government (Regierung von Unterfranken, 

Germany, Ref.-No. 54-2532.01-25/14) in accordance with the animal protection act. The surgical 

specimen was divided and implanted into the right cerebral hemisphere of four female NMRI-

Fox1nu/Fox1nu mice (Janvier Labs, Le Genest-Saint-Isle, France). Anaesthetised mice were secured 

in a stereotactic frame (Bilaney Consultants, Düsseldorf, Germany), a 5mm incision made in the 

scalp and a 1mm burr hole drilled 3mm lateral to the bregma. A piece of uncultivated tumor tissue 

(1–8mm3) was inserted through the hole using a sterile cannula and the skin closed using a suture 

(ETHILON*II 4-0, Ethicon, Norderstedt, Germany). Analgesic (1mg/g metamizole, Ratiopharm, 
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Ulm, Germany) was added to the drinking water for 3 days following the procedure.  Body weight 

and animal behaviour were monitored daily (26). 

 

Magnetic resonance imaging  

1H MRI of Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice was performed on a 7T horizontal bore microimaging 

system (Bruker, Ettlingen, Germany) using a 30mm birdcage coil and 1mm thick slices acquired 

over a 25mm x 25mm field of view (FOV). Imaging was performed fortnightly from approximately 

8 weeks of age, increasing to weekly once tumour progression was established. Anaesthesia was 

induced with either 3% isoflurane in 100% oxygen (1L/min) and maintained with 1% isoflurane 

(for longitudinal screening/monitoring), or a 10ml/kg intraperitoneal injection of fentanyl citrate 

(0.315mg/ml) plus fluanisone (10mg/ml (Hypnorm; Janssen Pharmaceutical Ltd. High Wycombe, 

UK)), midazolam (5mg/ml (Hypnovel; Roche, Burgess Hill, UK)), and sterile water (1:1:2) (for 

functional MRI at study end). A lateral tail vein was cannulated with a 27G butterfly catheter 

(Venisystems, Hospira, Royal Leamington Spa, UK) if remote administration of Gd-DTPA 

(Magnevist™; Schering, Berlin, Germany) was required. Core body temperature was maintained by 

warm air blown through the magnet bore. 

Magnetic field homogeneity was first optimised by shimming over the entire brain using an 

automated shimming routine (FASTMAP). Anatomical multi-slice contiguous T2-weighted RARE 

images (TR=4500ms, TEeff=36ms, 8 averages, 256x256 matrix, pixel size=98µmx98µm) were then 

acquired to monitor tumour development and for subsequent volumetric analysis. Fluid attenuated 

inversion recovery (FLAIR; TR=18000ms, TEeff=35ms, TI=2100ms, 4 averages, flip angle=125°, 

128x128 matrix) and T1-weighted (TR=1300ms, TE=7.5ms, 4 averages, RARE factor=8, 256x256 

matrix) images were also acquired. At study end, echo-planar diffusion-weighted imaging (EPI-

DWI) was used to determine the apparent diffusion coefficient (ADC) (5), and either T1-weighted 

images acquired before and 1 minute after intravenous administration of 0.1mmolkg-1 Gd-DTPA 
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(Magnevist, Schering), or dynamic contrast-enhanced (DCE) MRI (4) was used to assess patent 

tumour vasculature. 

MRI of nude mice bearing cerebral patient-derived ACP xenografts was performed between 124 

and 130 days after tumour implantation, at which time successful tumour engraftment had  

previously been confirmed histologically (26), under isoflurane anaesthesia, on a 7T horizontal bore 

microimaging system (Bruker, Ettlingen, Germany) equipped with a dedicated mouse brain coil and 

an animal monitoring system. T2-weighted images (TR=2370ms, TE=41ms, slice thickness=0.7mm, 

FOV=24mmx38mm, 210x320 matrix, pixel size=119µmx119µm) and T1-weighted contrast-

enhanced images prior to and following intravenous administration of 0.1mmolkg-1 gadobutrol 

(Gadovist, Bayer Vital, Leverkusen, Germany) (TR=500ms, TE=9ms, slice thickness=0.7mm, 

FOV=24mmx28mm, 448x512 matrix, pixel size=55µmx55µm) were acquired.  

 

MRI data analysis 

Volumetric analysis was performed using segmentation from regions of interest (ROIs) drawn on 

T2-weighted images. Parameter estimation was undertaken using a Bayesian maximum a posteriori 

algorithm, which took into account the Rician distribution of noise in magnitude MR data in order 

to provide unbiased parameter estimates (27, 28). Estimates of the ADC (x10-6mm2s-1) were 

determined from the EPI-DWI data. DCE MRI data were analysed by incorporating the Tofts and 

Kermode pharmacokinetic model, from which the volume transfer constant (Ktrans, minute−1), the 

rate of flux of contrast agent into the extracellular extravascular space within a given volume, was 

calculated (6).  

All data were fitted on a pixel-by-pixel basis using in-house software (ImageView, developed in 

IDL, ITT Visual Information Systems, Boulder, CO, USA), and the median value of each parameter 

determined from a ROI that encompassed either the whole brain, whole lesion or a portion of the 

lesion.  
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Micro computed tomography 

Intact heads from Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice and wildtype control mice were fixed in 10% 

formalin for at least 48 hours, and patient-derived xenograft-bearing mouse brains were fixed in 4% 

formalin, prior to iodination in Lugol’s iodine (I127 concentration of 2.94x10-4mol/ml) for at least 72 

hours to improve tissue contrast. The heads were then rinsed with distilled water to remove excess 

iodine, blotted dry and secured within a low density plastic container covered with polymer film to 

prevent specimen dehydration. Images were acquired using a Nikon XTH 225 ST µ-CT scanner, 

utilising a molybdenum X-ray source with anode voltages ranging between 70-100 kV and detector 

exposure times of 500-708ms over 3141 projections (2, 14). Data was reconstructed using CTPro3D 

(Nikon Metrology, Tring) and post-processed with VG Studio MAX software (Volume Graphics 

GmbH, Heidelberg, Germany).  

 

Histopathology 

Formalin-fixed Hesx1Cre/+;Ctnnb1lox(ex3)/+ mouse tissue imaged by µ-CT was decalcified in 1% 

formic formaldehyde for 48 hours before embedding in paraffin blocks. A further 5 surface 

decalcifications of 2 hours each were performed prior to 5µm sections being cut in the axial or 

sagittal plane, matched to the imaging plane. Sections were then stained with haematoxylin and 

eosin (H&E).  

The brains from patient-derived xenograft-bearing mice were formalin-fixed and processed 

following µCT imaging, and H&E staining of 3µm axial sections was performed as previously 

described (26).  

Slides were scanned using either Nanozoomer (Hamamatsu Photonics, Welwyn Garden City) or 

Pannoramic MIDI (3D-Histech, Sysmex Europe) and processed using CaseViewer 2.0 software 

(3D-Histech, Budapest, Hungary). 
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Statistics 

Statistical and survival analysis was performed with GraphPad Prism 7 (GraphPad Software, La 

Jolla, USA). The mean of median values for quantitative MRI parameters were reported and used 

for statistical analysis. Results are presented as the mean ± 1 standard error of the mean (s.e.m.). 

Significance testing used Student’s unpaired t-test and Pearson correlation coefficient (one tailed) 

with a 5% confidence level.  

  



10 

 

Results 

 

Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice develop cystic-solid tumours with a non-linear growth pattern 

MRI and µ-CT imaging performed at 8 weeks of age revealed enlargement of the pituitary of 

Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice relative to wildtype control mice (Figure 1A), consistent with the 

previously observed prenatal pituitary hyperplasia (11). Serial T2-weighted MRI performed every 2 

weeks revealed a relatively stable phase with no additional changes detectable, followed by lesion 

enlargement forming a solid tumour with associated cystic fluid accumulation (hyperintense relative 

to midbrain above; Figure 1B) and in most cases haemorrhage (relatively hypointense).  

Tumour progression, defined as a change in imaging phenotype from the stable state, was identified 

in thirteen Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice prior to 1 year of age, at a median age of 17.7 weeks 

(range 8.3 – 35.3 weeks, n=17) (Figure 1C). Median overall survival in the cohort was found to be 

22.6 weeks (range 10.1 – 41.0 weeks). It was noted that tumours that presented later appeared to 

progress more slowly, and indeed the age at which progression was identified correlated 

significantly with the time from progression to sacrifice (Pearson r=0.85, p=0.0002). 

 

Multiparametric MRI reveals radiological features similar to human ACP, which correlate 

with -CT and histology 

Multiparametric MRI was used to assess the phenotype of progressing Hesx1Cre/+;Ctnnb1lox(ex3)/+ 

tumours. Considerable heterogeneity of cystic components, identified by high T2-weighted signal 

intensity, was noted both within and between tumours. In a subset of tumours (n=5) these cysts 

remained hyperintense on FLAIR images, in which the signal from cerebrospinal fluid (CSF) and 

other motile fluid compartments would usually be suppressed, and were also relatively hyperintense 

on T1-weighted images (Figure 2A left panel, arrow). In another subset (n=5) cystic fluid attenuated 

to the same degree as ventricular CSF on FLAIR and was isointense to the midbrain on T1-weighted 

images (Figure 2A, centre panel, arrowhead). Both of these cystic phenotypes were also identified 
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within individual lesions (n=3. Figure 2A right panel) and were consistent with the imaging features 

of the cysts observed in human ACP patients (10).  

 

Quantitative functional MRI incorporating native and contrast-enhanced parameters was also 

performed at study end. Parametric ADC maps demonstrated that whilst the solid tumour 

component appeared to have a similar ADC to the rest of the brain (Figure 2B), there was 

substantial heterogeneity in the tumours corresponding to the different components of the lesions 

(Figure 2B and 2C). Quantification of ADC in eight end-stage tumours that consisted of all three 

tumour components showed that ADC was lowest in the solid component (635±29x10-6mm2s-1), 

was significantly higher in the haemorrhagic component (856±79x10-6mm2s-1, p=0.02) and was 

higher still in the cystic regions (1953±73x10-6mm2s-1, p<0.0001 vs solid and haemorrhagic).  

 

The uptake and distribution of Gd-DTPA contrast agent in the tumours was assessed using two 

techniques. T1-weighted images acquired prior to and following contrast agent administration 

provided qualitative data that showed heterogeneous signal enhancement in the solid tumour 

component but no response in the cystic or haemorrhagic components (Figure 2B). Quantitative 

maps of the transfer coefficient Ktrans (Figure 2C), which here represents a compound biomarker of 

perfusion and permeability, demonstrated heterogeneous distribution in the solid tumour 

component.  

 

Ex vivo µ-CT images of intact tumour-bearing Hesx1Cre/+;Ctnnb1lox(ex3)/+ mouse heads, which had 

been imaged in vivo by MRI prior to necropsy, provided higher resolution 3D visualisation of the 

tumours in situ, confirming the complex architecture observed on MRI in addition to more detailed 

evaluation of microcystic components within the solid tumour (Figure 3 and Supplementary videos 

1 and 2). No invasion of the brain parenchyma by the tumour was evident, and whilst smaller cysts 

within the solid tumour mass were preserved, the integrity of the larger cysts was in some cases 
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difficult to assess because tissue shrinkage during fixation separated the tumour from the brain. 

H&E stained sections of the decalcified heads showed clinically relevant histological features 

observed by MRI and µ-CT; for example densely cellular areas of solid tumour, cysts containing 

proteinaceous fluid and/or red blood cells, and cyst walls made up of a simple epithelial layer 

(Figure 3). 

 

Micro-CT imaging of patient-derived ACP xenografts reveals the 3D tumour structure and 

histological features of human ACP 

MRI performed between 124 and 130 days after implantation of uncultured ACP tumour tissue into 

the cerebral hemisphere of nude mice demonstrated successful engraftment, with tumours appearing 

heterogeneous on both T2-weighted and post-contrast T1-weighted images (Figure 4). Ex vivo µ-CT 

of tumour-bearing brains revealed heterogeneous tumours displaying imaging features that 

corresponded to histological features commonly observed in human ACP, such as palisading 

epithelium, epithelial whorls, stellate reticulum, wet keratin and calcification (Figure 4 and 

Supplementary videos 3, 4 and 5). These features were observed to varying degrees in each of the 

xenografts.  
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Discussion 

 

The relevance of preclinical tumour models to human cancer has been a topic of debate for many 

years. Transgenic models, in which expression or knockout of a specific gene in the native tissue of 

origin leads to spontaneously arising tumours, orthotopic xenografts, where cancer cells are 

implanted in the organ from which they originated, and patient-derived xenografts (PDXs), in 

which human tumour tissue is implanted directly from surgical or biopsy samples, are increasingly 

being exploited. The use of these models for preclinical cancer research must be underpinned by 

case-specific evidence for each model establishing that tumour development, progression and 

radiology recapitulates the human disease. In this study we have used longitudinal in vivo MRI and 

high resolution ex vivo μ-CT to compare and contrast the growth patterns and radiological features 

of tumours arising in Hesx1Cre/+;Ctnnb1lox(ex3)/+ transgenic mice and in cerebrally implanted patient-

derived ACP xenografts. 

 

MRI was first performed when Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice were approximately 8 weeks of age, 

where expansion and increased heterogeneity of the pituitary was observed in comparison with 

wildtype control mice. Due to the size of the mouse pituitary (~1mm x 1mm x 3mm) and the 

resolution achievable with in vivo MRI, it was not possible to detect the microscopic structural 

changes previously described, which were observed in utero as early as 9.5 days post coitum (11). 

Micro-CT provided a method for high resolution in situ imaging, achieving resolution of ~9µm3, 

and identified altered architecture of the anterior pituitary and also the posterior lobe of the gland. 

The high radiation exposure required to acquire images at this resolution and tissue contrast 

prohibits the use of this protocol in vivo and thus for longitudinal studies.  

 

Anatomical T2-weighted MRI provides a non-invasive, non-ionising method of monitoring tumour 

growth over extended periods of time. In addition, advanced MRI techniques provide a means of 
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defining non-invasive quantitative biomarkers to inform on biologically relevant structure-function 

relationships in tumours (5). Serial imaging of Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice revealed that, whilst 

the pituitary was enlarged from early postnatal life, there was indistinguishable growth during a 

stable period prior to progression, in some cases rapid, involving solid tumour growth, cystic 

expansion and other MRI detectable changes. Progressing tumours were identified from 8.3 to 35.3 

weeks old (median 17.7 weeks), with 4/17 animals not demonstrating any imaging changes before 1 

year of age. Overall survival therefore also differed greatly across the cohort with median survival 

being 22.6 weeks (4/17 animals alive beyond 1 year of age), considerably longer than the 

previously reported median survival of 11 weeks, with all animals dying before 6 months of age 

(11). These differences are likely the consequence of variations in the genetic background since the 

original study was performed. The time over which tumours progressed was also variable but we 

show that the age at which tumour progression was identified positively correlated with the time 

from progression to sacrifice; tumours that took longer to progress from the steady state, also 

progressed slower once expansion was identified. The molecular mechanisms underpinning this 

pattern of tumour evolution require further elucidation.  

 

The formation of cysts is a hallmark in the presentation of ACP in children (19) and was observed 

during necropsy in the Hesx1Cre/+;Ctnnb1lox(ex3)/+ model (11). Here, we show that the proportion of 

cystic component varies between tumours, ranging from microcysts within a largely solid lesion, to 

cysts making up approximately 70% of the abnormality. Most interestingly, in approximately half 

of the tumours analysed some or all of these cysts appeared hyperintense on FLAIR images and T1-

weighted images, as is often observed in human ACP (10). This is thought to be caused by the 

presence of high levels of protein, cholesterol and blood breakdown products in the cystic fluid (1, 

10, 12), contributing to its description as ‘engine oil’. Diffusion-weighed MRI showed that the 

ADC of the cystic regions was significantly higher than the other regions of the tumours, 

demonstrating their fluid-filled nature, and ADC values were indistinguishable between cysts that 
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attenuated on FLAIR images and those that remained hyperintense. Diffusion-weighted MRI has 

been investigated, alongside MR spectroscopy, for the evaluation of ACP in the clinic (25). 

Calcification of cyst walls, which is detectable by CT in patients and is integral in the differential 

diagnosis of ACP (29), was not observed in Hesx1Cre/+;Ctnnb1lox(ex3)/+ tumours by ex vivo µ-CT, 

which may be related to the relatively short evolution time of mouse tumours compared to human 

tumours.  

 

The solid component of the tumours, which in some cases did not enlarge far beyond the original 

size of the abnormal pituitary, were in themselves heterogeneous with small areas of hypointensity 

on T2-weighted MRI and evidence of microcysts in some cases. These smaller cysts were also 

apparent on μ-CT and histologically, consistent with some human ACPs (22). As expected, these 

regions displayed the most restricted diffusion of water molecules, demonstrating ADC values 

equivalent to those measured in the normal mouse striatum and intracranially implanted murine 

tumours (5, 23). Gadolinium contrast agent extravasation occurred heterogeneously in the solid 

portion of the tumour only, recapitulating the pattern of enhancement in patient tumours (10). In 

patients, some rim enhancement in the cysts occurs; this was not observed preclinically but may be 

a feature of the relatively smaller tumours and relatively lower resolution. Imaging and pathological 

evidence showed that, unlike in patients, the tumours that develop in Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice 

do not invade into the brain, which is likely to be as a result of differences in the hypothalamo-

pituitary axis anatomy between mice and humans (18). 

 

The majority of mice (11/13) presented with regions of hypointensity on T2-weighted images, 

which were either hypointense or isointense with the brain parenchyma on T1-weighted images, and 

thus consistent with the presence of paramagnetic species, such as deoxyhaemoglobin, ferritin and 

hemosiderin, from the blood and degradation of erythrocytes associated with haemorrhage. The size 

of these regions varied in size up to approximately 70% of the lesion volume in the most extreme 
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case. ADC in these regions was significantly higher than in the solid component of the tumours but 

was approximately 2.4 fold lower than the fluid in the cysts, suggesting that there are substantial 

barriers to the diffusion of water molecules in these regions. Haemorrhage was also identifiable on 

µ-CT images and H&E staining. The combination of cystic volume and large haemorrhagic regions, 

leading to raised intracranial pressure, was likely the predominant cause of morbidity in the mouse 

cohort. 

 

Patient-derived ACP xenografts also showed MRI features similar to human ACP, consistent with 

the initial description of the model (26). In addition, µ-CT gave further 3D insight into the 

architecture of these tumours, and highlighted several features of human ACP, including 

calcification and specific histological structures such as stellate reticulum, wet keratin and 

palisading epithelium (Figure 4).  

 

As druggable targets are increasingly identified in human and mouse studies (reviewed in (3)) it 

will be important to develop appropriate preclinical strategies to test novel therapeutic agents. The 

two models described here are complementary and recapitulate many of the radiological and 

pathological aspects of human ACP. We anticipate that the use of these murine ACP models will 

improve the accuracy of preclinical data and accelerate the development of urgently required 

targeted therapies for these devastating human tumours.  
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Figure Legends 

 

Figure 1 

A. Axial in vivo T2-weighted MRI (upper panel) and ex vivo micro (µ)-CT (lower panel) images of 

the pituitary region of 8 week old control and Hesx1Cre/+;Ctnnb1lox(ex3)/+ mutant mice (each image 

acquired from a different mouse). Note the expansion and increased heterogeneity of the 

Hesx1Cre/+;Ctnnb1lox(ex3)/+ pituitaries (solid arrows) relative to the controls (dashed arrows). 

Arrowheads indicate the posterior lobe of pituitary also detectable in μ-CT images and * denotes 

the sphenoid bone in control mice. MRI resolution 98x98x1000µm; µ-CT resolution approximately 

9µm isotropic. B. T2-weighted MRI images of a Hesx1Cre/+;Ctnnb1lox(ex3)/+ mouse demonstrating the 

evolution of a tumour. In this mouse the first remarkable change was detected at 17.7 weeks, which 

was followed by rapid tumour progression including growth of the solid component, cyst formation 

and haemorrhage; the mouse was humanely killed at 22.6 weeks according to Home Office 

regulations. C. Progression-free and overall survival curves to 1 year of age representing data from 

seventeen Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice alongside the correlation between time to tumour 

identification and time between identification of tumour and death for twelve animals. Pearson 

correlation coefficient and one tailed significance analysis.  

 

Figure 2 

A. T2-weighted (T2-w), fluid attenuated inversion recovery (FLAIR) and T1-weighted (T1-w) MRI 

images from three Hesx1Cre/+;Ctnnb1lox(ex3)/+ mice demonstrating different cyst imaging 

presentation. Arrows denote cystic fluid that did not attenuate on FLAIR and was hyperintense on 

T1-weighted MRI; arrowheads denote cystic fluid that attenuated on FLAIR and was isointense on 

T1-weighted MRI. The example on the right shows both cyst phenotypes in the same tumour. B. 

Upper panel: T2-weighted and FLAIR images, and a parametric map of apparent diffusion 

coefficient (ADC) acquired from a 1mm thick axial slice through a tumour-bearing 
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Hesx1Cre/+;Ctnnb1lox(ex3)/+ mouse head. Lower panel: Matched T1-weighted images acquired at 

baseline and 1 minute after injection of 0.1mmol/kg Gd-DTPA and a subtraction map clearly 

showing areas of signal enhancement. Green ROI denotes lesion volume. C. Parametric maps of 

ADC and transfer coefficient Ktrans in the entire lesion and the solid component of a 

Hesx1Cre/+;Ctnnb1lox(ex3)/+ tumour alongside a T2-weighted anatomical image of the matched 1mm 

slice. Green ROI denotes solid component of the lesion. Note the heterogeneous signal 

enhancement in the solid tumour components following contrast administration and high ADC in 

cystic areas in B and C. 

 

Figure 3 

In vivo T2-weighted MRI, ex vivo micro (µ)-CT and H&E stained sections from two tumour-bearing 

Hesx1Cre/+;Ctnnb1lox(ex3)/+ mouse heads. Snapshots of H&E staining were acquired at x100 (upper 

panel) and x400 (lower panel) magnification. Arrow denotes densely cellular solid tumour. Small 

cysts contained proteinaceous fluid (+) and/or red blood cells (*). Arrowhead indicates the simple 

epithelial layer that made up the wall of a large cyst. MRI slice thickness 1000µm, μ-CT slice 

thickness ≈ 9µm, tissue sections 5µm.  

 

Figure 4 

In vivo T2-weighted and gadobutrol-enhanced T1-weighted MRI acquired immediately prior to 

necropsy, ex vivo micro (µ)-CT and H&E stained sections from three mice bearing cerebrally-

implanted patient-derived ACP xenografts. Histological features from the patient’s tumour were 

maintained; cell clusters (#) palisading epithelium (arrowhead), stellate reticulum (*), calcification 

(arrows) and wet keratin (+). MRI slice thickness 700µm, μ-CT slice thickness ≈ 4-6µm, tissue 

sections 3µm. 
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Supplementary Material Legends 

 

Supplementary Video 1 

Micro-CT volume rendering (isotropic voxel size=9.1µm) demonstrating virtual dissection of the 

tumour that arose in the Hesx1Cre/+;Ctnnb1lox(ex3)/+ mouse shown in the upper panel of Figure 3. 

Complex areas of cystic and solid tumour can be identified, along with compression of the 

surrounding brain parenchyma.     

 

Supplementary Video 2 

Micro-CT volume rendering (isotropic voxel size=8.7µm) demonstrating virtual dissection of the 

tumour that arose in the Hesx1Cre/+;Ctnnb1lox(ex3)/+ mouse shown in the lower panel of Figure 3. 

Complex areas of cystic and solid tumour can be identified, along with compression of the 

surrounding brain parenchyma.   

 

Supplementary Video 3 

Micro-CT volume rendering (isotropic voxel size=3.7µm) demonstrating virtual dissection of the 

cerebrally-implanted patient-derived ACP xenograft shown in the upper panel of Figure 4. High 

spatial resolution and differential uptake of iodine-based contrast enables visualisation of a cluster 

within an area of stellate reticulum.  

 

Supplementary Video 4 

Micro-CT volume rendering (isotropic voxel size=6.1µm) demonstrating virtual dissection of the 

cerebrally-implanted patient-derived ACP xenograft shown in the middle panel of Figure 4.  A 

radio-dense focus can be seen within the xenograft; this corresponds to an area of calcification on 

histological examination.  
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Supplementary Video 5 

Micro-CT volume rendering (isotropic voxel size=3.8µm) demonstrating virtual dissection of the 

cerebrally-implanted patient-derived ACP xenograft shown in the lower panel of Figure 4. Islands 

of wet keratin adjacent to solid tumour (confirmed on H&E, Figure 4) give the xenograft a 

heterogeneous appearance on micro-CT examination.  
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